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Spike encoding techniques for
IoT time-varying signals
benchmarked on a
neuromorphic classification task

Evelina Forno, Vittorio Fra, Riccardo Pignari, Enrico Macii and

Gianvito Urgese*

Politecnico di Torino, Electronic Design Automation (EDA) Group, Turin, Italy

SpikingNeural Networks (SNNs), known for their potential to enable low energy

consumption and computational cost, can bring significant advantages to the

realm of embedded machine learning for edge applications. However, input

coming from standard digital sensors must be encoded into spike trains before

it can be elaborated with neuromorphic computing technologies. We present

here a detailed comparison of available spike encoding techniques for the

translation of time-varying signals into the event-based signal domain, tested

on two di�erent datasets both acquired through commercially available digital

devices: the Free Spoken Digit dataset (FSD), consisting of 8-kHz audio files,

and the WISDM dataset, composed of 20-Hz recordings of human activity

throughmobile and wearable inertial sensors. We propose a complete pipeline

to benchmark these encoding techniques by performing time-dependent

signal classification through a Spiking Convolutional Neural Network (sCNN),

including a signal preprocessing step consisting of a bank of filters inspired

by the human cochlea, feature extraction by production of a sonogram,

transfer learning via an equivalent ANN, and model compression schemes

aimed at resource optimization. The resulting performance comparison and

analysis provides a powerful practical tool, empowering developers to select

the most suitable coding method based on the type of data and the desired

processing algorithms, and further expands the applicability of neuromorphic

computational paradigms to embedded sensor systems widely employed in

the IoT and industrial domains.

KEYWORDS

neuromorphic encoding techniques, neuromorphic computing, time-varing signals,

spatio-temporal pattern recognition, event based encoding, Spiking Neural Network,

benchmarking, IoT applications

1. Introduction

In recent years, technology improvements have made embedded devices more

powerful and more accessible than ever before (Dahlqvist et al., 2019). This has enabled

significant growth in the use of Machine Learning (ML) techniques in Internet of Things

(IoT) and edge computing applications featuring such devices (Branco et al., 2019).
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Deploying ML models directly on the remote device, rather

than providing them as a service through the cloud, has a

series of advantages. First of all, edge devices can provide real-

time inference, reducing the latency of the system in timing-

critical tasks such as autonomous driving. Secondly, keeping

all data on the device makes the application more reliable,

avoiding the repercussions of network shortages; at the same

time, as data is not transmitted, user privacy is improved. Finally,

the elimination of the cloud dependency reduces the power

consumption from communication functions as well as the cost

of the overall infrastructure1.

While the production of ML code for embedded devices

has been significantly facilitated over the years, it has retained

a few challenges. Since edge devices remain constrained in

terms of power, memory and computational resources (Loyez

et al., 2021), the candidate models must be carefully chosen

not only based on the type of input data, but also on the

hardware’s requirements. After acquiring a large amount of

sample data through the same embedded sensors that will be

used in the final application, the models undergo a training

phase: this phase is usually executed on a server machine

due to its high computational demand. Several models can be

assessed for performance, and the most promising is selected for

deployment on the machine. Dedicated end-to-end solutions for

data acquisition, labeling, model optimization and deployment

are provided through major hardware manufacturers (e.g.,

Qeexo AutoML2.) as well as in open source releases (such as the

Embedded Learning Library3).

Without a doubt, the area of ML that has received the most

attention by the scientific and industrial communities during the

past decade is that of Artificial Neural Networks (ANN). Most

ANN models are too resource intensive to run on embedded

hardware, requiring high amounts of memory and dedicated,

power-hungry devices such as GPUs. A novel type of ANN

that fulfills the edge computing requirements of low power

consumption, localized memory and real-time response is the

Spiking Neural Network (SNN), a biologically-inspired model

based on the behavior of animal neurons and characterized

by sparse computation (Ghosh-Dastidar and Adeli, 2009). This

type of network can be accelerated on compact, low-power

neuromorphic hardware (such as SpiNNaker Furber et al., 2012,

Intel Loihi Davies et al., 2018, and Dynap-SEL Moradi et al.,

2017), and exhibits the potential to implement both offline and

online learning (Tavanaei et al., 2019), though a lot of work

remains to be done on the software support (Rhodes et al., 2018;

1 https://docs.edgeimpulse.com/docs/what-is-embedded-machine-

learning-anyway

2 https://www.st.com/en/partner-products-and-services/qeexo-

automl-embedded-machine-learning-tool.html

3 https://microsoft.github.io/ELL/

Knight et al., 2021) and compilers (Urgese et al., 2015, 2016; Lin

et al., 2018) in order to attain said goal.

