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Multimodal medical image fusion (MMIF) has been proven to effectively

improve the efficiency of disease diagnosis and treatment. However, few

works have explored dedicated evaluation methods for MMIF. This paper

proposes a novel quality assessment method for MMIF based on the

conditional generative adversarial networks. First, with the mean opinion

scores (MOS) as the guiding condition, the feature information of the two

source images is extracted separately through the dual channel encoder-

decoder. The features of different levels in the encoder-decoder are

hierarchically input into the self-attention feature block, which is a fusion

strategy for self-identifying favorable features. Then, the discriminator is used

to improve the fusion objective of the generator. Finally, we calculate the

structural similarity index between the fake image and the true image, and

the MOS corresponding to the maximum result will be used as the final

assessment result of the fused image quality. Based on the established MMIF

database, the proposed method achieves the state-of-the-art performance

among the comparison methods, with excellent agreement with subjective

evaluations, indicating that the method is effective in the quality assessment

of medical fusion images.

KEYWORDS

attention mechanism, conditional, generative adversarial networks, image quality
assessment, medical image fusion

Introduction

As the population aging becomes familiar, and the vulnerability of the human
brain to physical, chemical, and viral attacks, the incidence of brain diseases such
as intracranial tumors, intracranial infectious diseases, and cerebrovascular diseases is
gradually increasing, which has seriously threatened human health and wellbeing (Chen
et al., 2022; Gottesman and Seshadri, 2022). There are many medical imaging modalities
for clinical diagnosis and treatment of brain diseases, including computed tomography
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(CT), magnetic resonance imaging (MRI), positron emission
tomography (PET), and so on. Different imaging methods
always have their unique advantages in attracting clinicians
to choose (Liu et al., 2019; Cauley et al., 2021; Preethi and
Aishwarya, 2021). For example, CT could superbly display
the histological structure of the skull and the density changes
in the brain parenchyma, while MRI could faithfully restore
the essential features of the nervous or soft tissue. Generally,
it is difficult for medical experts to identify the necessary
information from a single modality of brain images to ensure the
reliability of clinical diagnosis (Townsend, 2008). Additionally,
some early work found that radiologists could effectively
improve the diagnostic accuracy if they can analyze imaging
results of more than two modalities at the same time (Li and
Zhu, 2020). From a technical point of view, multimodal medical
image fusion (MMIF) just meets this clinical need. Therefore,
recently, MMIF has received attention and extensive exploration
by researchers (Li et al., 2020; Ma et al., 2020; Liu et al.,
2021).

The purpose of MMIF is to complement the image
in different modalities to obtain better image expression,
quality, and information perception experience (Azam et al.,
2022; Liu et al., 2022). The fused images may contain both
anatomical structure and tissue metabolism information
(e.g., image fusion of CT and MRI), which improves the
applicability of image-based diagnosis or assessment of
diseases, thereby simplifying diagnosis. At present, many
high-quality MMIF methods have been proposed (Arif
and Wang, 2020; Wang K. P. et al., 2020; Duan et al.,
2021; Ma et al., 2022; Xu et al., 2022). Madanala and Rani
(2016) proposed a two-stage fusion framework based on
the cascade of discrete wavelet transform (DWT) and
non-subsampled contour transform (NSCT) domains,
realizing the combination of spatial domain and transform
domain. Inspired by the Tchebichef moments’ ability to
effectively capture edge features, Tang et al. (2017) used the
Tchebichef moments energy to characterize the image shape,
and thus designed an MMIF method based on the pulse
coupled neural network (PCNN). However, the performance
evaluation of these MMIF models and fused images has not
been fully explored.

Normally, the higher the image quality, the more features
and information human observers can receive or perceive
through the image. As the ultimate observers and beneficiaries
of the fused images, medical experts, although they subjectively
evaluate the fused images as the most direct and reliable
solution, it will be a very time-consuming and labor-intensive
task, and it is not very useful in practical applications. Hence,
objective image quality assessment (IQA) is very necessary
(Liu et al., 2018; Shen et al., 2020; Wang W. C. et al.,
2020). Some existing objective quality assessment studies
include deblocking images, screen content images, multiple
distorted images, and noisy images, etc. (Gao et al., 2008;

