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The spiking neural network (SNN) computes and communicates information

through discrete binary events. Recent work has achieved essential progress

on an excellent performance by converting ANN to SNN. Due to the

di�erence in information processing, the converted deep SNN usually su�ers

serious performance loss and large time delay. In this paper, we analyze

the reasons for the performance loss and propose a novel bistable spiking

neural network (BSNN) that addresses the problem of the phase lead and

phase lag. Also, we design synchronous neurons (SN) to help e�ciently

improve performance when ResNet structure-based ANNs are converted.

BSNN significantly improves the performance of the converted SNN by

enabling more accurate delivery of information to the next layer after one

cycle. Experimental results show that the proposed method only needs

1/4–1/10 of the time steps compared to previous work to achieve nearly

lossless conversion. We demonstrate better ANN-SNN conversion for VGG16,

ResNet20, and ResNet34 on challenging datasets including CIFAR-10 (95.16%

top-1), CIFAR-100 (78.12% top-1), and ImageNet (72.64% top-1).

KEYWORDS

spiking neural network, bistability, neuromorphic computing, image classification,

conversion

1. Introduction

Deep learning (or Deep Neural Network, DNN) has made breakthroughs in many

fields such as computer vision (Girshick, 2015; Liu et al., 2016; Redmon et al., 2016),

natural language processing (Bahdanau et al., 2014; Devlin et al., 2018), and speech

processing (Park et al., 2020), and has even surpassed humans in some specific fields.

But many difficulties and challenges also need to be overcome in the development

process of deep learning (Lake et al., 2015; Nguyen et al., 2015; Kemker et al., 2018;

Yan et al., 2019). One concerning issue is that researchers pay more attention to higher

computing power and better performance while ignoring the cost of energy consumption

(Strubell et al., 2019). Taking natural language processing tasks as an example, the power

consumption and carbon emissions of Transformer (Vaswani et al., 2017) model training
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are very considerable. In recent years, the cost advantages and

environmental advantages of low-energy AI have attracted the

attention of researchers. They design compression algorithms

(Wu et al., 2016; He and Cheng, 2018) to enable artificial neural

networks (ANN) to significantly reduce network parameters

and calculations while maintaining their original performance.

Another part of the work focuses on computing architecture

(Chen et al., 2014), less computational energy consumption can

be achieved by designing hardware that is more suitable for the

operational characteristics of neural network models. But the

problem of the high computational complexity of deep neural

networks still exists. Therefore, the spiking neural network,

known as the third-generation artificial neural network (Maass,

1997), has received more and more attention (Bing et al., 2018;

Illing et al., 2019; Jang et al., 2019; Tavanaei et al., 2019; Wang

et al., 2020).

Spike neural networks (SNNs) process discrete spike signals

through the dynamic characteristics of spiking neurons, rather

than real values, and are considered to be more biologically

plausible and more energy-efficient (Pfeiffer and Pfeil, 2018; Roy

et al., 2019; Lobo et al., 2020). For the former, the event-type

information transmitted by neurons in SNN is the spike, which

is generated when the membrane potential reaches the neuron

firing threshold. Thus, its information processing process is

more in line with biological reality than traditional artificial

neurons (Zhang et al., 2018; Fang H. et al., 2021; Liang and Zeng,

2021). For the latter, the information in SNN is based on the

event, i.e., neurons that do not emit spikes do not participate

in calculations, and the information integration of neurons is an

accumulate (AC) operation, which is more energy-efficient than

the multiply-accumulate (MAC) operations in ANN (Marian

et al., 2002; Zhao et al., 2014). Therefore, researchers put

forward the concept of neuromorphic computing (Burr et al.,

2017; Davies, 2019; Song et al., 2020), which realizes the

more biologically plausible SNN on hardware. It shows more

significant progress in fast information processing and energy

saving. But due to the non-differentiable characteristics of SNN,

training SNN is still a challenging task. Because of the lack

of the derivative of the output, the common backpropagation

algorithm cannot be used directly. How to use SNN for effective

reference has become a problem for researchers.

Taking inspiration from the brain, such as Spike-Timing

Dependent Plasticity (STDP) (Bengio et al., 2015; Liu et al.,

2021), lateral inhibition (Blakemore et al., 1970; Abbott and

Nelson, 2000), Long-Term Potentiation (LTP) (Malenka, 2003),

and Long-Term Depression (LTD) (Ito, 1989) are effective

methods. By properly integrating different neural mechanisms

in the brain (Zeng et al., 2017), SNN can be effectively trained.