The most suitable configurations of data encoding, network

type, training method, and hardware platforms allowing to

exploit the advantages of SNNs are still subject to ongoing

research. Yet, despite still being an emergent technology, various

neuromorphic applications are beginning to surface in the

field of embedded systems (Schuman et al., 2022). Using

standard industry tools, neuromorphic hardware can already be

seamlessly integrated with an embedded processor on the same

chip, providing SNN-based co-processing (Forno et al., 2021b).

Areas of implementation explored in literature include image

and video frame analysis (Abeysekara and Abdi, 2019), dataset

clustering (Bako, 2009), pedestrian detection (Lee and Park,

2019; Kang et al., 2020), self-driving robots (Hwu et al., 2017)

and robotic fine-touch sensing including dynamicmotor control

and Braille (Bologna et al., 2013) or texture recognition (Friedl

et al., 2016); neuromorphic computing platforms can also be

paired with natively event-driven sensors for greater efficiency,

such as DVS cameras for gesture recognition (Massa et al.,

2020) or robotic vision (Bartolozzi et al., 2011). There is

also growing interest in neuromorphic applications as suitable

candidates for the implementation of human-related time series

data analysis: while deep learning techniques have found success

in the classification of time-variant data, their implementation

on resource-bound hardware runs into issues related to the

need for signal pre-processing as well as for identification of

long and short dependencies within the data, which influences

the efficiency of the chosen model (Christensen et al., 2022).

In previous work by the authors (Fra et al., 2022), SNN-based

solutions compared favorably to ANN implementations, while

demonstrating a reduction in energy consumption.

In order to be processed by a SNN, input analog and

digital data must be converted into a stream of spiking signals.

However, biological research shows that even in nature, sensory

data can be translated into spikes in various different ways;

again taking inspiration from the animal neuron, a number

of encoding schemes have been derived (Auge et al., 2021).

Rate-based encodings have been used since the early days of

SNN research (Brader et al., 2007), and have since shown

to attain the greatest efficiency when used for conversion of

trained ANNs into SNNs (Diehl et al., 2015; Esser et al., 2015;

Rueckauer et al., 2017) for classification applications. In the

realm of neuromorphic sensors, an event-based cochlea (Liu

et al., 2010) transcodes audible frequency amplitudes into

neuron firing rates; rate codes are also popular in the area

of robotic control (Bing et al., 2018). By contrast, research

into Temporal Coding schemes has received new interest in

recent years. While these techniques have also been employed

in converted networks (Kim et al., 2018; Rueckauer and Liu,

2018; Zhang et al., 2019), resulting in power savings, a variety

of applications has emerged that uses time-based encodings

natively. These include bio-inspired olfactory sensors (Chen
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et al., 2011) and cameras (Delbrück et al., 2010), hybrid

ANN/SNN (Liu and Yue, 2017) and fully spiking (Kheradpisheh

et al., 2018; Park et al., 2019; Sboev et al., 2020) networks

for image classification, speaker authentication (Wysoski et al.,

2007) and speech recognition systems (Loiselle et al., 2005;

Schrauwen et al., 2008), time series forecasting (Sharma and

Srinivasan, 2010) and anomaly detection (Ahmad et al., 2017;

Chen and Qiu, 2017), and many more.

In this paper, we aim to analyze the impact of different

spike encoding techniques on a spiking Convolutional Neural

Network trained by the process of transfer learning. The

resulting networks are tested on time-varying input signals,

originally acquired from digital sensors and encoded into spikes

before being fed to the classifiers. While encoding digital data

does not guarantee as good a result as operating directly with

spike-domain sensors, we adopt this approach because of the

abundance of digital-output sensors available on the market,

compared to the scarcity of neuromorphic sensors; this also

ensures fairness in the comparison between various encodings,

as they are all produced from the same input data. Thus, the

analysis presented here also represents a guideline for future

development of algorithms and encoding/decoding techniques

for integrated System of Systems featuring interoperability of

various modules with neuromorphic sensing solutions.