Min et al., 2019; Liu et al., 2020; Meng et al., 2020). For
instance, in early work, Wang et al. (2004) developed structural
similarity (SSIM) index based on the subjective perception of
image structure information, which achieved a breakthrough
in the objective evaluation of image quality. Kang et al.
(2014) used deep learning techniques to accurately predict
the quality of images without reference images, and their
method greatly improved the performance and robustness of
the algorithm. On the premise of highlighting the important
detection objects, Lei et al. (2022) fuses multiple features of
the images at the pixel level and designed an IQA method
of main target region extraction and multi-feature fusion.
However, among these IQA methods, they are proposed for
general use in the field of image fusion, not specifically
for MMIF. Note that the quality assessment of medical
fusion images includes information fidelity, contrast, grayscale
tolerance, and region of interest (ROI). In clinical practice,
the ROI usually refers to the lesion area. And, the ROI
has a great influence on the results of IQA, which is the
most different from the natural image (Du et al., 2016a;
Cai et al., 2020; Chabert et al., 2021). As a result, there is
an urgent need for a dedicated objective IQA method for
medical fusion images.

We discussed with radiologists and found that the quality
of a medical fusion image mainly depends on its impact
on disease diagnosis. That is, the medical fusion image
retains disease-relevant information in the ROI, it will be
acceptable and will be given a higher subjective evaluation
score. To this end, we propose a novel medical fusion
image quality assessment method that uses the radiologist’s
mean opinion scores (MOS) as the constraint on conditional
generative adversarial networks (GANs). Concretely, the
method firstly extracts the feature of different depths from
MOS and two input source images with the aid of dual-
channel encoder-decoder. Next, under the supervision of
the attention mechanism, we fuse the feature information
hierarchically, and generate the fused image through the up-
sampling algorithm. Then, the discriminator (D) differentiates
the source of the fused images to improve the generator (G)
performance. Finally, we calculate the SSIM of the fake image
and true image, and the constrain value corresponding to
the maximum value of SSIM as the evaluation result. The
experimental results show that the proposed method is superior
to the previous IQA algorithms, and the objective results
obtained are more consistent with the subjective evaluation
of radiologists.

The content of this paper is arranged as follows. In
see section “Methodology,” the proposed method is mainly
introduced from four aspects: Encoder-Decoder, G, D,
and objective function. The details of the experiments
are presented in see section “Experiments.” See section
“Discussion and conclusion” contains the discussion and
conclusion of this paper.
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FIGURE 1

The overall architecture of our proposed method.

Methodology

The structure of our proposed model based on conditional
generative adversarial network is shown in Figure 1, and the
details are described below.

Dual-channel encoder-decoder

Among the existing multimodal medical images,
each image has its unique imaging method and the
advantage of displaying different human tissue. Therefore,
accurately extracting the latent and deep key features
of each modality image will be extremely conducive the
image fusion (Ma et al., 2019). Besides, we also hope that
MOS, the gold standard for image quality assessment,
can participate in the feature extraction process of model
learning images, in other words, learning the non-
linear mapping relationship between MOS and fused
images. To achieve this vision, we develop a dual-channel
encoder-decoder structure.

First of all, we encapsulate three convolutional blocks,
each of which contains two sets of convolutional layers, batch
normalization (BN) layers, and activation layers. Specifically, the
filter, stride, and padding of each convolutional layer are 3 × 3,
1, and 1, respectively. BN operation can effectively accelerate

the network training as well as alleviate the problem of over-
fitting. Thus, we append such operation after each convolutional
layer. Considering that the image encoding process is important
to learn image features and image fusion, we use a more
comprehensive activation algorithm: Lleaky Rectified Line Unit
(LeakyReLU). Then, we added max pooling operation instead
of average pooling operation after each convolutional block.
The reason is that the model should perform some specific
feature selection under the constraints of MOS to learn more
recognizable features. Each feature map output through the
pooling operation is fed to the self-attention fusion block (SA-
FB) separately, and more details will be explained in the next
section. For the decoder, seven groups of deconvolution layer,
BN layer, and Rectified Line Unit (ReLU) activation function
layer complete the up-sampling operation of the feature maps.
Finally, a reconstructed image of size 128 × 128 is obtained. It
is worth noting that during the decoding operation, there is no
feature map as output.

