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Multiple types of brain-control systems have been applied in the field of

rehabilitation. As an alternative scheme for balancing user fatigue and the

classification accuracy of brain–computer interface (BCI) systems, facial-

expression-based brain control technologies have been proposed in the form

of novel BCI systems. Unfortunately, existing machine learning algorithms

fail to identify the most relevant features of electroencephalogram signals,

which further limits the performance of the classifiers. To address this problem,

an improved classification method is proposed for facial-expression-based

BCI (FE-BCI) systems, using a convolutional neural network (CNN) combined

with a genetic algorithm (GA). The CNN was applied to extract features and

classify them. The GA was used for hyperparameter selection to extract the

most relevant parameters for classification. To validate the superiority of the

proposed algorithm used in this study, various experimental performance

results were systematically evaluated, and a trained CNN-GA model was

constructed to control an intelligent car in real time. The average accuracy

across all subjects was 89.21 ± 3.79%, and the highest accuracy was 97.71 ±

2.07%. The superior performance of the proposed algorithmwas demonstrated

through o	ine and online experiments. The experimental results demonstrate

that our improved FE-BCI system outperforms the traditional methods.

KEYWORDS

brain computer interface, convolutional neural network (CNN), genetic algorithm,

EEG, facial expression

Introduction

Brain–computer interface (BCI) systems serve as a communication link between

humans and peripheral equipment. This technology has been shown to improve the

lives of numerous patients suffering from various neurological disorders, including

amyotrophic lateral sclerosis and spinal cord injuries (Abiri et al., 2019; Edelman et al.,

2019). Over the past few decades, the development of signal acquisition and decoding
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technology has led to the development of various rehabilitation

applications, including neuro-prosthesis (Li et al., 2018a),

wheelchairs (Pinheiro et al., 2018), quadcopters (Yan et al.,

2020), and robotic arms (Cao et al., 2021).

Several types of brain-controlled systems have been studied;

these can be classified into spontaneous and evoked BCI systems

(Zhang et al., 2020a). Motor imagery (MI)-based BCI is an

important spontaneous BCI system that has been extensively

investigated. Reust and his colleagues employed an MI-BCI

system corresponding to human hand movement to control

two robotic hands; this approach achieved a 95% classification

accuracy overall (Reust et al., 2018). Another novel mental

imagery system developed by the University of Montreal

employed a multimodal BCI system to control the single-step

and forward walking status using an immersive virtual reality

avatar (Alchalabi et al., 2021).

Numerous BCI studies have focused on evoked BCI systems,

such as steady-state visually evoked potentials (SSVEP)- and

P300-based BCI systems (Zhang et al., 2021). Zhao et al.

demonstrated the feasibility of a new stimulation paradigm that

makes full use of peripheral vision, and they used the Manhattan

distance for final detection in their research (Zhao et al., 2021).

A modified SSVEP-BCI speller with dual-frequency and phase-

modulation paradigms was designed at Tsinghua University. It

obtained an accuracy of 96% via multivariate synchronization

index analysis (Yan et al., 2021). P300 BCIs have also been

used in a variety of applications for disabled people (Allison

et al., 2020; Shukla et al., 2021). A reliable authentication system

(based on the P300-BCI system) for protecting against online

fraud was designed by Rathi’s group. In their study, the optimal

performance was observed when using a quadratic discriminant

analysis algorithm (Rathi et al., 2021).

To summarize, themerit of spontaneous BCI systems is their

stable and rapid responses. However, the long training time and

inter-user variability limit further study. Evoked BCI systems

achieve high recognition accuracies with low training times;

however, this type of BCI system relies entirely upon stimulator

design. To solve these obstacles, numerous efforts have been

made to develop a novel BCI system in the past few years.

Recently, another type of BCI system based on affective

computing was developed. Prof. Lu was the first to report

on an emotion-based BCI system; this used a stable

electroencephalogram (EEG) decoding algorithm to recognize

different emotions (Zheng et al., 2019). Prof. Pan and his

colleagues reported a novel facial expression detection

method based upon two-decision-level fusion using a sum

rule combined production rule (Huang et al., 2017). They

subsequently developed a Mindlink-Eumpy software toolbox

to classify facial expression information by integrating the

EEG signals; this was feasible and efficient (Li et al., 2021).

Another representative study was reported by the East China

University of Science and Technology, which demonstrated

that the presentation of different facial images to subjects

could successfully evoke event-related potentials (Jin et al.,

2012). In 2018, the present authors used real facial expressions

instead of flashing facial images to elicit EEG signals. The

experimental results demonstrate the validity of the proposed

facial-expression-based BCI (FE-BCI) system (Li et al., 2018b).

Considering all the above, the major challenge in improving

the performance of existing BCI systems is the EEG classification

accuracy. Most BCI studies have used traditional machine

learning or pattern recognition methods to identify relevant

information for EEG classification (Zhang et al., 2020b).

For example, independent component analysis (ICA) and

multivariate empirical mode decomposition (MEMD) are

typically used for artifact removal. The wavelet transform

(WT) is commonly used for feature extraction and linear

discriminant analysis. Back propagation neural network

(BPNN)-based classifiers are frequently employed to identify

different EEG signals. The EEG decoding method based on

spatial information is also widely used in BCI systems to

ensure recognition performance. Zhao et al. used combined

space–time–frequency features to decode EEG signals. In this

study, a deep ConvNet model that combined time-frequency

transformations, spatial filtering, and classification was used

(Zhao et al., 2019). The University of Glasgow developed

a novel space-by-time decomposition method based upon

non-negative matrix factorization, to decode single-trial EEG

signals (Delis et al., 2016). Nanyang Technological University

proposed another space-based EEG decoding method. The

time-frequency common spatial pattern method was used

to solve the problem of poor classification and robustness

in MI-BCI systems (Mishuhina and Jiang, 2021). Jia et al.

published one of the most recent studies based on the spatial

EEG decoding method, and they employed time-contained

spatial filtering to extract spatial and temporal information for

EEG multi-classification tasks (Jia et al., 2021).

Unfortunately, these methods are limited by their reliance

upon prior experimental knowledge and their low processing

capacities for large EEG datasets. These drawbacks also reduce

the reliability of BCI systems and further degrade their

performance. Following innovations in algorithm development,

novel neural network architectures for deep learning have

offered the benefits of a smaller reliance upon prior expert

knowledge, and automatic feature optimization has recently

been employed for decoding EEG signals (Craik et al., 2020).