2. Materials and methods

In this work, we investigated the impact of input signal

encoding when employing transfer learning to train a spiking

convolutional neural network (sCNN). The choice of a

convolutional network architecture is common practice for

time-varying signals (Dominguez-Morales et al., 2018; Sharan

et al., 2020; Rashid et al., 2022) as it allows to sidestep the

use of recurrent neural networks, which are more complex and

computationally intensive (Fra et al., 2022). Figure 1 summarizes

the pipeline used to conduct this investigation. The filter bank

block aims to reproduce the behavior of the human cochlea

through the use of an array of filters that decomposes raw data

into different frequency channels. Different types of algorithms

belonging to the rate-based and temporal coding families are

then used to encode the data, translating it into the spike

domain. Through the feature extraction process we produce the

sonogram, a representation of the encoded spike-domain signal

in the form of an image by means of a time-binning process.

The sonogram is used to perform the transfer learning method,

enabling us to indirectly train an SNN network through learning

techniques employed in the ANN field. Finally, to verify the

accuracy performance, the sonogram is re-encoded into the

spike domain. Different CNN/SNN configurations are tested

in order to achieve the best classification accuracy. A model

compression step is applied to the SNN to reduce its dimensions

by means of the progressive elimination of synaptic connections

between neurons based on their weight.

2.1. Dataset

We selected time-varying signals from two different datasets.

Their distinction can be made from a twofold perspective: on

the one hand, the type of activity involved, on the other hand,

the signal frequency. While the former can be straightforward

and it is easily related to the nature of the data, much more

than to the specific models and methods employed, the latter

is more inherently linked to the neuro-inspired pre-processing

steps performed. The two datasets are the Free Spoken Digit

(FSD) Dataset4, providing audio signals, and one of the datasets

typically employed for human activity recognition (HAR) (Fra

et al., 2022), namely the WISDM Smartphone and Smartwatch

Activity and Biometrics Dataset (Weiss, 2019; Weiss et al.,

2019). Beside the distinction based on the type of activities the

two datasets are collected from, the one referring to the signal

frequency can be made based on the human audible spectrum:

very low frequency below 20Hz, low frequency from 20 to

500Hz, middle frequency from 500 to 2 kHz and high frequency

from 2 to 20 kHz. Based on these definitions and the Nyquist-

Shannon sampling theorem, the samples provided by the FSD

dataset and the WISDM dataset can be assigned to the middle

frequency and to the very low frequency range respectively.

The Free Spoken Digit (FSD) Dataset is a collection of audio

signals acquired with a frequency of 8 kHz. In its latest version,

each spoken digit is recorded 50 times from 6 speakers with

English pronunciation but different accents. All the samples are

trimmed, so that similar silence intervals are present both at

the beginning and at the end. This dataset has been previously

used in works investigating spike encoding in the neuromorphic

domain (Peterson, 2021).

The WISDM Smartphone and Smartwatch Activity and

Biometrics Dataset was published in 2019 by theWireless Sensor

Data Mining (WISDM) Lab. Based on 3D data acquired through

accelerometer and gyroscope from smartphone and smartwatch,

it collects signals related to 18 different activities performed

by 51 subjects, with an acquisition rate of 20 Hz and a total

duration of 3 min for each activity. Differently from the previous

version of the WISDM dataset (Kwapisz et al., 2011), it also

ensures a significant class balance, with a relative contribution

of each activity ranging from 5.3 to 5.8% of the 15,630,426

total samples.

In Figure 2, the spectral density for both datasets are

represented, showing how the two types of data occupy different

parts of the frequency spectrum with no overlap.

4 https://github.com/Jakobovski/free-spoken-digit-dataset

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2022.999029
https://github.com/Jakobovski/free-spoken-digit-dataset
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Forno et al. 10.3389/fnins.2022.999029

FIGURE 1

Block diagram of the proposed encoding benchmarking pipeline, including a frequency decomposition step through a filter bank, a spike

encoding step, feature extraction by production of the sonogram, transfer learning with a non-spiking network, and model compression.