Perform the concatenating operation on the image of two
different modalities (MIi, i = 1, 2) and the corresponding MOS
of their fused image, and the result is named MIimos, and then
input into two encoder-decoders, respectively. The feature map
after the pooling layer is represented as Fij, then the j-th feature
map for the i-th modality can be marked as:

Fij = ConvB(MIimos)j (1)
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where ConvB(•) means the operation process of the j-th
convolution block. The integer value range of j is one to three
as only three convolution blocks are established in the encoding
process. Here, sum of absolute difference is employed as the loss
function for single modality image restoration, as defined by the
following equation:

LED =
∑
i

∑∣∣MIi − M̂Ii
∣∣ , i = 1, 2 (2)

Where M̂Ii refers to the original modal image restored by
the decoder, and i represent the two modal images input to the
dual-channel encoder-decoder, respectively.

Generator architecture

It is generally known that image fusion is the operation of
synthesizing two or more images into one image, preserving
the most representative features of each modality. To avoid
the impact on image feature learning, independent of the
dual-channel encoder-decoders, we design a feature fusion
method based on the self-attention (SA) mechanism, as shown
in Figure 1. Different levels of features contain different
image information, for example, shallow features mean contour
information while deep features represent texture information.
For the three-level of feature Fij yielded in the encoder, we
develop the SA-FB to complete the fusion hierarchically. The
structure diagram of SA-FB is shown in Figure 2.

In particular, the first SA-FB has only two inputs (i.e., Fij),
and the fusion feature Fsa is null. We do not carry out any
feature selection operations (such as taking extreme values)
during inputting, but directly feed the initial features F1j and
F2j to SA after concatenating, and SA will sign weights to the
features. Such setting can replace the manual feature selection
algorithm, thus avoiding the loss of important information. SA
is a variant of the attention mechanism from Sergey and Nikos
(2017). It could coarsely estimate the foreground region to find
prominent features that are in favor of later search. At the same
time, it also reduces the dependence on external information,
and is better at capturing the internal relevance of features.
Immediately after, we adopt a convolution layer at the end of
the SA. The convolution kernel size is set to 1 × 1 with stride
1 for adapt the output feature map weights. The output of this
convolutional layer is concatenated with Fsa, and further input
to a new convolution layer with a filter size of 3× 3, and stride 1.
In the end, a feature output Fsa+1 that has undergone a complete
SA-FB is obtained, and can be expressed as:

Fsa+1 = safb(Fij, Fsa), (i = 1, 2, j = 1, 2, 3) (3)

where safb(•) is a series of operations of SA-FB. It should be
mentioned that each convolution layer in the first three SA-FB is
followed by BN layer and LeakyReLU as an activation function,
which is similar to the encoder. The max pooling operation also

appends after each SA-FB. The SA-FB in the up-sampling stage
eliminates the pooling operation and changes the activation
function to ReLU. On the basis of MOS as the condition to
extract two modal image features, the G generates a fused image
with 128 × 128. The parameters of the G are only renewed by
the following loss function:

Lfusion =
1
N

N∑
n=1

∣∣ytrue − ŷ
∣∣
1 (4)

where ytrue means the fused image with the corresponding MOS
and the ŷ represents the fused image produced by the G. N
is the total number of generations, and n represents the n-th
generation. When training G, minimize the following objective
function:

LG = Vmos
G (G,D) = EMI1,MI2∼PdataM

[log(1− D(MI1,MI2, (G(MI1,MI2 |mos ))))] + αLfusion (5)

where PdataM represents the distribution of MI1 and MI2,
respectively, and EMI1,MI2∼PdataM represents the expectation of
G(MI1,MI2 |mos ). α is a weight hyperparameter and is set to
100 during training.

To sum up, we restrict the generator based on MOS
conditional information, and achieve the goal of generating
image content. This is similar to that the generator analyzes the
fused image by simulating the human visual system (HVS) and
learns the non-linear mapping relationship between MOS and
image. That is, the generator simulates a radiologist to assess the
quality of the fused image, there by producing a fused image that
matches the quality of MOS (i.e., G has learned the evaluation
experience of radiologist).