Tang et al. employed a traditional convolutional neural network

(CNN) to classify EEG signals from left- and right-hand

movements (Tang et al., 2017). Xu et al. used topographically

represented energy calculations alongside a novel CNNmodel to

extract time–frequency features from four types ofMI tasks. This

method improves classification accuracy (Xu et al., 2020). Kwak

et al. explored an improved CNN model to distinguish the band

power features from different SSVEPs using only two channels

(Kwak et al., 2017). Xie et al. combined long short-termmemory

(LSTM) generative adversarial networks and a multi-output
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convolutional neural network for MI classification, and their

experimental results indicated its favorable performance (Xie

et al., 2021). Yu et al. reported a novel adaptive skeleton-based

neural network that combined an attentional LSTM network

with a 3D convolution, to identify human actions or interactions

(Yu et al., 2021b). Moreover, they proposed an LSTM-based

network-integrated temporal attention mechanism for spatial

human-robot interactions (Yu et al., 2021a). Although these

methods can effectively improve the classification accuracy in

most MI-BCI systems, the parameters of the CNN model still

depend on the researcher’s empirical understanding, which leads

to poor robustness across different scenarios.Many existing deep

learning methods manually set arbitration coefficients or fusion

rules according to specific tasks and the researcher’s experience.

While GA algorithms have been widely used for CNN

parameter optimization in image classification (Sun et al.,

2020) or text processing (Liu et al., 2021), the response of

EEG signals is entirely different from the 2D image or text

information. EEG signals have their unique time-frequency

characteristics, and their response from different paradigms is

entirely different. So decoding of EEG signals needs a specific

architecture of the CNNmodel and parameter setting guidelines.

In particular, although the CNN model-based EEG decoding

methods have been studied, only a few works have focused on

the FE-BCI system, especially for decoding EEG signals under

different expressions.

Despite the number of successful methods available

for developing an emotion-based BCI system, it remains

challenging to address the dependence of BCI upon the

performance of stimulus sources, to thereby ensuring its

recognition accuracy. Thus, there remains a need to develop a

novel paradigm and expert algorithm that can efficiently identify

EEG signals for FE-BCI systems.

The primary objective of this study was to address the

dependence of FE-BCI upon the stimulus source and overcome

the limitations of long training times and inter-user variability.

In this study, an FE-BCI system with four facial expressions (left

smirking, right smirking, furrowing brow, and raising brow) was

constructed and then used to control an intelligent car. The EEG

signals of the proposed FE-BCI system were recorded from the

prefrontal and motor cortices. To further optimize the FE-BCI

performance, the EEG decoding algorithm constructed using the

CNN model combined GA was applied to select the optimal

hyperparameter value for the constructed neural network. From

our experimental verifications, the main contributions of this

work can be summarized as follows:

First, to balance between user fatigue and the classification

accuracy of traditional BCI systems, an FE-BCI system

identifying four different facial expressions is proposed. It

provides an additional option to solve the obstacle between

BCI performance and its stimulus reliance. The selected

EEG signals from the four different facial expressions are

accurately recognized.

Second, to address the issues of the EEG recognition

accuracy for different facial expressions, a novel EEG decoding

algorithm based upon the CNN model is designed to

automatically extract the discriminative features of expression-

based EEG signals.

Third, in view of the disadvantages of traditional

enumeration methods for hyperparameter value selection,

a hyperparameter optimization method based upon the GA

algorithm is embedded into the CNN model by setting this

model as a fitness function. The CNN model combined with

GA is an effective way to optimize the decoding results of

EEG signals, further enhancing the overall capabilities of the

FE-BCI system.

The remainder of this paper is organized as follows. In

Section Materials and methods, the relevant studies and details

of the proposed method are presented. The experimental results

are analyzed and discussed in Sections Result analysis and

Discussion, respectively. The final section concludes this paper.

Materials and methods

Related work

With the rapid development of affective computing, emotion

recognition has gradually become an important factor when

designing natural and friendly human–machine interactions

(Svetla and Dimitar, 2015). The mechanisms of emotion states

have attracted considerable interest in different research fields

(e.g., the physiology, representation, recognition of emotions

according to different physiological signals, and their application

to affective BCI systems) (Mühl et al., 2014). However, it remains

a challenge to distinguish brain responses to different emotional

states, owing to spontaneous brain activity (Olderbak et al.,

2014). Recent studies have discovered that numerous activities

can express emotional states, such as facial expressions, speech,

and gestures (Schuller et al., 2005; D’Mello and Graesser, 2009).

Among these factors, facial expressions serve as an effective

external feature for depicting emotional states; this has inspired

considerable discussion (Wood et al., 2016). Earl et al. reported

that brain activity in the prefrontal cortex is related to

emotion processing. Friedman and Thayer also demonstrated

that changes in facial expressions could produce corresponding

brain activity in the prefrontal cortex (Friedman and Thayer,

1991). Moreover, facial expressions are also body movements;

thus, they respond to brain activity in the motor cortex

(Ross et al., 2016). To summarize, brain activity arising from

the prefrontal and motor cortices and attributable to facial

expressions can enhance differences when estimating emotion

states. Our previous study (Li et al., 2018b) analyzed the

mechanisms of facial expressions and further demonstrated that

EEG signals from the prefrontal and motor cortices can be

discriminated to represent stable emotions. One of the aims
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of affective neuroscience is to include human emotions in BCI

systems. Therefore, facial expressions that represent human

emotions can be used in BCI systems. Our previous study

also constructed a recognition model based on a traditional

machine learning algorithm to distinguish EEG signals arising

from different facial expressions; however, the performance of

the established FE-BCI system can be further improved. Hence,

a new calculation model is proposed in this study. More details

regarding the experimental setting and algorithm construction

can be found in the following section.

Subjects and data acquisition

In this study, 16 healthy subjects from 22 to 30 years old

(two females and 14 males) participated in the experiment.

None of the patients had a history of neurological diseases or

any previous experience with the proposed facial expression

experiment. Before the experiment, each participant signed a

written informed consent form. The Institutional Review Board

of the Xi’an University of Technology approved the proposed

experiment, and all experiments were conducted in accordance

with the Declaration of Helsinki. More details of sample size

estimation can be found in Section Statistical analysis.

A NeuSen-W64 (Figure 1A) with 64 channels was used to

record the EEG signal, and all channel distributions adopted

the International Standard 10-20 Electrode Location System.