Because most of these methods are unsupervised, researchers

often add SVM (Noble, 2006) or other classifiers for supervised

learning (Hao et al., 2020; Wang et al., 2020) or directly do

learning in an unsupervised manner (Diehl and Cook, 2015;

Illing et al., 2019). All of them are of great importance for

further enhancing the interpretability of SNN and exploring

the working mechanism of the human brain. However, this

optimization method that only uses local neural activities is

challenging to achieve high performance and be applied to

complex tasks. Some researchers try to train SNNs through

approximated gradient algorithms (Fang et al., 2021a,b; Wu

et al., 2021; Meng et al., 2022), where the backpropagation

algorithm can be applied to the SNN by continuous the spike

firing process of the neuron. However, this method suffers from

difficulty in convergence and requires a lot of time in training

procedure in the deep neural networks (DNN) because it is

difficult to balance the whole firing rate. For the above two

methods, they perform poorly in large networks and complex

tasks and require a large amount of computing resources and

memories. We believe that the inability to obtain an SNN with

effective reference ability is a key issue in the development and

application of SNN.

Recently, the conversion method has been proposed to

convert the training result of ANN to SNN (Cao et al., 2015).

The ANN-SNN conversion method maps the trained ANN

parameters with ReLU activation function to SNN with the

same topology as illustrated in Figure 1, which makes it possible

for SNN to obtain extremely high performance at a very low

computational cost. But direct mapping will lead to severe

performance degradation (Yang et al., 2020). Diehl et al. (2015)

propose the data-based normalization method, which scales the

parameters with the maximum activation values of each layer

in ANN, improving the performance of the converted SNN.

Rueckauer et al. (2017) and Han et al. (2020) use integrate-

and-fire (IF) neurons with soft reset to make SNN achieve

performance comparable to ANN. Nonetheless, it usually takes

more than 1,000–4,000 time steps to achieve better performance

on complex datasets. And when converting ResNet (He et al.,

2016) to SNN, researchers suffer from a certain performance

loss (Hu et al., 2018; Sengupta et al., 2019; Xing et al., 2019)

because the information received by the output neuron of the

residual block is incomplete with the spikes on the shortcut path

arriving earlier.

Bistability is a special activity form in biological neurons

(Izhikevich, 2003). Neurons can switch between spike and non-

spike states under the action of neuromodulating substances,

thus exhibiting short-term memory function (Marder et al.,

1996). Inspired from the bistability characteristic, we focus on

improving the performance of SNN and propose a bistable

spiking neural network (BSNN), which combines phase coding

and the bistability mechanism that greatly improves the

performance after conversion and reduces the time delay. For

high-performance spiking ResNet, we propose synchronous

neurons (SN), which can help spikes in the residual block

synchronously reach the output neurons from input neurons

through two paths. The information in BSNN takes one

cycle to pass from one layer to another. Thus, the time

steps required to achieve optimal performance in BSNN are
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FIGURE 1

Illustration of ANN-SNN conversion.

significantly reduced compared to the methods of increasing the

accuracy by continuously increasing the simulation time. The

experimental results demonstrate they can help achieve nearly

lossless conversion and state-of-the-art in MNIST, CIFAR-10,

CIFAR-100, and ImageNet while significantly reduce time delay.

Our contributions can be summarized as follows:

• We propose a novel BSNN that combines phase coding

and bistability mechanism. It effectively solves the problem

of SIN and greatly reduces the performance loss and time

delay of the converted SNN.

• Wepropose synchronous neurons to solve the problem that

information in the spiking ResNet cannot synchronously

reach the output neurons from two paths.

• We achieve better performance on the MNIST, CIFAR-

10, CIFAR-100, and ImageNet datasets, verifying the

effectiveness of the proposed method.

2. Related work

Many conversion methods have been proposed in order

to obtain high-performance SNN. According to the encoding

method they can be divided into three kinds.

2.1. Temporal coding based conversion

Temporal coding uses neural firing time to encode the input

to spike trains and approximate activations in ANN (Rueckauer

and Liu, 2018). However, since neurons in the hidden layer need

to accumulate membrane potential to spike, when the activation

value is equal to the maximum, neurons in deep layers are

difficult to spike immediately, making this method difficult to

convert deep ANNs. Zhang et al. (2019) use ticking neurons

to modify the method above, which transfers information layer

by layer. Nevertheless, this method is less robust and difficult

to be used in models with complex network structures like the

residual block.

2.2. Rate coding based conversion

Unlike temporal coding, the rate coding-based conversion

method uses the firing rates of spiking neurons to approximate

the activation values in the ANN (Cao et al., 2015). Diehl et al.

(2015) propose data-based and model-based normalization,

which use the maximum activation value of neurons in each

layer to normalize the weights. When disturbed by noise, the

normalization parametermay be quite large, which will cause the

weight smaller and the time to spike longer. Researchers propose

to use the p-th largest value for normalization operation,

thereby greatly improving robustness and reducing time delay

(Rueckauer et al., 2017). Therefore, the conversion method

based on rate coding has achieved better performance in ResNet

(Hu et al., 2018) and Inception Networks (Sengupta et al.,

2019; Xing et al., 2019). However, the processing speed of

spikes on the paths with different processing units is different.