To evaluate the quality of the fused image FI12, first of all its
original two modal images FI1 and FI2 should be input and then
generate the fusion image FIfake by G. Where 1 and 2 represent
two modal images, respectively. We have created five fake MOS
(MOSk = 0.2k, k ∈ [1, 5], k ∈ Z) as the conditional constraints
G, so the FIfake can be renewed to FIfake,k, which represents
the fused image generated under the five constraints. Finally,
the SSIM between FI12 and FIfake,k is calculated, and the MOS
corresponding to the optimal value is taken as the assessment
result, as follows:

Q = max SSIM(FI12,G(FI1, FI2 |MOS k)) (6)

Discriminator architecture

The discriminator needs to determine whether the
generated image conforms to the real data distribution, so its
structure is much simpler than the generator. In the proposed
method, the input of the D is the generated fusion image or
the original fusion image, all of which are 128 × 128 in size,
and down-sampling is implemented using the discriminator
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FIGURE 2

The diagrammatic sketch of SA-FB.

block (DB). Each DB consists of a convolution layer with a filter
size of 3 × 3, stride of 2 and padding of 1, and followed by BN
processing. The LeakyReLU is used as the activation function
for each block. The image passes through four DB in sequence,
and after each DB, the size of the feature map becomes a quarter
of that before input. An independent convolutional layer with
convolution kernel 3 × 3 and stride 1 is appended to the last
DB, and the final obtained feature map is 6 × 6. At last, the
discriminator will judge the authenticity of the result. We apply
mean square error (MSE) as the loss function to optimizing the
parameters of the D. Further, the objective function of D can be
reformulated as:

LD = Vmos
D (G,D) = Eytrue∼Pdata [logD(ytrue

|mos )]EMI1,MI2∼PdataM [log(1− D(G(MI1,MI2 |mos )))] (7)

where Pdata represents the distribution of ytrue and Eytrue∼Pdata
represents the expectation of ytrue .

Total objective loss function

As shown in Figure 1, we use MOS as a condition to limit the
content of the image generated by G, and D determines whether
the distribution of the generated fused image is true or false. G
and D are trained against each other, and finally achieve the goal
of Nash Equilibrium. Therefore, the optimization process of the
whole network can be expressed by Eq. 8:

Lall = min
G

max
D

V(G,D)+ βLED (8)

where V(G,D) can be obtained by Eqs. 5 and 7, respectively. β

is a weight hyperparameter and is set to 20 in this experiment.

Experiments

Dataset

Image quality assessment has been developed in full
swing in many fields and has made substantial progress.

But, in the past period, the short-lived time of the MMIF
algorithm has resulted in few research dedicated to the
quality assessment of medical fusion images. In order to
enable the medical image fusion algorithm to restore the
brain structure more accurately and reflect tissue metabolic
information more objectively, meeting the needs of clinical
diagnosis, based on our previous work (Tang et al., 2020),
we construct a special multimodal medical image fusion
image database (MMIFID) with subjective evaluation of
radiologists. Particularly, this work uses brain images from
the AANLIB dataset, provided by Harvard Medical School
and accessible online. The image size is 256 × 256, which
can be browsed directly on the online web page. Most
importantly, since image registration is completed for each
combination of different modal images, it is one of the
most widely used datasets. We selected 120 pairs of images
in the AANLIB dataset and fused the images through ten
image fusion algorithms. Figure 3 shows examples of results
generated by ten fusion algorithms. Consistent with our
previous work (Tang et al., 2020), radiologists subjectively
evaluated the quality of the fused image and gave a
score (1 is the lowest and 5 is the highest), and finally
obtained the MOS.

Evaluation metrics

To comprehensively evaluate the performance of the
proposed method, that is, the consistency of the model’s
assessment of the fused image quality with the MOS score,
we adopted four commonly used performance metrics:
Spearman Rank-order Correlation Coefficient (SRCC),
Kendall Rank-order Correlation Coefficient (KRCC),
Pearson Linear Correlation Coefficient (PLCC), and Root
Mean Square Error (RMSE). To sum up, the higher SRCC,
KRCC and PLCC value and lower RMES value mean better
model performance. Note, the model is evaluated at the
end of each training epoch, and the final model is the
checkpoint model with the best evaluation performance
within 200 epochs.
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FIGURE 3