Eight electrodes (FC5, FC6, F7, F8, FZ, C3, C4, and CPz) from

the prefrontal and motor cortices were selected to record EEG

data. AFz and CPz electrodes were the reference and grounding

electrodes, respectively. The electrode distribution and the

locations of the selected channels are shown in Figure 1B.

During EEG data acquisition, the impedances of all electrodes

were maintained below 5 K�.

Experimental procedure

According to the facial expression mechanisms, the EEG

signals from four facial expressions were collected: furrowing

brow, left smirking, right smirking, and raising brow. The

subjects were required to keep their bodies stable to prevent

noise interference in the EEG signals. The experiment was

performed in two steps. The purpose of the offline experiment

was to evaluate the efficiency of the proposed CNN-GA and

verify the distinguishability of EEG signals under different

expressions. The online experiment was to investigate the

feasibility of an improved FE-BCI system. For the offline

experiment, each facial expression experiment consisted of ten

sessions, and each session included six trials. In each trial,

the subjects were asked to maintain one of the four selected

expressions for 4 s. To avoidmental fatigue, each trial began with

a 2 s preparation time and a 2 s rest time when each trial finished.

Subjects were allowed a 10-min break when they completed

one session. The offline experimental time series is shown in

Figure 2A, and the structure of the FE-BCI system is shown in

Figure 2B.

The online experiment consisted of six sessions. In each

session, the subject was asked to perform one of the four selected

facial expressions of their own volition, to control an intelligent

car return to the starting position after tracking three targets on

four laps: Round 1–4. For the sake of sample balance and its

practicality, the start position is distributed in Round 1, Target

1 in Round 4, Target 2 in Round 3, and Target 3 in Round 2. In

each session, it contained “change lane to the left” three times,

“change lane to the right” three times, “accelerate” five times,

and “decelerate” four times. The online experimental process

was divided into four stages.

STEP 1: Move the intelligent car from the start position to

Target 1. This step includes right-hand lane changes to Rounds

2 and 3, acceleration, deceleration, and another right-hand lane

changes to Round 4.

STEP 2: Move the intelligent car from Target 1 to Target

2; this involves acceleration, deceleration, and a left-hand lane

change to Round 3.

STEP 3: Move the intelligent car from Target 2 to Target

3; this includes acceleration, deceleration, and a left-hand lane

change to Round 2.

STEP 4: Move the intelligent car from Target 3 to the start

position; this involves acceleration, deceleration, a left-hand lane

change to Round 1, and acceleration to the start position.

The time series for the online experiment matched that

of the offline experiment. During the online experiment, left

smirking (LS) and right smirking (RS) were used to move the

intelligent car 30◦ to the left and right, respectively. Furrowing

brow (FB) and raising brow (RB) were used to produce 0.05 m/s

acceleration and deceleration, respectively.

In this study, we used offline EEG data as a training

database to construct the improved CNN model, and the

online data were used to investigate the generalizability of the

proposed method.

Data analysis

Artifact removal algorithm

Brain activity from the scalp is fairly weak: its magnitude

is usually in the range of 10–50 µV. Hence, artifacts from the

surroundings can easily damage the performance of the BCI

system. Depending on the mechanism of signal generation,

the artifacts can be classified into power-frequency noise and

physiological noise (Mowla et al., 2015).

The Butterworth filter can be applied as an effective linear

filter to remove power-frequency noise. Hence, a five-order

Butterworth filter with a frequency band of 0.5–45Hz was

initially applied. Subsequently, a noise-assisted MEMD method
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FIGURE 1

NeuSen-W64 EEG recording system and channel locations. (A) NeuSen-W64 EEG recording system. (B) Selected eight-channel configuration in

NeuSen-W64.

with highly localized time-frequency representations and self-

adaptation was implemented to remove electromyogram (EMG)

and electrooculogram (EOG) artifacts (Chen et al., 2018). In this

method, the noise-assisted MEMD was employed to decompose

the raw EEG signal; then, the sample entropy value of each

intrinsic mode function was estimated to detect and remove

physiological artifacts. Further details regarding the artifact

removal algorithm have been presented in our previous study

(Li et al., 2018b).

Convolutional neural network algorithm

Deep learning was first introduced by Hinton and

Salakhutdinov (2006); it consists of a sequence of convolutions

and subsampling layers, in contrast to traditional artificial

neural network methods (Craik et al., 2020). CNNs are a

representative deep learning algorithm; they offer faster network

training, superior conservation of information throughout

the hierarchical process, and prevention of overfitting in the

built network. These benefits allow the CNN classifier to

automatically learn the appropriate features from the EEG data

while maintaining its translation invariance and data hierarchy

(Xiao and Fang, 2021).

The CNNmodel in this study consists of several layers, such

as convolutional, pooling, dropout, and batch normalization, as

well as a fully connected layer. When designing the CNN, the

size of the input data and its output results should be taken into

consideration. In our study, the input matrix fed into the CNN

was 8 × 4,000, where the row corresponds to the eight selected

EEG channels and the column indicates the sampling point of

4 s. Because the CNN was used to discriminate the EEG data

from four different facial expression tasks, the output layer was

designed to have four outputs.

The second component of CNNs is the convolutional layer,

which is crucial in facilitating automatic feature learning. In this

study, three 2D convolutional layers were designed to perform

advanced EEG feature extraction. In each convolutional layer,

a convolutional filter whose width matched the dimensions of

the input data and whose kernel size of 3 × 3 was applied, to

extract the correlation of EEG signals in the adjacent channel

and preserve its spatial information. Via the convolution of each

layer, a two-dimensional feature mapping (combining enhanced

information regarding the original EEG data from different

facial expression tasks) was acquired.

An important hyperparameter in the convolution layer is

the number of kernels, which can sizably reduce the number of

weight parameters. To solve the problem of under-fitting (i.e.,

a small number of convolution kernels) and over-fitting (i.e.,

a redundancy of convolution kernels), the number of kernel

convolutions was adaptively optimized using a GA. More details

on the GA can be found in Section Genetic algorithm for

hyperparameter optimization.

The pooling layer was inserted after the convolutional

layer, to receive the compression feature map matrix from all

selected channels and temporal values (Kwon and Im, 2021).

The objective of the pooling layer is to improve the statistical

efficiency of the network and improve its invariance (and

subsequently its robustness). To further reduce the size of the

feature map and the number of network parameters, a max

pooling layer was used to downsample the feature map and

store important information, using a receptive field window size

of 2× 2.
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FIGURE 2

FE-BCI system and its experimental protocol. (A) Experimental protocol for the o	ine experiment. (B) Scheme of FE-BCI system for an

intelligent car.