The information received by the output neuron is delayed to

various degrees when spreading on these wider networks. The

difference between the firing rate and the activation value in

the ANN will be greater. Therefore, the performance loss and

the time delay of the SNN is more significant when converting

these ANNs.
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2.3. Phase coding based conversion

To overcome the large time delay of the converted SNN,

researchers propose SNN with weighted spike, which assigns

different weights to the spikes in different phases to pack more

information in the spike (Kim et al., 2018). Nonetheless, when

neurons do not spike in the expected phase, the spikes of

neurons in hidden layers will deviate from the coding rules

to a certain extent, resulting in poor performance on complex

datasets and large networks. Phase coding and burst coding

are combined to speed up the information transmission (Park

et al., 2019), but still needs 3,000 simulation time on CIFAR-

100 dataset.

3. Methods

In this section, we introduce the spiking neurons and

encoding methods in detail, and then analyze the reasons for the

loss of conversion performance based on the process of phase

coding conversion methods. The detailed information of the

model to reduce conversion loss and time delay is described.

And we will introduce the effect of synchronized neurons in

spiking ResNet.

3.1. Spiking neuron and encoding

The most commonly used spiking neuron model is the

integrate-and-fire (IF) model. The IF neuron continuously

receives spikes from the presynaptic neuron and dynamically

changes its membrane potential. When it exceeds the threshold,

the neuron spikes and the membrane potential is traditionally

reset to zero. But it will cause a lot of information loss.We follow

(Rueckauer et al., 2017) and use the soft reset to subtract the

threshold from the membrane potential:

V l
i,t = V l

i,t−1 +
∑

j

wijδ
l−1
j,t , (1)

if V l
i,t ≥ Vth,




V l
i,t = V l

i,t − Vth,

δli,t = 1.
(2)

where V l
i,t represents the membrane potential of neuron i in

layer l at time t, wij is the weight connecting the neuron j and

i, δl−1j,t is the spike of neuron j in layer (l− 1) at time t.

The spike trains can be encoded by real values with different

encoding methods. The real value is equal to the firing rate in

rate coding, which is the number of spikes in a period, or the

ratio of the difference between the total simulation time T and

the spike time to T in temporal coding, which is:

arate =
N

T
, atemporal = 1−

tspike

T
, (3)

where N denotes the number of spikes, tspike is the time of the

first spike. Previous work shows a considerable time delay with

the use of rate and temporal coding. For example, they all need

at least 1,000 time steps to represent 0.001 of input.

Therefore, we use phase coding (Kim et al., 2018) to encode

activation values to spike trains. It can pack more information in

one spike by assigning different weights to spikes and thresholds

of each phase. Thus, phase coding is more energy efficient.

Experiments show a shorter time is taken to accurately represent

the real value when phase coding is used:

alj =
1

n

nK∑

k=1

Skδ
l
j,k, Vth,t = StVth, (4)

where alj is the activation value of neuron j in layer l,K is the

number of the phase of a period, n = T
K is the number of the

period, the phase function S is represented by

St = 2−(1+ mod (t,K)). (5)

3.2. Framework of ANN-SNN conversion

To make SNN work, we need to do some processing on

ANN before conversion. We use ali = max{0,
∑
j
wija

l−1
j + bli}

to denote the arbitrary activation value in the ANN, wij and bli
are weight and bias respectively. The maximum firing rate in

SNN is one because neurons emit one spike at most at every time

step. Thus, we normalize the weight and bias with the data-norm

method (Rueckauer et al., 2017) by

ŵl
ij = wl

ij

λl−1

λl
, b̂li =

bli
λl
, (6)

where ŵl
ij and b̂li represent the weights and biases used in SNN,

λl is the maximum activation value of the l-th layer. Then all

activation values in ANN are at most 1.

As mentioned above, it is hard to perform max-pooling

and batch normalization (BN) in SNN. We choose the spike of

the neuron with the largest firing rate to output as the max-

pooling operation in SNN. We follow (Rueckauer et al., 2017)

and merge the convolutional layer and the subsequent BN layer

to form a new convolutional layer. An input x is transformed

into BN[x] =
γ
θ
(x − µ) + β , where µ and θ are mean and

variance of batch, β and γ are two learned parameters during

training. The parameters of the new convolutional layer which

can be converted, are described by

ŵij =
γi

θi
wij, b̂i =

γi

θi
(bi − µi)+ βi. (7)
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FIGURE 2

Examples of Phase Lag, Phase Lead, and SIN. Real value a0 in (a) can be accurately represented with few spikes in phase coding. While due to the

uncertainty of the postsynaptic current, phase lag problem like (b) occurs when the membrane potential in the current phase exceeds the

threshold at the previous moment. When a current greater than one is suddenly received at a certain moment, phase lead problem like (c) will

occur. Both of these problems will directly or indirectly lead to SIN in (d), where neurons corresponding to the activation value of zero will also

spike.

