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Objective: To study the effect of treatment zone (TZ) decentration on axial

length growth (ALG) in adolescents after wearing the orthokeratology lenses

(OK lenses).

Materials and methods: This retrospective clinical study selected 251

adolescents who were fitted OK lenses at the Clinical College of

Ophthalmology, Tianjin Medical University (Tianjin, China) from January

2018–December 2018 and wore them continuously for >12 months. The

age of the subjects was 8–15 years, spherical equivalent (SE): −1.00 to −5.00

diopter (D), and astigmatism ≤ 1.50 D. The corneal topography were recorded

at baseline and 1-, 6-, and 12-month visits, and the axial length (AL) were

recorded at baseline and 6-, 12-month visits. The data of the right eye were

collected for statistical analysis.

Results: The subjects were divided into three groups according to the

decentration distance of the TZ after wearing lenses for 1 month: 56 cases

in the mild (<0.5 mm), 110 in the moderate (0.5–1.0 mm), and 85 in the

severe decentration group (>1.0 mm). A significant difference was detected in

the ALG between the three groups after wearing lenses for 6 and 12 months

(F = 10.223, P < 0.001; F = 13.380, P < 0.001, respectively). Among these, the

6- and 12-month ALG of the mild decentration group was significantly higher

than that of the other two groups. Multivariable linear regression analysis

showed that age, baseline SE, and 1-month decentration distance associated

with the 12-month ALG (P < 0.001, P < 0.001, and P = 0.001, respectively).

Conclusion: The decentration of the TZ of the OK lens affected the growth of

the AL in adolescents, i.e., the greater the decentration, the slower the ALG.
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Introduction

Currently, myopia accounts for about 30% of the global
population and is expected to rise to 50% by 2050 (Holden
et al., 2016). Similarly, the current situation of myopia is
not optimistic in China. The overall myopia rate of children
and adolescents is about 50%, and that in high school
students is 80%, among which about 10–20% is high myopia
(Chen M. et al., 2018; Dong et al., 2020). The condition is
irreversible and incurable once it occurs, and high myopia
causes various complications, such as cataract, glaucoma, retinal
detachment, and macular degeneration (Flitcroft, 2012; Tsai
et al., 2019). In the population with high myopia, the risk
of fundus lesions is >40 times higher than emmetropia (Hu
et al., 2020). These complications are closely related to the
excessive axial length growth (ALG) in high myopia. The goal
of myopia control is to slow the progression and prevent
a low myopia from becoming a moderate or high myopia
(Bullimore and Brennan, 2019).

Orthokeratology lenses (OK lenses) are rigid gas-permeable
contact lenses (RGPCL) with a special reverse geometric design.
These lenses can reshape the front surface of the cornea during
sleep, temporarily reduce myopia, and improve visual acuity
(Lian et al., 2014). Recent studies (Cho et al., 2005; Kakita et al.,
2011) have confirmed that compared to single-vision spectacle,
OK lenses can reduce the ALG by 40–60%. However, some
OK lens wearers experienced that the center of the OK lens
treatment zone (TZ) is often inconsistent with the center of the
pupil. Presently, only a few studies have assessed the influence
of TZ decentration on ALG with a small sample size (Wang and
Yang, 2019; Chen et al., 2020).

The present study aimed to observe the effect of different
decentration states of the lenses on the ALG after wearing
OK lenses and explore the association between the ALG
and individual factors, such as age, gender, spherical
equivalent (SE), astigmatism, corneal curvature, corneal
astigmatism, pupil diameter, TZ decentration distance, and TZ
decentration direction.