Subsequently, three fully connected layers followed by

pooling layers were used to connect all advanced features and

then classify them. The first fully connected layer receives a one-

dimensional feature vector and outputs the weighted sum of

the features to the second fully connected layer. The number of

output neurons in the third layer matched the number of facial

expression categories to be classified.

Considering the calculation speed, risk of overfitting,

and unsaturated and sparse datasets, the drop-out technique

was applied to the fully connected layer, and rectilinear

linear unit (ReLU) and Softmax activation functions were

applied to each layer, to improve the performance of

the proposed CNN models (Stieger et al., 2021). The

architecture of the proposed CNN model is illustrated

in Figure 3.

As in traditional CNN models, the hyperparameter

settings (e.g., the learning rate, batch size, and number of

neurons) significantly influences the CNN model performance.

Appropriate hyperparameter selections can optimize the

performance of the neural network model and further

resolve the overfitting problem. Hence, in this study, the GA

optimization method was implemented in the constructed

CNN model. Two hyper-parameters describing the number of

convolution kernels and neurons in the fully connected layer

were dynamically optimized via the GA evolutionary process.

The remaining value of hyperparameters for CNN was the batch
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FIGURE 3

Architecture of the proposed CNN model.

size of 16, the learning rate of 0.001, the number of iterations of

100, and the loss function was a cross-entropy loss function.

Genetic algorithm for hyperparameter
optimization

The hyperparameter optimization of neural networks is a

persistent issue. When a neural network is constructed, the

key to achieving an efficient model performance is adjusting

the hyperparameters, because the performance is highly

sensitive to these parameters. When the model complexity

increases, the number of hyperparameters increases, and

the combination of hyperparameters increases accordingly.

It is difficult to determine the exact optimal values of

the neural network hyperparameters. At present, mainstream

hyperparameter optimization methods include grid search,

Bayesian optimization, evolutionary computation, and neural

architecture search.

The main advantage of GA is its excellent global search

ability, which can quickly search out the whole solution in

the solution space without any prior knowledge of the system.

Moreover, its characteristic of paralleling process conducts a

variety of routes to find optimal results that avoid falling into the

fast-falling trap of the optimal local solution. Most important,

the superior performance of the GA method is its social ability,

which makes it easier to link with other algorithms (Chang and

Yang, 2019).

In this study, a neural network hyperparameter optimization

method based on a GA was proposed. GA was first introduced

by Holland (2000). It was inspired by the Darwinian theory

of survival and the fitness mechanism in nature (Rui et al.,

2019). A GA method is a population-based search algorithm

whereby each individual in a population represents a set of

hyperparameter solutions. Each individual is a set of genes,

where each gene represents a hyperparameter. Different gene

combinations determine the fitness value of the neural network

(i.e., the classification accuracy of the CNN model). The fitness

value also determines which individual can transmit its genes

to their offspring (i.e., the value of the hyperparameter). A

schematic of the GA is shown in Figure 4.

After the initial population is generated, the fitness of

each individual is calculated, and the relationship between the

fitness and hyperparameters is established. In this study, the

hyperparameters describing the number of convolution kernels

and neurons in the fully connected layer were encoded via a

binary code. The encoding precision δ can be calculated as

δ =
umax − umin

2l − 1
(1)

where l is the encoding length, and umax and umin are the

upper and lower limits of the set hyperparameters, respectively.

The fitness of individuals indicates the applicability of

the hyperparameter solutions to the model performance, and

superior individuals can be obtained by selecting, crossing, and

mutating three genetic operators. In the present study, the

roulette method was used to select individuals. The probability

P(xi) of each individual is represented as

P(xi) =
f (xi)

N∑

j=1
f (xj)

(2)

where N is the population size, xi is the ith individual, and

f(xi) is the fitness of the ith individual.

Crossover operators are generated by two new individuals

that exchange gene components between two chromosomes in

a certain way. In this study, a multipoint crossover operator

was used to pair individuals in the population. The mutation

operator is an auxiliary method for generating new individuals;

it determines the local search ability of the GA and maintains

population diversity.

The entire process of the combined CNN–GA method is

shown in Figure 5. The EEG signals were recorded from eight

channels in the prefrontal and motor regions; hence, the input

data for the CNN model were 8 × 4,000, where the rows denote

channels and the columns are sampling points. The CNNmodel

employed in our study consisted of three convolutional layers,
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FIGURE 4

Architecture of the proposed GA.

FIGURE 5

Scheme of the proposed CNN–GA algorithm.

one pooling layer, and three fully connected layers. Two batch

normalization (BN) and one dropout were also used in the

proposed CNN–GA model. Because the third fully connected

layer is used to output the discrimination result from the

four expression-based EEG signals, the number of neurons in

this layer was four, and its activation function was selected as

Softmax. The initial values for the CNN model parameters were

a batch size of 16, a learning rate of 0.001, 100 iterations, and a

cross-entropy loss function. The numbers of convolution kernels

(in the three convolutional layers) and neurons (in the two fully

connected layers) were set via GA optimization.

In this study, we designed the proposed CNN model

as the fitness function. The numbers of convolution kernels

and neurons in the fully connected layer were set as the

hyperparameters to be optimized, and the classification accuracy

was set as the fitness value in the GA. For the GA algorithm, an

excessively large population will increase the time cost. However,

too small a population will mean that the algorithm is likely

to fall into a locally optimal solution. Based on the relevant

literature (Katoch et al., 2020) and experimental analysis, the

population size was set as 20 in this study. Because the accuracy

of the EEG signals tended to stabilize after 20 iterations, the

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2022.988535
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2022.988535

number of GA iterations was set to 20. The ranges of the

five hyperparameters were umin = {1, 1, 1, 1, 1} to umax =

{20, 20, 20, 512, 512}. Because the hyperparameters in this

study were integers, the precision of their values was defined

as {1, 1, 1, 1, 1}. The initial values of the hyperparameters

were chosen automatically within these ranges. Due to the

individual variability, each subject had its own hyperparameter

value after optimation.

After optimizing the CNN hyperparameters via training

data, the testing data were applied to evaluate the model

performance using the subject’s own classifier. To evaluate the

performance of the proposed CNN–GA algorithm, five-fold

cross-validation was used to estimate its recognition accuracy.