3.3. Analysis of performance loss

Even though the ANN is processed, the converted SNN

usually suffers performance loss. To simplify the analysis of

performance loss, we assume that ali ≥ 0, bli = 0 and the

threshold Vth is 1. The neuron membrane potential is V l
i,nK at

the end of the simulation. The total number of spikes of the

neuron is numerically equal to the total received input minus

the membrane potential at T:

N =

nK∑

t

St
∑

j

wijδ
l−1
j,t − V l

i,nK . (8)

Then the firing rate of neurons is approximately equal to the

activation value in ANN when T is long enough:

rli,nK =
N

n
=

1

n

nK∑

t

St
∑

j

wijδ
l−1
j,t − V l

i,nK

=
1

n




n∑∑

j

wij

K∑

k=1

Skδ
l−1
j,k
− V l

i,nK




=
∑

j

wija
l−1
j −

1

n
V l
i,nK . (9)

Note that the postsynaptic current at each moment is

as follows:

Ij,t =
∑

j

wijδ
l−1
j,t . (10)

As shown in Figure 2, once the neuron in hidden layers

spikes earlier or later than the time directly encoded, which we

call phase lead or phase lag, the neuron will transmit toomuch or

too little information to the next layer. Suppose the total synaptic

current received by the neuron at time T is equal to the product

of the activation value and T, so we can get Ĩj,T =
T∑
t
Ij,t = T ∗ aj,

where t ∈ (0,T]. According to the instability of the synaptic

current in Equation (10), if the total synaptic current received at

time t Ĩj,t is less than the expected current t
T Ĩj,T , the neuron will

receive more current at a later time to send more spikes to make

up for the shortage of the number of spikes in time step (0,t).

Note that the neuron can only emit at most one spikes at each

time step, so part of the information will be stored in the neuron

in the form of membrane potential and cannot be released, if

the number of spikes to be emitted exceeds T-t. However, if

the total synaptic current received at time t is greater than the

expected current, i.e., Ĩj,t > t
T Ĩj,T , for neurons with activation

values greater than 0, this problem can be remedied by firing

fewer spikes during time steps (t,T]. However, if the activation

value is less than 0, due to the instability of the synaptic current,

once it exceeds the threshold potential, the neuron will issue

a spike, called spikes of inactivated neurons (SIN). SNN needs

a long time to accumulate spikes to reduce the impact of

these destructive spikes. Thus, the features corresponding to the

network firing rate can be approximately equal and proportional

to the ANN features, which is the reason for the large time

delay of the converted SNN. When the problem of SIN is

quite severe, e.g., a large number of features that should not be

activated in the ANN are activated in the SNN, it cannot be

solved by long-time simulation and causes serve performance

loss. Note that the above analysis is also applicable to rate-based

conversion methods.
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3.4. Bistable SNN

The immediate response of the neuron to the received

current is unreliable. How should the information propagate

in the spiking neurons to make the spike trains conform to

the encoding rules to avoid the SIN problem caused by phase

lag and phase lead? We solve the problem by proposing a

bistable IF neuron (BIF) combining the IF neuron and bistability

mechanism. We model the process of spiking as a piecewise

function according to the fact that the bistability is shown as the

periodic change of spike and non-spike states. In the spike stage,

neurons spike according to the membrane potential normally

while can’t spike in the non-spike phase:

δlA,i,t =




H(V l

A,i,t − Vth,t), mod (⌊ tK ⌋, 2) = 1,

0, else.

δlB,i,t =




H(V l

B,i,t − Vth,t), mod (⌊ tK ⌋, 2) = 0,

0, else.
(11)

where H(x) is unit step function, ⌊x⌋ is the round-down

operation. With periodic input, neurons do not have to respond

to the input spikes all the time but accumulate spikes first and

then respond and loop. Neurons respond accurately in each

phase by accumulating spikes in the non-spike stage, which can

effectively avoid the phase lead or lag mentioned above.

We use two BIF neurons as one unit to represent one

activation value in the ANN, which is:

δli,t = δlB,i,t + δlA,i,t . (12)

One reason for using two BIF neurons is that the BIF neuron

does not spike half the simulation time. The use of two neurons

with complementary spike states can make the information be

transmitted to the next layer in time andmaintain the continuity

of information transmission. One of the neurons in two adjacent

layers is in the spike state to release memory information, and

the other is in the non-spike state to accumulate spikes. Note

that even if the neurons in the previous layer are in the non-

spike state, its silence will not interfere with the neurons in the

spike state connected to the next layer. Another reason is its

powerful scalability. We can convert ANNs of various topologies

without carefully designing the spike stage for each layer when

converting deeper and wider ANNs. If only one BIF neuron is

used in each layer, when the neuron is in a spike state, it cannot

play the role of accumulation as described above.