Materials and methods

Subjects

This retrospective clinical study was conducted to collect
adolescent myopia subjects who underwent OK lens fitting
at the Clinical College of Ophthalmology, Tianjin Medical
University (Tianjin, China), from January 2018–December
2018. The inclusion criteria were as follows: (1) Age: 8–15 years;
(2) Subjective refraction under cycloplegia: −5.00 diopter
(D) ≤ SE ≤ −1.00 D, astigmatism ≤ 1.50 D; (3) The flat K (FK)
of the cornea was 39.00D ∼ 46.00D; (4) Monocular corrected
visual acuity of OK lenses ≥ 0.8 (Visual acuity expressed as

decimal visual acuity); (5) Both eyes were fitted with OK lenses
for the first time and worn continuously for ≥12 months.
Exclusion criteria: (1) Stop wearing the lenses for ≥7 days
for any reason during the follow-up, including corneal and
conjunctival adverse events, lens broken, and lens parameter
adjustment, etc; (2) Obvious keratoconjunctival complications,
glare, diplopia, or any other symptoms during the follow-
up; (3) Contraindications to wearing contact lenses for ocular
and systemic diseases. This study adhered to the tenets of the
Declaration of Helsinki and was approved by the Institutional
Ethical Committee Review Board of Tianjin Eye Hospital
(Scientific Research Review No. 2022005). The right eye data
were collected for statistical analysis to avoid the symbiosis of
binocular myopia.

Fitting of the orthokeratology lenses

All subjects were fitted by a team of one ophthalmologist
and three optometrists. The OK lenses were fitted according
to the manufacturer’s instructions. The OK lenses selected in
this study had a four-zone reverse-geometric design (Euclid
Systems Orthokeratology; Euclid System, Herndon, VA, USA)
manufactured at the Boston Equalens II material, with a
nominal DK 90 × 10−11 (cm2/s) (mlO2/mL · kPa−1), and the
lenses diameters were 10.0–11.2 mm. The difference of the total
diameter of the lens was located in the fitting arc. The diameter
of the optical zone fixed at 6.2 mm; the width of the reverse
arc was 0.5 mm; the width of the fitting arc ranged from 0.9 to
1.5 mm, and the curvature range of the fitting arc ranged from
39.00D to 46.00D; the width of the peripheral arc was 0.5 mm,
the curvature radius of the peripheral arc was 11.5 mm.

Refraction and corneal curvature
examination

Cycloplegic refraction was performed at baseline.
Three drops of 0.5% Topicamide/0.5% deoxyepinephrine
hydrochloride were dropped at 5-min intervals. Subjective
refraction was assessed at least 30 min after the last drop of
eye drops. SE = spherical diopter + 1/2 cylindrical diopter. The
FK and steep K (SK) of the cornea were measured by an auto
refraction keratometer (ARK-510A, Nidek, Aichi, Japan).

Measurement of axial length

The AL was measured at baseline and at 6- and 12-month
follow-up using an ocular biometric (IOL-Master 500, Carl
Zeiss, Ag, Jena, Germany). Five consecutive measurements were
recorded, and the average value was taken for data analysis at
each follow-up. The difference between the AL and the baseline
value at each follow-up was considered the ALG.
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Corneal topography and evaluation of
treatment zone decentration

Corneal topography (TMS-4, Tomey, Nagoya, Japan) was
measured after four consecutive measurements of each eye;
the best imaging quality and good gaze were selected for
data analysis. All measurements were conducted by the same
technician. The decentration distance and direction were
calculated according to the method of Guo et al. (2022): (1)
decentration distance: the TZ was defined as the area enclosed
by points with 0 diopter changes on the tangential subtractive
topography maps, and the tolerance of each zero point at the
edge of the TZ was ± 0.10 D. Briefly, the refractive power change
was obtained by hovering the cursor above each reference point
and the measurement shown on the image was recorded. As
shown in Figure 1A, the area surrounded by the red circle is
the TZ, line segments AB and CD were the horizontal and
vertical diameters of the TZ, respectively. They intersect at
O point, which was the central point of the TZ. When the
cursor is hovered over the O point and the topographic map
software, it automatically displays the distance between the
O point and the pupil center, i.e., the decentration distance.
This decentration distance was divided into mild decentration
(<0.5 mm), medium decentration (0.5–1 mm), and severe
decentration (>1.0 mm) according to the method of Tsai and
Lin (2000). (2) The position of the central point of the TZ on
the coordinate axis was calculated as follows: the pupil center
was taken as the origin, and the horizontal (X)-axis and vertical
(Y)-axis were set up, as shown in Figure 1B. The decentration
angle of the central point of the TZ (O point) was displayed
by the topographic map software (α-angle), i.e., the included
angle between the connecting line between the center of the
TZ and the pupil center and the X-axis. The TZ decentration
along X-axis and Y-axis was calculated as follows: X = cos
α × decentration distance, Y = sinα × decentration distance,
with positive signs representing nasal or superior decentration.