This cross-validation was repeated four times. In each validation,

four data subsets were used for training and one was used for

testing. Five-fold cross-validationmeans that 240 offline samples

are randomly divided into five equally sized subsets. Four subsets

(240/5× 4= 192 samples) were used for training the CNN–GA

model, and the remaining subset (240/5= 48 samples) was used

to verify the performance of the trained model.

To further evaluate the feasibility of the proposed CNN–

GA method, the traditional combined WT–BPNN method and

a traditional CNN model were used as comparison algorithms.

The WT decomposition level was set to 5, and the db-3 wavelet

served as the WT basis function. The energy and variances of

the wavelet coefficients were employed as the feature sets of

expression-based EEG signals. The three-layer BPNN model

(with one hidden layer) was constructed in a previous study.

Because the BPNN inputted two WT coefficients from eight

channels of each trial, the corresponding input layer of the

BPNN had 16 nodes. The output layer had two nodes (to flag

the results), and the hidden layer had 20 nodes. Apart from the

hyperparameters (that needed to be optimized), the structure of

the comparison CNNmodel and its remaining parameter values

were consistent with those of the CNN–GA model. That is, the

batch size was 16, the learning rate was 0.001, the number of

iterations was 100, and the loss function was a cross-entropy loss

function. According to previous studies regarding parameters

selection (Craik et al., 2020), the number of convolution kernels

in the three convolutional layers was set as 3, and the numbers

of neurons in the two fully connected layers were 64 and

32, respectively.

Furthermore, the kappa value serves as a well-known

evaluation index for investigating the performance of EEG

classification algorithms; it expresses the agreement between

the classification accuracy of p0 and the expected consistency

rate pe for the same categories (Chicco et al., 2021). The kappa

coefficient can be interpreted as an agreement measure to

determine whether different categories are consistent with their

prediction results. The kappa coefficient ranges between 0 and 1,

where 0 is consistent (owing to randomness) and 1 is perfectly

consistent. The coefficient is defined as

K =
p0 − pe

1− pe
(3)

where p0 is the classification accuracy and pe indicates the

expected consistency rate.

The formula for calculating the classification accuracy p0 is

defined as

p0 =
TP + TN

TP + TN + FP + FN
(4)

where TP is a true positive, FN is a false negative, FP is a false

positive, and TN is a true negative.

Pe is the expected agreement rate, which is the consistency

rate attributable to chance. Pe is the accuracy under statistically

independent observers, which can be computed via

pe =
(TP + FN)× (TN + FN)+ (TN + FP)× (TP + FP)

N2

(5)

where N is the number of samples in the dataset.

Statistical analysis

In this study, the difference in classification accuracies

between the three EEG decoding methods (CNN, CNN–GA,

and combinedWT–BPNN) was assessed using a Student’s paired

t-test and one-way analysis of variance (ANOVA), respectively.

Based on the statistical theory, three parameters of significance

level α, the expected effect size f, and the desired statistical power

(1-β) determined the choice of the sample size and verified

the significant differences among different methods (Desu and

Raghavarao, 1990). The desired effect size was 0.9 (f = 0.9),

significance threshold was set as 0.05 (a = 0.05) and desired

statistical power (1-β) was 0.8. Furthermore, the Greenhouse–

Geisser correction was applied for p-value adjustment. Using

the statistical software G∗Power of the given parameters setting

and referring to some existing studies (Zheng et al., 2019; Shajil

et al., 2020; Cao et al., 2021), the sample size is 16 subjects in

this study.

Student’s paired t-test is primarily used to test whether

the same group of subjects differs significantly under two

different conditions. We investigated the variability (for the

same subjects) between the CNN and CNN–GA algorithms

and between the CNN–GA and WT–BPNN methods. Because

the t-test is only suitable for testing the variability between

two conditions, ANOVA was used to investigate the significant

differences when more than two conditions differed. Therefore,

this method verifies the variability between the CNN, CNN–GA,

and WT–BPNN algorithms.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.988535
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Li et al. 10.3389/fnins.2022.988535

Result analysis

In this section, the offline and online experimental results

are presented. The main purpose of the offline experiment was

to evaluate the efficiency of the proposed CNN–GA, whereas the

online experiment was performed to investigate the feasibility of

the improved FE–BCI system.

O	ine experimental results

Before verifying the effectiveness of the CNN–GA method

for all subjects, data from one representative subject, S2, were

thoroughly analyzed. Other participants reported similar results.

Figure 6A depicts the decoding trends of the CNN–GA classifier

and CNN for S2. The two algorithms exhibited similar trends

after 20 epochs. However, several differences were observed

during the training and testing stages. Figure 6B compares

the stability and model loss between the CNN and CNN–GA

classifiers. The improved CNN–GA model outperformed the

traditional CNN algorithm, and its predicted targets varied

slightly in both the training and testing stages, with CNN–GA

loss values (after 20 epochs) of 1.024 and 1.456, respectively. The

loss values of the CNN model were comparatively higher (at

1.683 and 2.457, respectively) under the same conditions. The

analyzed results indicated that the hyperparameter optimization

strategy could significantly improve the CNN performance.

To further analyze the performance of the CNN–GA

algorithm in the FE-BCI system, the GA optimization process

(with genetic offspring of size 20) and confusion matrices

for CNN and CNN–GA were evaluated. Figure 7 shows the

results for S2. Figure 7A depicts the process of hyperparameter

optimization, where the x-axis indicates the population size, the

y-axis indicates the generation size, and the z-axis indicates the

accuracy across the different iterations. It is not difficult to find

that the classification accuracy was gradually improved. After 15

iterations, the accuracy improved slightly, though the difference

was not significant. This confirmed our previous hypothesis that

it was feasible to improve the accuracy of the FE-BCI system

using the GA optimization algorithm. The best hyperparameter

optimization result for S2 is {15, 13, 6, 286, 68}. The first three

numbers are the number of convolutional kernels, and the last

two are the number of fully connected layer neurons.

As shown in Figure 7B, a confusion matrix was applied to

demonstrate the superiority of the CNN–GA algorithm. The x-

and y-axes denote the true and predicted values, respectively.

Comparing the confusion matrices from the two methods, the

overall accuracy was seen to be improved by 4%, which further

demonstrates that the CNN–GAmodel can easily and accurately

predict positive samples.

FIGURE 6

Performance from the CNN and CNN–GA algorithms. (A) The accuracy result from CNN model and CNN combined GA model. (B) The loss

value from CNN model and CNN combined GA model.
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FIGURE 7

Hyperparameter optimization performance from the CNN combined GA. (A) The process of hyperparameter optimization by GA. (B) The

confusion matrix from CNN and CNN combined GA.