As shown in Figure 3, there are two connections between the

two units: neuron A of one unit is connected to neuron B of the

other unit:

V l
A,i,t = V l

A,i,t−1 +
∑

j

wijδ
l−1
B,j,t , V l

B,i,t = V l
B,i,t−1

+
∑

j

wijδ
l−1
A,j,t . (13)

They share the same weight. When the presynaptic neuron

is in the spike phase, the postsynaptic neuron in the non-spike

phase accumulates spikes to respond accurately later. In fact,

the information between the two adjacent layers is periodically

switched between the red connection and the blue connection

with the simulation time, which also reflects that our BSNN can

convert any structure of ANN. Consider using real-valued input,

δ0i,t = a0i , the total synaptic current received by neurons in the

last layer can be expressed as

KL∑

t=0

ILj,t =

KL∑

t=0

St
∑

wL
ijδ

L−1
i,t =

∑
wija

L−1
i (14)

Bistable neurons combined with phase encoding can make

the information in the network transmitted in the form of

accumulation and then firing in each layer. Among them, the

accumulation process can ensure that accurate information is

transmitted to the next layer with a delay of one cycle, so as

to avoid the influence of the immediate response of synaptic

current on the conversion.

The residual block of ResNet has two information paths,

in which shortcut path connects input and output directly or

through a convolution operation. The convolutional layer and

the BN layer are merged to facilitate the conversion. When

converting ResNet, two key problems need to be addressed:

• The information of the two paths cannot be scaled

synchronously. The information of two paths received by

output neurons of the residual block is not proportional to

the activation values. Because it is impossible to normalize

the shortcut path which has no convolutional layer.

• The information of the two paths cannot reach the

output neuron synchronously. The shortcut path is one

less ReLU operation, which corresponds to two BIF

neurons in the SNN, than the convolution path. Since

neurons need time to accumulate membrane potential to

spike, the information of the shortcut path reaches the

output neuron faster.

3.5. Synchronous neurons for spiking
ResNet

For the first problem, we determine the scale parameters

according to the maximum activation value of the input

and output so that the sum of the information of the

two paths received by the output is proportional to the

activation value:

scale =
λin

λout
. (15)

To solve the second problem, we add synchronous neurons,

which are two BIF neurons, in the shortcut path. It is
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FIGURE 3

The Architecture of BSNN. Neuron A in the unit, which corresponds to an ANN activation value, only has synaptic connections with neuron B in

the adjacent layer and vice versa. The weights of two connections in the same unit are the same. When neuron A in the l-th layer is in the spike

stage, neuron B in the (l− 1)-th layer is in the non-spike stage. It will not cause interference to spikes of neuron A in layer l, and neuron B of the

(l+ 1)-th layer can integrate the spikes until the end of the period.

FIGURE 4

Synchronous neurons for spiking ResNet.

equivalent to adding a ReLU function to the head of the

shortcut path in ANN. Figure 4 shows the conversion process

of the residual block. The information reaches the output

of the residual block through the synchronous neurons.

Since the input of the shortcut path is all non-negative,

the transmission in ANN will not have any impact. In

SNN, due to the existence of synchronous neurons, the

output of the shortcut path and the convolutional path

will reach the output neuron at the same time, thereby

eliminating the phase lead and lag and SIN problems in

spiking ResNet. The entire conversion process summarized

Input: Training and test set, simulation time T, trained ANN

Output: Performance of the SNN

1: Let Vth = 1, λl = 0 for l = 1, · · · , L to save the

maximum activation value of each ANN layer.

2: Merge the convolutional layer and BN layer

according to Equation (7).

3: for l = 1 to L do

4: al ← layer-wise activation value

5: λl = max{ali}

6: end for

7: for l = 1 to L do

8: ŵl
ij = wl

ij
λl−1
λl

, b̂li =
bli
λl

9: end for

10: Map the processed parameters to the SNN.

11: for s = 1 to # of test set do

12: for t = 1 to L do

13: do inference according to Equations (11),

(12), (13)

14: end for

15: end for

16: return performance of the SNN

Algorithm 1. ANN-SNN conversion with BIF neurons.

in Algorithm 1 where the SNNs transmit information with

BIF neurons.

4. Experiment

In this section, various experiments are conducted to

evaluate the performance of our proposed conversion algorithm.
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We also test the effect of the synchronous neurons and compare

our BSNN with various advanced conversion algorithms.