An example of fused images generated by ten different MMIF algorithms. Algorithms include (A) discrete Tchebichef moments and pulse
coupled neural network (DTM-PCNN) (Min et al., 2019), (B) convolutional sparse representation (CSR) (Liu et al., 2016), (C) pulse-coupled neural
network with modified spatial frequency based on non-subsampled contourlet transform (PCNN-NSCT-SF) (Das and Kundu, 2012), (D) guided
filtering (GFF) (Li et al., 2013), (E) cross-scale coefficient selection (CSCS) (Shen et al., 2013), (F) union Laplacian pyramid with multiple features
(LAP-MF) (Du et al., 2016b), (G) Laplacian pyramid and sparse representation (LP-SR) (Liu et al., 2015), (H) parameter-adaptive pulse-coupled
neural network (PA-PCNN) (Yin et al., 2019), (I) pulse coupled neural network using the multi-swarm fruit fly optimization algorithm
(PCNN-MFOA) (Tang et al., 2019), and (J) reduced pulse-coupled neural network (RPCNN) (Das and Kundu, 2013).

Comparison methods

The results are compared with those of the state-of-the-
art (SOTA) image fusion quality metrics, which are listed as
follows:

Mutual Information (QMI) (Hossny et al., 2008): As an
objective method for evaluating image fusion performance, this
method can measure the features and visual information from
the input initial image and the fused image. The MI method we
adopted is optimized by Hossny et al. (2008).

Non-linear Correlation Information Entropy (QNCIE)
(Wang and Shen, 2004): Wang et al. propose a method based
on non-linear correlation measures. This method evaluates
the performance of image fusion algorithms by analyzing
the general relationship between the source image and
the fused image.

Gradient based fusion metric (QG) (Xydeas and Petrovic,
2000): This performance metric measures the amount of
visual information transmitted from the source image to
the fused image.

Ratio of spatial frequency error (QrSFe) (Zheng et al., 2007):
This is a new metric based on extended spatial frequencies,
and its original intention is to guide the algorithm to obtain a
better fusion image.

The metric proposed by Yang et al. (2008) (QY ):
According to the structural similarity between the
source image and the fused image, this method treats

redundant regions and complementary / conflicting
regions, respectively.

A metrics based on edge preservation (QEP) (Wang and Liu,
2008): An image fusion metric method is proposed based on the
perspective of edge information preservation.

A metric based on an absolute image feature measurement
(QP) (Zhao et al., 2007): Based on phase congruency and its
moments, a pixel-level image fusion performance metric is
defined, which provides an absolute measure of image features.

Table 1 shows the performance of the above methods on our
MMIFID, and the last row is the performance of the method
proposed in this paper. Generally, SRCC, KRCC, and PLCC

TABLE 1 Comparison of quality assessment performance of
different models.

Methods SRCC KRCC PLCC RMSE

QMI 0.2545 0.3604 0.2772 0.3804

QNCIE 0.2647 0.3608 0.2920 0.4093

QG 0.2488 0.3322 0.2444 0.2791

QrSFe 0.1801 0.2076 0.3126 0.2872

QY 0.1884 0.2400 0.2503 0.4002

QEP 0.0960 0.1275 0.2235 0.2970

QP 0.1093 0.1216 0.0803 0.3007

Proposed 0.8259 0.7426 0.8197 0.1709

The bold values are the results of our proposed method, which achieves the best
performance.
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can measure the agreement between MOS and the objective
scores, while RMSE can calculate its absolute error. Thus, the
higher the SRCC, KRCC, and PLCC values, the better the quality
evaluation metrics. The smaller the RMSE, the higher accuracy
of the assessment. From Table 1, we can observe that the
proposed method outperforms all SOAT methods. Furthermore,
it can also be noticed that our proposed metrics are obviously
better than these methods, which especially highlights that the
quality assessment methods for medical images differ from
natural images. Therefore, it is necessary to explore the special
indicators for the quality evaluation of medical fusion images.