FIGURE 2

Spectral densities of a sample from the FSD and one from the

WISDM dataset. The accelerometer-acquired WISDM data

belongs to the very-low frequency range, while the FSD sample

belongs to the middle range, as is typical for human-audible

signals.

2.2. Pre-processing

As is well known, biology and the animal kingdom represent

an incredibly rich source of ideas for human development.

In this work, we drew inspiration from them to implement

some pre-processing techniques for the time-varying signal we

took into account. Specifically, adopting a methodology inspired

by the human auditory system, we implemented a procedure

mimicking the working principle of the cochlea. This latter

represents the terminal part of the auditory apparatus, and

it consists of a spiral structure whose nerve cells, thanks to

their arrangement along the so-called basilar membrane, allow

a behavior similar to that of a filter-bank. As a result, a frequency

decomposition of the incoming stimulus is performed, and each

of the resulting components, identified through the excitation

of specific regions of the basilar membrane with matching

characteristic frequency, is translated into pulses producing the

electrical signal to be treated by the brain (Greenwood, 1961;

Hachmeister, 2003; Gomez and Stoop, 2014; Oxenham, 2018;

Schurzig et al., 2021). In literature, it has been shown that

gammatone and Butterworth filters are suitable solutions to

reproduce such a mechanism (Johannesma, 1972; Katsiamis

et al., 2006; Zhang and Abdulla, 2006; Elias and George, 2014;

Sharan et al., 2020); moreover, by adequately adjusting the

frequency range, this type of filter bank can also perform

effective feature extraction on other time-varying signals, such

as vibrations recorded by an accelerometer (Dennler et al., 2021).

In this work, we applied them to perform a pre-processing step
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on the considered data, resulting in a split of the time-varying

signals into different frequency channels. Details about their

definition can be found in the Supplementary material.

2.3. Encoding techniques

Although the availability of neuromorphic, event-based

sensors is increasing, as demonstrated by the commercialization

of silicon retina cameras by Sony5 and Prophesee (Blackman,

2019), spiking neural networks are typically employed for the

analysis of continuous data coming from conventional sensors.

As a consequence, a spike encoding of these signals is needed in

order to produce sparse, event-based input data. Two possible

approaches exist for spike generation: on the one hand, similarly

to what is defined as the Representation Principle of the Neural

Engineering Framework (NEF) (Eliasmith and Anderson, 2003),

the neural response to a continuous signal is produced relying on

specific neuron models and characteristics; on the other hand, a

continuous signal is transformed into discrete spikes by means

of a number of possible algorithms. In this work, we focus on

the latter, which ensures, in the framework of IoT applications,

the possibility of fully exploiting neuro-inspired strategies even

in the absence of dedicated neuromorphic hardware.

Encoding algorithms for spike generation can be classified

according to two main categories, Rate Coding and Temporal

Coding, which present significant differences in the number of

degrees of freedom allowed in the encoding: in Rate Coding a

signal is encoded by the number of spikes per time unit, while

Temporal Coding comprises a variety of approaches. For all

the hereinafter discussed and adopted techniques, pseudocode

is reported in the Supplementary material and an example of

spike train generation is shown in Figure 3. In the following,

we will provide the details of the encoding techniques used in

the study, each belonging to one of the two aforementioned

coding categories.

2.3.1. Rate coding

Widely adopted for ANNs due to its ease and robustness, rate

coding employs a mechanism for information representation

based on the number of spikes per unit time (Guo et al., 2021).

2.3.1.1. Poisson Rate

Among the different algorithms belonging to the class of

rate coding (Auge et al., 2021), we employed the one adopting

the Poisson distribution to generate spike trains. Specifically, by

means of this mechanism, the probability of having n ∈ N spikes

in a time interval 1t is:

Pn(1t) =
(r1t)n

n!
e−r1t (1)

5 https://www.sony.com/en/SonyInfo/sony_ai/technology/evs.html

Where r ∈ R, referred to as the spike rate, is the real value to be

encoded.