4.1. Dataset

The MNIST (LeCun et al., 1998), CIFAR-10, CiFAR-100

(Krizhevsky et al., 2009), and ImageNet (Deng et al., 2009)

datasets are used to test the performance of our proposed BSNN.

The MNIST dataset is the most commonly used dataset

and benchmark for classification tasks. It contains 60,000

handwritten digital images from 0 to 9, 50,000 images for the

training set, and 10,000 images for the test set. Each image

contains 28x28 pixels, which are represented in the form of 8-

bit gray values. Note that we do not perform any preprocessing

on the MNIST dataset.

The CIFAR-10 dataset is the color image dataset closer

to universal objects and a benchmark test set of the CNN

architecture. It contains 60,000 images of 10 classes. 50,000

images for the training sets, and 10,000 images for the test sets.

It is a 3-channel color RGB image, whose size of each image

is 32x32. Unlike MNIST, we normalize the dataset to make the

CIFAR-10 obey a standard normal distribution.

The CIFAR-100 dataset has the same image format as

CIFAR-10. We also perform the same normalization operation

on it, with different normalization parameters. The difference

with CIFAR-10 is that CIFAR-100 contains 100 categories

instead of 10. Each category contains 500 training images and

100 test images.

ImageNet is currently the world’s largest image recognition

large-scale labeled image database organized according to

the wordnet structure, and it is also the most challenging

classification dataset for SNN. Among them, the training set

is 1281167 pictures, and the verification set is 50,000 pictures,

including 1,000 different categories and 3-channel natural

images. The normalization process is also performed to obtain

a sufficiently high classification performance.

4.2. Experimental setup

Our experiments are implemented on the Pytroch

framework and NVIDIA A100. We convert CNN with 12c5-

2s-64c5-2s-10 architecture (Kim et al., 2018) on MNIST. 12c5

means a convolutional layer with 12 output channels and

kernel size of 5 and 2s refers to non-overlapping pooling layer

with kernel size of 2. We use VGG16, ResNet18, ResNet20

architecture on CIFAR-10 and CIFAR-100, while ResNet18

and ResNet34 are used for experiments on ImageNet. Their

structures are the same as that of Pytorch’s built-in model. We

train the ANN for 100 or 300 epochs by using the stochastic

gradient descent algorithm. The initial learning rate is 0.01,

and the learning rate is scaled by 0.1 at the training epoch of

[180, 240, 270]. We use real-value input in SNNs for better

performance. We use data augmentation on the datasets except

for MNIST. We set the padding to 4 and crop the training data

to 32*32. We also use other data augmentation, such as random

horizontal flip, Cutout, and AutoAugment. For CIFAR10 and

CIFAR100, we use stochastic gradient descent (SGD) as the

optimizer with an initial learning rate of 0.1. The cosine decay

strategy is used. Our batch size is 128, and the total epochs of

training are 300.

4.3. Performance and comparison with
other methods

Then we compare the performance of our model and other

conversion methods on MNIST, CIFAR-10, CIFAR-100, and

ImageNet, as shown in Table 1. The time step is the simulation

time required to achieve the best performance. We choose

rate-based methods including p-Norm (Rueckauer et al., 2017),

Spike-Norm (Sengupta et al., 2019), RMP-SNN (Han et al.,

2020), Opt. (Deng and Gu, 2021), SpikeConverter (Liu et al.,

2022), etc., phase-based Weighted Spikes (Kim et al., 2018)

method, temporal coding-based TSC (Han and Roy, 2020)

method, and other advanced methods such as CQ trained

(Yan et al., 2021), Hybrid training (Rathi et al., 2020), etc. for

comparison. The biggest difference between BSNN and these

methods is that information is passed from layer to layer in a

cycle K, thus avoiding the immediate response of neurons to

synaptic currents.

Here we do not compare the BSNN with algorithms

based on biological rules and backpropagation. Because the

former focuses on the biological interpretability of the network,

while the latter focuses on exploring the temporal and

spatial representation of features. The training cost of both is

particularly high because of the information processing method

similar to RNN in the training process. It is difficult to apply

them to complex networks such as VGG16 and ResNet34,

Thus, their performance significantly lags behind advanced

conversion-based methods.

We first focus on the performance loss of the conversion

method. The phase-based method is usually better than other

methods because it combines the advantages of rate coding

and temporal coding. The time information expressed in phase

and the rate information expressed in period improve the

information expressing ability of the spike. Based on this, our

BSNN improves the information propagation of SNN based on

BIF neurons and reduces the phase lead and lag problems in the

Weighted Spike method, thus minimizing the performance loss.