The performances obtained from the spatiotemporal

analysis showed that the CNN–GA model efficiently

distinguished the EEG signals from different facial expressions.

Table 1 further analyzes the testing classification for S2. The

average accuracy for S2 in the two-round five-fold cross-

validation was 97.71 ± 2.07%. The highest accuracy was 100%

and the lowest was 93.75%.

To compare the optimization performances of the

hyperparameters, the averaged classification accuracy and its

standard deviation with and without GA optimization are

listed in Table 2. The average accuracies achieved by CNN and

CNN–GA for all subjects were 85.94 ± 6.51 and 89.21 ± 3.79%,

respectively. The averaged kappa value increased from 0.816

to 0.856. The highest recognition accuracy was obtained for S2

(up to 97.71 ± 2.07%); the lowest accuracy was obtained for S4

(76.43± 7.13%). The proposed algorithm improved the average

accuracy by 3.27%, and the standard deviation was reduced by

2.72% for all subjects. The recognition accuracy for S11 was

significantly increased from 89.27 ± 6.53% to 94.79 ± 3.54%;

this increased the accuracy by 5.52% and decreased its standard

deviation by 2.99%. The average classification accuracy across

eight subjects exceeded 91.25%.

To statistically compare the performances of the two

classifiers, a paired t-test was conducted. The results showed a

considerable difference between the two algorithms (p < 0.05).

This also suggests that the hyperparameter optimizationmethod

can effectively optimize the classifier performance. Despite

these general experimental results, inter-subject variability still

occurred. This phenomenon may have been caused by attention

attenuation or mental fatigue during repetitive facial tasks.

To determine the efficiency of the selected parameter-

optimization method in the FE-BCI system, the classification

accuracies of the traditional method and our proposed

method are also compared in Table 3. The average accuracy

under the CNN–GA method was 89.21 ± 3.79%; meanwhile,

the overall average accuracy of the traditional WT-BPNN

method was 81.60 ± 7.36%. The average accuracy increased

by 7.61%, while its standard deviation decreased by 3.57%.

The recognition accuracy for S7 increased significantly

from 79.17 ± 9.17 to 91.25 ± 2.75%; this increased the
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TABLE 1 O	ine accuracies of the CNN–GA for S2.

1 2 3 4 5 6 7 8 9 10 Mean

Acc (%) 97.92 100 97.92 95.83 93.75 95.83 97.92 100 100 97.92 97.71± 2.07

accuracy by 12.08% and reduced the standard deviation

by 6.42%.

Furthermore, a statistical analysis was conducted using a

paired t-test, to investigate whether the two algorithms had

any significant differences. The results indicated a significant

difference between the two methods, and the accuracy of CNN–

GA outperformed that of the combined WT–BPNN (P < 0.05).

The experimental results showed that the proposed optimization

algorithm achieved a higher classification rate and superior

robustness for all subjects.

To further investigate the performance of the proposed

method, the classification results achieved by the three different

methods are compared in Figure 8. The results verified that

the performance of the CNN–GA surpassed that of the

other two methods. One-way ANOVA was used to assess

the performances under the three conditions, and significant

differences were observed among the three conditions (P <

0.05). The experimental results further validated the efficiency

of the proposed method for detecting the characteristics of EEG

signals produced by different facial expressions.

The above results demonstrate that the optimizationmethod

proposed in this study is effective for decoding EEG signals for

FE-BCI systems.

Online experimental results

The offline experimental results demonstrated the feasibility

of the FE-BCI system, and the online experiment was designed

to verify the practicality of the optimized FE-BCI system

used for vehicle control. To preliminarily evaluate the online

performance of the FE-BCI system for controlling an intelligent

car, the success rate was calculated. During the online

experiment, all subjects could cross Targets 1 to 3 and then

return to the start position. Each session included three left-hand

lane changes, three right-hand lane changes, five accelerations,

and four decelerations. In the control stage, subjects were

required to maintain the same facial expression for 1.5 s to

generate a car movement decision; for the online task, this

time window was set to 0.25 s. The intelligent car remained

in the previous state until the new control commands had

been generated three times in the same. Figure 9 shows the

experimental scenario and a representative decision procedure

from S2.

The task success rates for each subject are listed in Table 4.

The average success rate across six sessions was 86.61 ± 6.06%,

TABLE 2 Averaged accuracies for each subject under the CNN and

CNN–GA methods.

Subject CNN CNN–GA

Test (%) Kappa Test (%) Kappa

S1 84.90± 5.77 0.80 87.06± 4.51 0.83

S2 94.48± 3.90 0.93 97.71± 2.07 0.96

S3 80.52± 4.74 0.74 85.21± 4.92 0.80

S4 72.80± 6.22 0.61 76.43± 7.13 0.69

S5 88.75± 7.13 0.85 91.46± 5.27 0.89

S6 92.29± 6.93 0.90 96.88± 2.75 0.96

S7 86.77± 6.56 0.82 91.25± 2.75 0.88

S8 82.55± 6.22 0.77 86.09± 3.96 0.81

S9 83.13± 3.29 0.78 84.90± 2.27 0.80

S10 92.81± 16.29 0.92 95.83± 3.38 0.94

S11 89.27± 6.53 0.91 94.79± 3.54 0.93

S12 95.63± 6.34 0.94 96.77± 2.19 0.96

S13 78.54± 5.97 0.71 81.88± 3.39 0.76

S14 81.46± 6.08 0.75 83.52± 3.02 0.78

S15 81.15± 6.06 0.75 85.21± 4.87 0.80

S16 90.00± 6.07 0.87 93.02± 3.90 0.91

Avg± Std 85.94± 6.51 0.816 89.21± 3.79 0.856

and the highest was 96.31 ± 2.71% from S10. The mean

standard deviation during the online experiment was 6.06%,

which further suggests the robustness of the proposed GA–CNN

in applications.

Discussion

Existing disparities between the selectivity of BCI systems

and their performance mean that there is plenty of room

for improvement in current BCI systems. In this study,

a novel FE-BCI system with an improved EEG decoding

method combining a CNN with GA was proposed. The

offline experimental results demonstrated that the improved

deep learning method was able to significantly improve the

model performance compared to the traditional method.