Pupil diameter

Pupil diameter were determined with Corneal topography
(TMS-4, Tomey, Nagoya, Japan). In the Tomey topography
system, pupil diameter value was provided for each map.
Corneal topographic maps were measured in a windowless
examination room with lighting of approximate 300–310 lx.
In this study, pupil diameters were recorded from baseline
topographic maps of subjects for statistical analysis.

Measurements and follow-up visits

After dispensing the lens, the subjects were instructed
to wear and care for them properly. Moreover, the subjects

were advised to wear their OK lenses every night for 8–
10 h. The examinations were performed before any lens wear
(baseline) and 1 day, 1 week, 1 month, and 3 months, and
then every 3 months until 1 year. Each follow-up included
naked visual acuity, subjective and objective refraction (ARK-
1, Nidek, Aichi, Japan), slit-lamp anterior segment examination
(SL-D701, Topcon, Yamagata, Japan), and corneal topography.
The AL was measured at 6- and 12-month follow-ups. Corneal
topography data at 1-, 6-, and 12-month visits and AL at 6- and
12-month visits were used for statistical analysis.

Statistical analysis

SPSS statistical software (version 20.0, IBM SPSS, Chicago,
IL, USA) was used for data analysis. Quantitative data were
tested for normality using quantile-quantile plots, described
as mean ± standard deviation, and the classification data
were described as the number of cases and percentages.
Repeated measures analysis of variance (ANOVA) was used
to compare the decentration distance at different follow-ups
after wearing OK lenses. For consistent comparison between
baseline parameters of different groups, one-way ANOVA was
used for continuous variables, and the chi-square test was used
for classification variables. The 6- and 12-month ALG between
different groups was compared by one-way ANOVA. Pearson’s
correlation analysis was used to assess the simple association
between the 12-month ALG and decentration distance achieved
at 1-month visit, and Spearman’s correlation analysis was used
to assess the association between the 12-month ALG and
decentration direction. This association was further examined
using linear regression analysis. Variables, including baseline
age, gender, SE, astigmatism, FK, SK, corneal astigmatism, pupil
diameter, and 1-month decentration distance and direction
were first examined using univariate linear regression analysis.
Variables with statistically significant associations (P < 0.05)
with the 12-month ALG in univariate analyses were entered
into the multivariate regression model to further test whether it
has statistical significance on the 12-month ALG. P < 0.05 was
considered a statistically significant difference.

Results

Baseline data

A total of 251 subjects (251 eyes) were enrolled in
this study, including 112 (44.6%) males and 139 (55.4%)
females. The mean baseline age was 10.47 ± 1.97 years,
the mean SE was −3.23 ± 1.14 D, and the mean astigmatism
was −0.55 ± 0.58 D. FK and SK were 42.82 ± 1.29
D and 44.03 ± 1.40 D, respectively. The mean corneal
astigmatism was 1.21 ± 0.56 D, and the mean baseline AL
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FIGURE 1

Calculation method of treatment zone decentration: (A) Decentration distance: the area surrounded by the red circle is the treatment zone; line
segments AB and CD were the horizontal and vertical diameters of the treatment zone; O point was the central point of the treatment zone.
The distance from O point to the center of the pupil is 0.71 mm. (B) The position of the central point of the treatment zone (O point) on the
coordinate axis: the pupil center was taken as the origin, and the horizontal (X)-axis and vertical (Y)-axis were set up. The decentration angle of
O point was displayed by the topographic map software, which was 100◦, The treatment zone decentration along X-axis and Y-axis was
calculated as follows: X = cos 100 × 0.71, Y = –sin 100 × 0.71.
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was 24.94 ± 0.83 mm. The mean baseline pupil diameter
was 4.14 ± 0.30 mm.