From an operative standpoint, the implementation of this

algorithm can be performed through the following steps (Liu

et al., 2016):

1. Definition of the time interval 1t in which to generate the

spike train;

2. Generation of a sequence of random numbers x ∈ [0, 1] ⊂ R;

3. From t = 0, definition of spike times ti as:

ti = ti−1 + ISIi for i ≥ 1 (2)

where

ISIi =
− log (1− xi)

r
(3)

is the ith inter-spike interval defined as the ith time interval in

which the probability of having n = 0 spikes is equal to xi;

4. Generation of a spike at each time ti until ti > 1t.

2.3.2. Temporal coding

As already mentioned, temporal coding encloses encoding

mechanisms whose information representation strategy relies

on multiple features. Besides referring to the number of spikes

in a unit time, a distinguishing feature of temporal coding

is the possibility of accounting for the exact spike timing

to carry information (Dupeyroux et al., 2021). Additionally,

characteristics like the relative spike timing and the temporal

spacing between spikes can be exploited too. Depending on

which of these properties is taken into account, five categories

of temporal coding algorithms can be identified: Temporal

Contrast, Deconvolution-based, Global Referenced, Latency/ISI,

and Correlation and Synchrony (Auge et al., 2021).

2.3.2.1. Temporal Contrast

The algorithms belonging to this category mainly focus

on the signal variations in time, and they are employed to

produce spikes with either positive or negative sign. Because

time-based variation is the main feature encoded by this class,

it is not well suited for purely spatial data such as still images.

Examples of use can be found for audio signals (Liu et al.,

2014), electromiography data (Donati et al., 2019), speech

recognition (Gao et al., 2019), failure prediction based on

machine vibrations (Dennler et al., 2021), and robotic Braille

reading (Müller-Cleve et al., 2022).

2.3.2.1.1. Threshold-based representation

The Threshold-Based Representation (TBR) algorithm can

be somehow identified as the constitutive member of the

Temporal Contrast category (Delbruck and Lichtsteiner, 2007).

It encodes information by generating spikes according to the

absolute signal variation with respect to a fixed threshold.
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FIGURE 3

Example of spike trains produced by each of the adopted encoding techniques, given an arbitrary input signal.

Specifically, the main steps performed when adopting this

technique are:

1. Given a signal composed of n channels, variations along each

channel are evaluated between consecutive timesteps;

2. For each channel, a specific threshold is defined as:

Threshold = mean(Variation)+ γ · std(Variation) (4)

Where γ is a tunable parameter directly reflecting on the

amplitude of the noise-reduction band affecting theVariation

values between −Threshold and +Threshold. The greater

γ , the wider the threshold band, the smaller the number

of spikes. Depending on the noise level to be filtered out,

different ranges of values for γ can be identified:

• γ = 0: all the signal variations are kept and the threshold

is defined as their mean value;

• 0 < γ ≤ 1: noise is not a major concern within the

signal but small variations are not needed to preserve the

information content;

• γ > 1: a relevant noise is present and its impact has to

be mitigated when generating spikes.

3. Timesteps for the spike train are defined dividing the 1t

interval in which to generate the spikes by the length (L) of

the input signal;

4. At each timestep, if Variation exceeds Threshold in absolute

value, a spike is emitted with polarity defined by the sign of

both Variation and Threshold.

2.3.2.1.2. Moving window

As for the TBR algorithm, the same underlying idea of using

a threshold value is employed in the case of Moving Window

(MW). However, differently from the previous encoding

strategy, such threshold is employed together with a value

referred to as Base and defined as the mean of the signal, along

each channel, within a sliding window of fixed length:

Threshold = mean(Variation) (5)

Base = mean(Signal[1 :Window]) (6)
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Furthermore, on the contrary with respect to TBR, the

condition for spike emission is verified relying on the signal

itself rather than on its variation. When the signal exceeds the

value Base + Threshold, a positive spike is generated, while for

signal values smaller than Base − Threshold a negative spike is

produced. Such mechanism for spike generation, following the

adoption of a sliding window along the signal, also turns out

to be more robust to noise with respect to TBR (Kasabov et al.,

2016).