The online experimental results verified the feasibility of the

proposed FE-BCI system for practical applications. Notably,

the improved FE-BCI system outperformed the conventional

BCI system.
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TABLE 3 Averaged accuracies of each subject under WT–BPNN and

CNN–GA methods.

Accuracy (%)

Subjects WT–BPNN CNN–GA

Kappa Test (%) Kappa Test (%)

S1 0.754 81.56± 6.77 0.828 87.06± 4.51

S2 0.874 90.42± 6.57 0.970 97.19± 2.81

S3 0.683 76.25± 8.18 0.803 85.21± 4.92

S4 0.613 70.94± 7.60 0.686 76.43± 7.13

S5 0.774 83.02± 8.64 0.886 91.46± 5.27

S6 0.879 90.94± 4.07 0.958 96.88± 2.75

S7 0.722 79.17± 9.17 0.883 91.25± 2.75

S8 0.739 80.42± 6.25 0.815 86.09± 3.96

S9 0.742 80.63± 6.04 0.799 84.90± 2.27

S10 0.803 85.21± 6.48 0.944 95.83± 3.38

S11 0.828 87.08± 8.78 0.931 94.79± 3.54

S12 0.833 87.50± 10.71 0.957 96.77± 2.19

S13 0.667 75.00± 7.34 0.758 81.88± 3.39

S14 0.690 76.77± 7.26 0.780 83.52± 3.02

S15 0.701 77.60± 7.26 0.803 85.21± 4.87

S16 0.776 83.23± 6.63 0.907 93.02± 3.90

Mean accuracy 0.755± 0.076 81.60± 7.36 0.857± 0.084 89.21± 3.79

Significance of the FE-BCI system

Emotion computation plays an important role in human

communication and real-world applications. Although effective

computation has attracted considerable interest in the past few

years, the use of emotions in brain-controlled systems remains

problematic. Research in the affective BCI field has focused on

perception; numerous specific stimuli have been used to detect

different emotions (e.g., emotional videos, images, and music).

According to Jiang et al. different emotions can be evoked by a

video’s affective content and further applied in an emotion-based

BCI system (Jiang et al., 2019).

Jin and his colleagues reported on a new emotion-detecting

BCI system that employs a face-based image-induced paradigm

(Cheng et al., 2017). In another study, Thammasan et al.

studied a continuous music-emotion-recognition approach for

the construction of affective BCI (Thammasan et al., 2016).

However, it is difficult to detect the ground truth of human

emotional states using these methods. Most importantly, these

paradigms rely upon extra stimuli, which limits their real-

world applications.

In contrast to traditional emotion discrimination

techniques, it is more straightforward to recognize the

emotional stage using different facial expressions. Facial

expressions are the most common features of emotions and

the most direct mechanism of emotional representation.

Unfortunately, the inconsistency of emotion and expression

still has been the main challenge for this type of emotion-based

BCI system. Since the facial expression is a kind of body

movement, the combination of EEG signals from the prefrontal

and motor cortices could improve the robustness and credibility

of techniques that exploit these signals. This way could also

reduce the impact on the decoding accuracy of FE-BCI signals

when expressions are inconsistent with emotions.

In our approach, EEG signals from the prefrontal and motor

cortices were used to distinguish between different emotional

states. Furthermore, a highly robust EEG recognition model

was obtained by combining a CNN with a GA. To prove the

effectiveness of the proposed FE-BCI system, Table 5 shows

the results of representative EEG decoding algorithms for

expression-based brain-computer interfaces system in the past

few years. It can be seen that the decoding accuracy of the P300-

based visually evoked BCI systemwas still relatively high (Cheng

et al., 2017; Tian et al., 2018). The performance of this type

of the FE-BCI system depends entirely on the design of the

stimulator, which includes the size of the face picture, the space

between two pictures, and the number of target appearances.

In contrast, the method proposed in this study shows the

superiority in the film video elicitation with WT- MLPNN and

STFT combined Graph Regularized Extreme Learning Machine

(Ozerdem and Polat, 2017; Zheng et al., 2019), music elicitation

with Higuchi algorithm combined SVM (Thammasan et al.,

2016), the pictures of facial expression elicitation (Huang et al.,

2017) with mixed features and corresponding algorithms, and

the previously proposed actual facial expression-based WT-

BPNN decoding method (Toth and Arvaneh, 2017; Li et al.,

2018b). This improvement will further extend the broader

range of human-computer interaction. In contrast to previous

studies, we used only eight-channel EEG signals, and the average

accuracy was as high as 89.21 ± 3.79%. This will further extend

the possibilities of human–computer interaction.

E�cacy of CNN–GA

Owing to the inherent signal quality limitations of non-

invasive EEG signals, there remains a need to develop a novel

EEG decoding algorithm that improves the precision of facial-

expression-based BCI systems. Most conventional machine

learning algorithms set these features manually; thus, they

are highly dependent upon the experience of the researcher.

However, irrelevant features reduce the classifier performance.

Hence, selecting features relevant to the task will improve

the classification performance. One advantage of CNN is the

automatic extraction of discriminative features (Shajil et al.,

2020; Kwon and Im, 2021). Learning hidden features and

eliminating redundant information from the EEG signals will

enhance the overall capability of BCI systems. Using the

classification accuracy metric, Tables 3, 5 present a comparison
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FIGURE 8

O	ine classification accuracies and standard deviations under the three methods.

FIGURE 9

Online scenario and optimal recognition performance within a single session for S2. (A) The online scene. (B) One representative decision

procedure from S2.

of the improved CNN and traditional methods. The proposed

scheme outperformed other traditional feature extraction and

classification methods. Hence, automatic learning of relevant

features and eliminating redundant information from EEG

signals could effectively improve the recognition accuracy of

EEG signals under different expressing.

It is well-known that the performance of a neural network

model is highly dependent upon its hyperparameters (Ali et al.,

2019). However, most hyperparameter optimizations use the

enumeration method to solve this problem. Unfortunately,

the selection of inappropriate hyperparameters may result

in a poor classification performance. In contrast to selecting

hyperparameters using research experience, the proposed

scheme sets important hyperparameters using the GA

algorithm. GA has an excellent global search ability, which

can quickly search out the best solution in the solution space

without any prior knowledge. The GA’s paralleling process uses

numerous routes to find the optimal results. This characteristics

ensures that the best solution was found while avoiding fast-

falling trap of the optimal local solution (Rui et al., 2019).