Decentration distance at different
follow-up visits

The decentration distance at 1-, 6-, and 12-month visits
was 0.83 ± 0.32 mm, 0.84 ± 0.33 mm, and 0.84 ± 0.32 mm,
respectively. The difference was not statistically significant
(F = 2.877, P = 0.066), indicating stable decentration of the
lenses at the 1-month visit. The subsequent studies were
statistically analyzed based on the data of the 1-month visit.

Decentration distribution

After wearing the lens for 1 month, the decentration
direction of the TZ was as follows: superior 2 cases (0.8%),
superonasal 4 cases (1.6%), nasal 5 cases (2.0%), inferonasal
9 cases (3.6%), inferior 9 cases (3.6%), inferotemporal 129
cases (51.4%), temporal 36 cases (14.3%), and superotemporal
57 cases (22.7%). Among these, inferotemporal decentration
was the most commonly observed phenotype. Figure 2 is
the distribution of the center of the treatment zone for
all subjects.

FIGURE 2

The distribution of the center of the treatment zone for all
subjects. Each point depicted in the figure represents the
location of the center point of each subject’s treatment zone in
an axis with the pupil center as the origin. Each plotted point
shows the distance and angle of the center of treatment zone
from the pupil center. The spacing of each grid on the
coordinate axis represents 0.5 mm on the cornea. (T: temple; N:
nasal; S: superior; I: inferior).

Baseline data in different groups

At 1-month visit, 56 (22.3%) cases in the mild decentration
group (30 males and 26 females), with a mean decentration of
0.41 ± 0.09 mm; 110 (43.8%) cases in the moderate decentration
group (51 males and 59 females), with a mean decentration
of 0.76 ± 0.13 mm; and 85 (33.9%) cases in the severe
decentration group (31 males and 54 females), with a mean
decentration of 1.20 ± 0.14 mm were assimilated. No significant
difference was detected in the gender between different groups
(χ2 = 3.918, P = 0.141), while astigmatism, SK, and corneal
astigmatism showed statistical significance among the three
groups (P < 0.001, P = 0.030, and P < 0.001, respectively).
The other baseline parameters did not show any significant
difference among the three groups (P > 0.05), as shown
in Table 1.

Axial length growth

Statistically significant differences were observed in the
6- and 12-month ALG among the three groups, as shown
in Table 2.

Moreover, the 6- and 12-month ALG of the mild
decentration group was significantly higher than that of the
moderate (P = 0.004 and P < 0.001) and the severe decentration
groups (P< 0.001 and P< 0.001), while no significant difference
was noted between the moderate and severe decentration groups
(P = 0.194, P = 0.244), as shown in Figure 3.

12-month axial length growth and
individual factors

The 12-month ALG showed a significantly simple negative
association with the 1-month decentration distance (r = −0.289,
P < 0.001), but showed no association with 1-month
decentration direction (r = −0.028, P = 0.657), as shown
in Figure 4.

Baseline age, SE, and 1-month decentration distance were
significantly associated with 12-month ALG in univariate and
multivariate linear regression analysis. Corneal astigmatism was
associated with 12-month ALG in the univariate analysis, which
became statistically insignificant in the multivariate regression
model. Pupil diameter has no statistically associated with 12-
month ALG in univariate or multivariate regression analyses, as
shown in Table 3.

Discussion

In the present study, the 6- and 12-month ALG of the mild
decentration group was significantly higher than that of the
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TABLE 1 Baseline data in different decentration groups (mean ± standard deviation).