We achieved 99.31% performance on MNIST, 94.12% (VGG16),

and 95.02% (ResNet20) performance on CIFAR-10, 73.41%

(VGG16) and 78.12% (ResNet20) performance on CIFAR-100,

and 69.65% (ResNet18) performance on ImageNet, which are

better than other conversion method. To continue testing the

ability of our method to convert deep networks, we conduct
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TABLE 1 Top-1 classification accuracy on MNIST, CIFAR-10, CIFAR-100, and ImageNet for our converted SNNs, compared to the original ANNs, and

compared to other conversion methods.

Dataset Method Network Encoding ANN (%) SNN (%) Loss (%) Time steps

MNIST p-Norm (Rueckauer et al., 2017) CNN Rate 99.44 99.44 0.00 -

Weighted Spikes (Kim et al., 2018) CNN Phase 99.20 99.20 0.00 16

BSNN CNN Phase 99.30 99.31 −0.01 35

CIFAR-10 p-Norm (Rueckauer et al., 2017) VGG16 Rate 91.91 91.85 0.06 35

Spike-Norm (Sengupta et al., 2019) VGG16 Rate 91.70 91.55 0.15 -

Hybrid Training (Rathi et al., 2020) VGG16 Rate 92.81 91.13 1.68 100

RMP-SNN (Han et al., 2020) VGG16 Rate 93.63 93.63 0.00 1536

TSC (Han and Roy, 2020) VGG16 Temporal 93.63 93.63 0.00 2048

CQ Trained (Yan et al., 2021) VGG16 Rate 92.56 92.48 0.08 600

Opt. (Deng and Gu, 2021) VGG16 Rate 92.34 92.24 0.10 128

BSNN VGG16 Phase 94.11 94.12 −0.01 166

Weighted Spikes (Kim et al., 2018) ResNet20 Phase 91.40 91.40 0.00 -

Hybrid Training (Rathi et al., 2020) ResNet20 Rate 93.15 92.22 0.93 250

RMP-SNN (Han et al., 2020) ResNet20 Rate 91.47 91.36 0.11 -

TSC (Han and Roy, 2020) ResNet20 Temporal 91.47 91.42 0.05 1536

Opt. (Deng and Gu, 2021) ResNet20 Rate 93.61 93.56 0.05 128

BSNN ResNet20 Phase 95.02 95.16 −0.14 206

CIFAR-100 Hybrid Training (Rathi et al., 2020) VGG11 Rate 71.21 67.87 3.34 125

RMP-SNN (Han et al., 2020) VGG16 Rate 71.22 70.93 0.29 2048

TSC (Han and Roy, 2020) VGG16 Temporal 71.22 70.97 0.25 1024

CQ Trained (Yan et al., 2021) VGG Rate 71.84 71.84 0.00 300

Opt. (Deng and Gu, 2021) VGG16 Rate 70.49 70.47 0.02 128

BSNN VGG16 Phase 73.26 73.41 −0.15 242

Spiking ResNet (Hu et al., 2018) ResNet44 Rate 70.18 68.56 1.62 -

Weighted Spikes (Kim et al., 2018) ResNet32 Phase 66.10 66.20 -0.10 -

RMP-SNN (Han et al., 2020) ResNet20 Rate 68.72 67.82 0.90 2048

TSC (Han and Roy, 2020) ResNet Temporal 68.72 68.18 0.54 2048

Opt. (Deng and Gu, 2021) ResNet20 Rate 69.80 69.49 0.31 128

BSNN ResNet20 Phase 77.97 78.12 −0.15 265

ImageNet Spike-Norm (Sengupta et al., 2019) ResNet20 Rate 70.52 69.39 1.13 -

BSNN ResNet18 Phase 69.65 69.65 0.00 200

Hybrid Training (Rathi et al., 2020) ResNet34 Rate 70.20 61.48 8.72 250

RMP-SNN (Han et al., 2020) ResNet34 Rate 70.64 69.89 0.75 4096

SpikeConverter (Liu et al., 2022) ResNet34 Rate 70.64 70.57 0.07 16

BSNN ResNet34 Phase 73.27 72.64 0.63 989

Bold values represents experimental results.

experiments on ResNet34. The results show that BSNN only

needs less than 1,000 time steps to achieve the performance of

72.64% with only 0.63% performance loss. As far as we know,

this is also the highest performance that SNN can achieve.

In addition to the excellence in accuracy, our model has also

achieved outstanding performance in time steps. The conversion

method based on rate and timing naturally takes a long time

to accurately represent the information and therefore requires

a longer time step. The Hybrid Training method sacrifices part

of the performance in exchange for shorter simulation time.