Most important, the superior performance of the GA method

is its social ability, which makes it easier to link with other

algorithms (Chang and Yang, 2019). Therefore, embedding the

GA algorithm into the CNN model by setting this model as a

fitness function is an effective way to optimize the decoding

results of EEG signals. Table 2 presents a systematic comparison

and qualitative evaluation of the proposed model with and

without hyperparameter optimization. Superior accuracy was
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TABLE 4 Averaged accuracies of each subject in the online task.

Subjects Acc. (%)

Change left Acceleration Change right Deceleration Mean

S1 79.41 83.33 73.33 88.89 81.24± 6.55

S2 97.06 88.89 96.67 100 95.65± 4.75

S3 70.59 77.78 100 94.44 85.70± 13.81

S4 76.47 77.78 83.33 77.78 78.84± 3.06

S5 91.18 83.33 93.33 94.44 90.57± 5.01

S6 94.12 100 96.67 94.44 96.31± 2.71

S7 94.17 88.89 90.00 77.78 85.56± 6.76

S8 97.06 88.89 93.33 94.44 93.43± 3.41

S9 85.29 83.33 83.33 72.22 81.04± 5.95

S10 94.12 100 96.67 94.44 96.31± 2.71

S11 91.17 83.33 76.67 88.89 85.01± 6.46

S12 97.06 88.89 93.33 88.89 92.04± 3.95

S13 79.41 88.89 83.33 83.33 83.74± 3.90

S14 85.29 77.78 83.33 77.78 81.05± 3.85

S15 82.35 83.33 90.00 77.78 83.36± 5.04

S16 85.29 77.78 80.00 72.22 78.82± 5.41

Mean± Std 87.50± 8.22 85.41± 6.37 88.33± 7.98 85.76± 8.83 86.61± 6.06

achieved compared to the CNNmodel. This experimental result

verified that the GA-optimized hyperparameters improved

the classification performance and further resolved the time-

consumption problem of redundant information. These analytic

results demonstrate that the CNN–GA EEG decoding model

can produce a more interpretable model for exploring the

information hidden in EEG signals. This should promote the

development of a high-quality EEG decoding model.

Comparison with existing BCI systems

The practical performance of BCI systems is worth

discussing. Existing challenges to the practical implementation

of BCI systems include their accuracy, portability, and

robustness. The MI-based BCI system is a representative BCI

system used to improve the quality of life of disabled people. For

example, Miao reported an MI-BCI system that helped stroke

patients toward rehabilitation (Miao et al., 2021). However, this

type of BCI system does not readily facilitate daily activities,

owing to its low accuracy and limited commands. Recently,

a great surge in SSVEP-based BCI systems has been observed

in daily life applications. For example, Chen et al. produced a

robotic arm control mechanism using an SSVEP system (Chen

et al., 2021). Unfortunately, the performances of most existing

strategies are highly dependent upon extra stimuli. This partially

limits the mobility of the SSVEP–BCI system.

The development of the FE-BCI system provides an

additional option for solving the tradeoff between BCI

performance and stimulus reliance. Compared with the

traditional BCI system, the EEG signals from real facial

expressions can increase the portability of the FE-BCI system.

EEG decoding algorithms also play a vital role in BCI systems.

In this study, the combined CNN–GA model also ensured the

accuracy of the FE-BCI system. Hence, the improved FE-BCI

system is cost-effective, user-convenient, and more suitable for

practical tasks.

Limitations and future work

Despite the superior performance of the improved FE-BCI

system, certain aspects still need to be improved. One limitation

of this study is that only healthy subjects were considered, and

a relatively small number of subjects participated. In future

studies, clinical applications involving certain patient groups

and more subjects should be included. Moreover, enhancing the

generalizability of the classifier and studying the asynchronous

FE-BCI system should produce a better solution and provide

a more flexible and realistic BCI system. There remains the

motivation for finding more computationally and friendly

metrics to investigate the consistency between emotions and

expressions. Exploring a more advanced algorithm and effective

criteria to reduce inter-subject variability will remain a challenge

to be addressed in the future.
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TABLE 5 Performance comparison of previous work based on the FE-BCI.

References Modality Stimulus Method Parameters Acc (%)

Cheng et al. (2017) EEG (P300) P 300 evoked Features extracted by calculating the

percentiles of EEG; Classified by

Bayesian linear discriminant

analysis

Referring

previous study

91.9

Tian et al. (2018) EEG(N170) N170 extracted by dimensionality

reduction and normalization;

Classified by L1-Regularized

Logistic Regression

86.4

Thammasan et al.

(2016)

EEG Music Features extracted by Higuchi

algorithm; Classified by SVM

By experience 85.0

Ozerdem and Polat

(2017)

EEG Film chips Features extracted by wavelet

transform; classified by MLPNN

Referring

previous study

77.14

Zheng et al. (2019) Features extracted by STFT;

classified by Graph Regularized

Extreme Learning Machine

69.67

Huang et al. (2017) Picture

information

EEG

Face pictures

Facial

expression

Picture feature extracted by

AdaBoost and classified by neural

network classifier

EEG feature extracted by STFT and

classified by SVM

Burte-Force

Searching

82.75

Toth and Arvaneh

(2017)

EEG

Gyroscope

Facial

expression

Feature extracted by FFT; classified

by SVM-LDA-Bayesian

By experience 70.3

Li et al. (2018b) EEG Features extracted by wavelet

transform; classified by BPNN

81.28

The proposed study Features extracted and classified by

CNN

By GA 89.21

Conclusion

This paper proposed a novel deep-learning-based EEG

decoding method for an FE-BCI system, and the performance

of the proposed CNN–GA model was evaluated systematically.

The proposed method employed a CNN algorithm to decode

EEG signals and a GA to select the optimal hyperparameters

for the CNN model. To verify the model effectiveness, offline

and online experiments were conducted. When using the CNN–

GA algorithm in offline experiments, the averaged accuracies

were increased from 85.94 ± 6.51 to 81.60 ± 7.36% (for

the conventional CNN algorithm and traditional BPNN-based

method, respectively) to 89.21 ± 3.79%. Moreover, the online

experiment results demonstrated the practical applicability of

the method, and the average accuracy was increased up to

86.61 ± 6.06%. Both the offline and online experimental results

demonstrated the superiority of the proposed EEG decoding

method in the FE-BCI system. In summary, the CNN–GA

method is a significant achievement in the development of FE-

BCI systems. Future work will aim to develop an asynchronous

FE-BCI system using the CNN–GA model; this will further

improve paralyzed patients’ access to the real world.
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