Variables Mild Moderate Severe F-value P-value

Age (years) 10.18 ± 2.03 10.48 ± 1.94 10.64 ± 1.97 0.938 0.393

SE (D) −3.11 ± 1.08 −3.18 ± 1.18 3.31 ± 1.16 2.879 0.082

Astigmatism(D) −0.33 ± 0.38 −0.51 ± 0.54 0.76 ± 0.66 10.750 < 0.001

FK(D) 43.07 ± 1.47 42.63 ± 1.23 42.91 ± 1.22 2.500 0.084

SK (D) 44.03 ± 1.64 43.80 ± 1.30 44.34 ± 1.31 3.571 0.030

Corneal astigmatism (D) 0.96 ± 0.45 1.17 ± 0.51 1.43 ± 0.61 13.766 < 0.001

AL(mm) 24.75 ± 0.83 24.91 ± 0.86 25.09 ± 0.77 2.860 0.059

Pupil diameter (mm) 4.10 ± 0.29 4.18 ± 0.29 4.12 ± 0.30 1.756 0.175

TABLE 2 Axial length growth (ALG) in different groups.

Variables Mild Moderate Severe F-value P-value

6-month ALG (mm) 0.12 ± 0.14 0.05 ± 0.12 0.02 ± 0.15 10.223 <0.001

12-month ALG (mm) 0.26 ± 0.19 0.14 ± 0.17 0.09 ± 0.19 13.380 <0.001

FIGURE 3

6- and 12-month axial length growth among different groups.
The mean values are represented by blue dots (mild
decentration group), orange squares (moderate decentration
group) and red triangles (severe decentration group),
respectively. Error bars represent standard deviation of the
mean.

moderate and severe decentration groups. Baseline age and 1-
month decentration negatively associated with 12-month ALG,
while baseline SE is positively associated with 12-month ALG in
univariate and multivariate linear regression analysis. However,
the decentration direction and pupil diameter did not affect
ALG. Corneal astigmatism was only associated with 12-month
ALG in univariate regression analysis but not significantly in
multivariate regression analysis.

The distribution of the treatment zone
decentration

This study showed that the distribution of decentration
direction is most common in the inferotemporal, followed by

the superotemporal and the temporal, which is similar to the
previous findings (Hiraoka et al., 2009; Chen J. et al., 2018).
The elevated nasal and temporal sides of the human cornea are
asymmetric. Typically, the nasal side is higher than the temporal
side (Jaisankar et al., 2020). Hence, the lens is prone to deviate
to the temporal side, which is relatively low in elevation. Chen
et al. (2017) analyzed the corneal elevation data collected at the
8-mm chord and confirmed the inferotemporal quadrant to be
the paracentral corneal region lowest in elevation. Therefore,
our study showed the inferotemporal decentration was most
common (as shown in Figure 2), that is consistent with
previous findings.

Treatment zone decentration and axial
length growth

The exact mechanism by which OK lens delays the
progression of myopia remains unclear. The OK lens induced
relative corneal refractive power shift (RCRPS) to produce
myopic defocusing on the peripheral retina, thereby delaying the
growth of AL, i.e., the “peripheral defocusing hypothesis,” which
has been recognized by several investigators (Charman et al.,
2006; Kang and Swarbrick, 2016; Santodomingo-Rubido et al.,
2017). Recent studies have shown that the spatial distribution
of relative corneal refractive power (RCRP) is more significant
than a simple sum in delaying AL progression. Yang et al. (2021)
and Jiang et al. (2021), respectively confirmed that the closer the
RCRP is to the center of the cornea and the faster RCRP reaches
the peak, the slower the ALG. The TZ decentration increases
the corneal asymmetry and shifts the RCRP on one side of
the cornea toward the center (Wang et al., 2018, 2021). Lin
et al. (2021, 2022) demonstrated that the TZ decentration was
significantly positively associated with summed RCRP within
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FIGURE 4