We analyze above that the reason why the conversion method

requires a long simulation time is that SNN needs enough

spikes to compensate for the destruction of the proportional

relationship caused by spikes of inactivated neurons. BSNN uses

the bistable mechanism to accumulate and release spikes, thus

the SIN problem is significantly improved. As shown in the

Table 1, on complex datasets such as CIFAR-10 and ImageNet,

BSNN only needs a time step of 1/4 to 1/10 to achieve the

performance of other advanced algorithms. hence, BSNN can

save at least 25% of calculation loss and energy consumption to a

certain extent, which plays an important role in the development

and application of SNN.
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FIGURE 5

Output di�erence between ANN and converted SNN on CIFAR-100. We compare the output rate of 100 samples of VGG16 with the output

firing rate of three conversion methods to verify that the reason for BSNN to improve network performance lies in better approximation. (A)

Rate-based. (B) Phase-based. (C) BSNN.

4.4. E�ect of bistable neuron

To obtain a high-performance SNN, the firing rate of the

converted SNN should be similar or equal to the activation

value of ANN, which is consistent with the conversion principle.

We check the output difference of 100 samples of CIFAR-100

between the firing rate of converted SNN and the corresponding

activation value of the ANN with architecture of VGG16.

Ideally, due to the weight normalization, the output of the

ANN is proportional to the firing frequency of the SNN

output, and the multiple is the maximum value of the ANN

output layer. We multiply the output of the SNN with the

multiple for comparison. As we can see from Figure 5, the

difference between the output of the selected 100 samples and

the output of the ANN is mostly near 0. However, although

the rate-based conversion method is widely used, it can be

seen from the output of the network that the performance

loss is that SNN cannot approach the activation value of ANN

very well. The method based on phase encoding reduces the

difference between the outputs by increasing the amount of

information contained in the spikes, however, the problem of

inaccurate approximation is still not solved. As can be seen in

Figure 5C, the output of BSNN is at most 0.005 different from

the corresponding activation value of ANN. This indicates that

the improvement of performance with BSNN comes from the

accurate approximation to ANN activation values.

4.5. E�ect of synchronous neuron

In order to verify the effectiveness of the proposed

synchronous neuron in converting ResNet, we convert ResNet18

on multiple datasets. As shown in Figure 6, since neurons are

not always in the spike state but switch between spike and

FIGURE 6

The performance of spiking ResNet18 on three datasets.

TABLE 2 The results of adding synchronous neurons on ResNet18.

Dataset SNN (%) Loss (%) Time steps

CIFAR-10 94.37 0.41 394

IF w/ SN CIFAR-100 76.35 0.05 775

ImageNet 69.22 0.42 1,000

CIFAR-10 94.04 0.74 395

BIF w/out SN CIFAR-100 76.37 0.03 741

ImageNet 69.32 0.32 996

CIFAR-10 94.83 −0.05 218

BIF w/ SN CIFAR-100 76.48 −0.08 237

ImageNet 69.64 0.00 200

non-spike states, BSNN doesn’t work in the early simulation but

completes the high-precision conversion with a small time delay.

The detailed results are listed in Table 2. The loss means the
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accuracy difference (accANN−accSNN ) between the source ANN

and the converted SNN. The experimental results show that the

performance of the spiking ResNet using synchronous neurons

exceeds the SNNs without synchronous neurons on CIFAR-

10, CIFAR-100, and ImageNet datasets. It achieves the same

performance as the ANN with 200–800 time-steps reduction.

The use of synchronous neurons on ResNet conversion can

ensure that the information of two paths reaches the output

neuron of the residual block synchronously, which significantly

improves the conversion accuracy and reduces the time delay.

We can see form Table 2 that SN does not play a significant

role in other methods that support ResNet, such as RMP-SNN

(Han et al., 2020), because their information is not periodically

accumulated and released.

Note that previous work like Spike-Norm (Sengupta et al.,

2019) uses average pooling and dropout instead of max-pooling

and BN, limiting the performance of the converted SNN to a

certain extent. The results show that our work can be adapted to

various types of ANNs, and achieve almost lossless conversion

with less time delay. Experimental results on complex datasets

like CIFAR-100 and deep networks like ResNet34 show that

BSNN can solve the difficulty in approximating features in deep

layers to ANN by cooperating two BIF neurons of each unit to

accumulate and emit spikes periodically. It means that we can

achieve the same effect as current deep learning with a more

biologically plausible network structure, less computational cost

and energy consumption.

5. Conclusion

In this paper, we analyze the reasons for the performance

loss and large time delay in the conversion method. Our

analysis reveals that the immediate response of neurons to

the received current is unreliable in converted SNNs. It can

bring the problem of SIN, which makes the firing rate in

the deep layer cannot approximate the activation values in

ANNs. Based on these analysis and observation, we propose

a novel Bistable SNN which combines phase coding and

the bistability mechanism, and design synchronous neurons

to improve energy-efficiency, performance, and inference

speed. Our experiments demonstrate that the BSNNs could

significantly reduce performance loss and time delay. The

efficiency and efficacy of our proposed BSNN could thus be

of great importance for fast and energy-efficiency spike-based

neuromorphic computing.
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