Ablation experiment

As we know, image fusion can be divided into two
categories: early fusion and late fusion. The early fusion fuses the
image directly together and then carries on the process of feature
extraction and selection, while the late fusion allows the images
to go through the process of feature extraction and selection,
respectively, and then perform image feature fusion. Therefore,
our two ablation experiments are to downgrade the proposed
method to the early fusion and late fusion model, named
Early-FM and Late-FM, respectively. Specifically, Early-FM first
concatenates F1, F2 and MOS, and then completes feature
learning through the single-channel encoder-decoder structure
(e.g., we use the single-channel encoder-decoder to replace dual-
channel encoder-decoder). The features output by the third
convolutional block will be used to generate the fused image.
Different from Early-FM, the Late-FM first concatenates the
images of the two modalities and their respective MOS, and then
inputs them to the dual-channel encoder-decoder, respectively,
to complete feature learning. The third convolution block of
the two channels outputs features, and the fused features are
obtained by fusion operation. Finally, G generates the fused
image. For the third ablation experiment, we eliminated the SA
mechanism in SA-FB, and the rest of the structure is consistent
with the proposed method, which is marked as proposed w/o
SA. We train the Early-FM, Late-FM and the proposed w/o SA
based on the same method applied in the proposed method and
tabulate their test performances in Table 2.

Two main conclusions can be drawn from the experimental
results. First, the performance results of both Early-FM and

TABLE 2 Comparative results of ablation experiments.

Methods SRCC KRCC PLCC RMSE

Early-FM 0.7077 0.6208 0.6779 0.2425

Late-FM 0.7288 0.6427 0.6833 0.2417

Proposed w/o SA 0.7825 0.7113 0.7867 0.2020

Proposed w SA 0.8259 0.7426 0.8197 0.1709

The bold values are the results of our proposed method, which achieves the best
performance.

Late-FM are worse than those of the hierarchical fusion strategy
we designed (i.e., the proposed method without or with SA).
More concretely, the results comparison between Early-FM
and proposed method are notably improved by 11.82% for
SRCC, 12.18% for KRCC, and 14.18% for PLCC, while the
RMSE decreased by 7.16%. For Late-FM, the proposed method
also improves SRCC, KRCC, and PLCC by 9.71, 9.99, and
13.64%, respectively, while reducing RMSE by 7.08%. It is
conceivable that the unnecessary noise in the early fusion will
affect the quality of the fused image, and the late fusion may lose
important details of the image. Thus, the obtained results are not
pleasing. Second, the performance of the proposed method with
SA as guidance is better than that without SA, which means that
with the assistance of the SA mechanism, the process of model
learning features is superior.

Discussion and conclusion

Multimodal medical image fusion, as a way to express
multimodal diagnostic information at the same time, has
gradually gained attention in the field of medical imaging.
However, the diagnostic information that a radiologist can
perceive is not only related to the amount of initial image
information contained in the fused image, but also to the
quality of the fused image. Therefore, the quality assessment
of MMIF plays an increasingly important role in the field
of image processing and medical imaging diagnosis. At the
same time, it has also aroused the interest of many scholars
in the industry.

As MMIF is gradually gaining recognition in the medical
field, quality assessment of fused images has also developed
vigorously as an emerging field. An excellent objective
assessment method can not only achieve the purpose of image
quality control, but also guide the optimization of image fusion
algorithms, so as to find the best algorithm for image fusion
of different modalities. For instance, a certain algorithm can
achieve very good results for image of MRI and CT, but it is
not suitable for image fusion of MRI and SPECT, and maybe
another algorithm should be more suitable. Unfortunately, most
of existing IQA research methods are based on natural images,
and it is difficult to achieve satisfactory performance for medical
fusion images (see section “Comparison methods”). On the basis
of previous work, we augmented the medical image database,
MMIFID, which takes the doctor’s MOS as the gold standard
for subjective evaluation. The image content generated by G is
constrained by MOS as a condition, and the non-linear mapping
relationship between subjective evaluation and fused image
is learned. The experimental results show that the objective
evaluation results obtained from the model can match the
subjective evaluation values well. In addition, compared with
other IQA algorithms, we found that the proposed method
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outperforms the SOTA methods. Finally, we enumerate the
potential limitations of this work as follows: (1) Although the
database we built, as far as we know, is the largest multimodal
medical image fusion database with MOS. However, it may still
be a challenge for training GANs. In the future, we will continue
to work on expanding the database. (2) Currently, the images
contained in MMIFID are brain data, and we hope to add other
body parts to the database in the future. (3) This work uses SSIM
to calculate and obtain the final fusion image quality evaluation
results, which may affect the accuracy of assessment to a certain
extent. It would be better if the final evaluation result could
also be directly assigned by GANs. Future, we will continue
to explore the impact of fusing two modalities image through
different methods, and design another novel IQA algorithm
based on the idea of no reference.
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