Association between 12-month axial length growth and
decentration factors. (A) Scatterplots demonstrating the
association between the 12-month axial length growth and
1-month decentration distance. There was a significant
association between the parameters (Pearson’s correlation
analysis: r = –0.289, P < 0.001) (B) Scatterplots demonstrating
the association between the 12-month axial length growth and
1-month decentration direction (1: superior; 2: superonasal; 3:
nasal; 4: inferonasal; 5: inferior; 6: inferotemporal; 7: temporal;
8: superotemporal). There was no association between
12-month axial length growth and 1-month decentration
direction (Spearman’s correlation analysis: r = –0.028,
P = 0.657).

1–2 mm chord radius, and RCRP was negatively associated
with ALG. Therefore, a high TZ decentration can delay AL
progression.

Another opinion was that there was a threshold of RCRP.
Only when the defocus exceeds this threshold will the “stop”
signal start to delay the ALG (Kang and Swarbrick, 2016).
For the same average RCRP, the greater the variation in all
directions, the more uneven the distribution and the slower
the ALG (Gu et al., 2019). The current study did not find
any association between decentration direction and 12-month
ALG. Thus, it could be deduced that the RCRP need not
reach or be above the threshold in every direction but only
for a specific direction to reach the threshold. The larger the
decentration distance of the lens, the more uneven the corneal

shape and the greater chance for RCRP to reach the threshold,
thus delaying ALG.

In the process of corneal reshaping, the characteristic
morphological changes of the cornea will also increase the
higher-order aberrations (Lau et al., 2020b). This phenomenon
suggests that mechanisms other than myopic defocus may be
involved in the inhibitory effect of the OK lenses on ALG
(Lau et al., 2020a). Hiraoka et al. (2015) showed that the
aberrations also played a major role in ALG delay after wearing
the OK lenses; among all aberration factors, coma has the
closest association with ALG. Some studies have shown that
the aberration changes caused by lens decentration were mainly
increased coma and spherical aberration (Lau et al., 2020b).
These findings indicated that asymmetric corneal shapes,
rather than concentric and radially symmetric shapes, have a
considerable effect on the retardation of AL. Lin et al. (2020)
indicated that increased myopia defocuses in the temporal retina
is caused by the decentration of lenses toward the temporal side,
resulting in 3 diopters myopic defocus of the temporal retina,
while astigmatism and higher-order aberration also increased.
Therefore, we hypothesized that the combination of these
changes slowed the ALG after the TZ decentration.

Other factors and axial length growth

In the current study, greater baseline corneal astigmatism
was related to slower axial growth in univariate regression
analysis. This could be attributed to larger corneal astigmatism
leading to lens decentration (Chen et al., 2017; Gu et al.,
2019; Jiang et al., 2019). However, the association became
statistically insignificant after adjusting for the effects of age, SE,
and decentration distance using multivariate linear regression
analysis. Therefore, the decentration of the TZ and not corneal
astigmatism affected ALG.

The ALG of myopic children might be affected by several
factors. Previous studies have shown that age is a baseline
parameter significantly associated with axial growth, and the
younger the age, the faster the axial growth (Zhong et al., 2015;
Chen et al., 2020; Lin et al., 2021; Sun et al., 2022), which is
consistent with the current findings. However, the association
between ALG and baseline SE is also controversial (Vincent
et al., 2021). Some studies reported a significant negative
association between ALG and baseline SE, as the subjects had
a wide range of baseline SE, usually between −0.75 D and −6.00
D (Wang et al., 2017; Lin et al., 2021; Yang et al., 2021). While
in the studies that reported a lack of association between the
two factors (Zhong et al., 2015; Hu et al., 2019), the subjects’
baseline SE was in a limited intermediate range between −1.00
D and −4.00 D. In this study, subjects had −1.00 D to −5.00
D range of baseline SE, and the sample size was large. The
results showed a significant negative association between ALG
and baseline SE.
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TABLE 3 Linear regression analyses of 12-month ALG and individual factors.

Univariate model Multivariate model

β-value (95% CI) P-value β-value (95% CI) P-value

Gender (boys) 0.027 ( − 0.021, 0.075) 0.269 – –

Age (years) −0.041 ( − 0.052, −0.030) < 0.001 −0.035 (−0.045, −0.024) <0.001

SE(D) 0.051 (0.033, 0.070) < 0.001 0.034 (0.017, 0.052) <0.001

Astigmatism (D) 0.028 ( − 0.014, 0.069) 0.190 — —

FK (D) 0.016 (0.006, 0.037) 0.156 — —

SK (D) 0.009 ( − 0.008, 0.026) 0.310 — —

Corneal astigmatism (D) −0.044 ( − 0.087, −0.001) 0.043 −0.005 (−0.044, 0.034) 0.793

Pupil diameter (mm) −0.012 ( − 0.094, 0.070) 0.771 – –

1-month decentration distance (mm) −0.171 ( − 0.242, −0.100) < 0.001 −0.114 (−0.182, −0.046) 0.001

1-month decentration direction −0.010 ( − 0.027, 0.007) 0.262 – –

Since the pupil diameter will affect the measurement
of peripheral refraction (Mathur and Atchison, 2013;
Romashchenko et al., 2020) and higher-order aberration
(Applegate et al., 2007), the pupil diameter is a factor that
must be considered when studying the influencing factors
of ALG after wearing OK lenses. Our study showed that
baseline pupil diameter do not affecting 12-month ALG.
Two other longitudinal studies (Wang et al., 2017; Zhao
et al., 2020), similar to our findings, found no association
between pupil diameter and ALG in children Treated with
OK lenses. Conversely, the study of Chen et al. (2012) showed
that after 2 years’ follow-up, larger pupil diameter in dark
environment was significantly associated with smaller ALG.
In another comparative study of European children wearing
OK lenses and single-vision spectacle (Santodomingo-Rubido
et al., 2013), there was negative association between pupil
diameter and ALG in children in the OK lens group. We found
that studies showing an association between pupil diameter
and ALG, measured pupil diameter in the dark. While the
measurement of our baseline pupil diameter is based on
the detection value of Tomey topographic software, which
is measured in a bright environment. During the daytime,
particularly near work tasks (Gislen et al., 2008), children’s pupil
diameters are much smaller than that in dark environments.
Therefore, studying the relationship between pupil diameter
and ALG in bright environment is more instructive for
clinical work.

Treatment zone decentration and
adverse events

Severe Ortho-K lens decentration increased the risk of
corneal adverse events, such as staining and indentation
in the corneal epithelium (Maseedupally et al., 2016). In

addition, severe TZ decentration increased the high-order
aberration (Chen J. et al., 2018), reduced the contrast
sensitivity (Hiraoka et al., 2009), and caused visual interference,
such as glare and glowering (Nti and Berntsen, 2020).
Therefore, in clinical practice, increasing the TZ decentration is
not encouraged.

Limitations of this current study

Nevertheless, the present study has several limitations.
Firstly, this is a retrospective study, and many factors, such
as family history in refractive errors, duration of outdoor
activities, and habits of reading, were not recorded and could
potentially interfere with the findings. Secondly, according
to the literature, we speculated that the decentration of the
TZ increased the RCRP, but we did not measure the RCRP
in different decentration groups, and hence the association
between the decentration and the RCRP could not be
tested. Thirdly, we also speculated that the decentration
of the TZ increased the higher-order aberration; however,
there was no measured aberration value. These speculations
would be substantiated in future prospective studies with a
rigorous design.

Conclusion

In conclusion, the TZ decentration of OK lenses can
affect the ALG in adolescent myopia patients, and the
greater the decentration distance, the slower the ALG.
Thus, delaying the ALG by artificially creating decentration
is not advocated.
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