2.3.2.1.3. Step-forward

Proposed by Kasabov et al. (2016) as an improvement

with respect to the encoding adopted for the artificial silicon

retina in Delbruck and Lichtsteiner (2007), the Step-Forward

(SF) algorithm also relies on the idea of an iteratively updated

baseline value. Similarly to the case of MW, Base and Threshold

are employed to compute such baseline, and their definitions, for

each signal channel, are:

Threshold = mean(Jump)/γ (7)

Base = Signal[1] (8)

Where Jump refers to an array containing the maximum-to-

minimum differences for each channel and γ is a tunable

parameter. As for TBR and MW, both positive and negative

spikes can be produced. Specifically, the former occur when the

signal overcomes the value Base+ Threshold while the latter are

emitted for signal values lower than Base− Threshold.

2.3.2.1.4. Zero-crossing step-forward

An alternative implementation of SF is obtained taking

advantage of zero-crossings (Wiren and Stubbs, 1956; Kedem,

1986). The resulting Zero-Crossing Step-Forward (ZCSF)

algorithm inherits the definition of Threshold but does

not involve the Base value, which is replaced by a half-

wave rectifying behavior introduced through the condition

Signal > 0.With ZCSF, spike emission hence occurs for positive

signal values higher than Threshold, resulting, differently from

the previous encoding schemes, in positive spikes only.

2.3.2.2. Deconvolution-based

Composed of the Hough Spiker Algorithm (HSA) (Hough

et al., 1999) and the subsequent modified-HSA and Ben’s Spiker

Algorithm (BSA) (Schrauwen and Van Campenhout, 2003), this

class of encoding techniques originates from the inverse problem

of reconstructing an analog signal from a spike train by means

of a finite impulse response filter (FIR). Specifically, by reversing

such operation, the algorithms belonging to this class provide

analog-to-spike conversion employing the convolution function

in a subtractive procedure (Hough et al., 1999). As in the case of

ZCSF, unipolar spikes are produced.

2.3.2.2.1. Hough spiker algorithm

The progressive subtraction is performed by the HSA by first

comparing the value of the analog signal to the result of a given

convolution operation. If the signal to be encoded overcomes

this latter, it undergoes the subtraction of the convolution value.

As a consequence, the distinguishing iterative step in the Hough

Spiker Algorithm is, for each signal channel:

Signal[i+ j− 1] = Signal[i+ j− 1]− filter[j] (9)

Where i identifies the time steps of the signal to be encoded

and filter is the convolution result, with j representing its value

indices. In our analysis, we adopted a rectangular window as the

convolution function.

2.3.2.2.2. Modified hough spiker algorithm

The Modified HSA, while maintaining the core idea of

a subractive, deconvolution-based procedure, differs from the

HSA by the adoption of aThreshold value. The same operation as

in Equation (9) is performed if error ≤ Threshold, where error

results from an accumulation, occurring when the input signal

does not overcome the convolution function, defined, for each

signal channel, as:

error = error + (filter[j]− Signal[i+ j− 1]) (10)

2.3.2.2.3. Ben’s spiker algorithm

In comparison with the previous technique, by the Ben’s

Spiker Algorithm two cumulative error metrics are introduced,

for each signal channel, beside the Threshold value:

error1 = error1+ abs(Signal[i+ j− 1]− filter[j]) (11)

error2 = error2+ abs(Signal[i+ j− 1]) (12)

In the original work presenting BSA (Schrauwen and

Van Campenhout, 2003), the condition to be checked before

applying Equation (9) is that error1 does not overcome the

value error2 − Threshold. In this work, however, we refer to

the implementation proposed in Petro et al. (2020), where the

condition is modified as:

error1 ≤ error2 · Threshold (13)

2.3.2.3. Global Referenced

This third class of algorithms for temporal coding encloses

techniques whose spike generation mechanism relies on some

global temporal characteristic of the input signal. In the case

of Phase Encoding, such feature is the time difference with

respect to an oscillatory reference (Hopfield, 1995); while Time-

to-First-Spike (TTFS) employs the time since the onset of the

stimulus (Thorpe and Gautrais, 1998; Johansson and Birznieks,

2004). Similarly to the Deconvolution-based algorithms, both

Phase Enconding and TTFS produce spikes with single polarity.
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2.3.2.3.1. Phase encoding

The possibility of successfully developing an encoding

scheme relying on a phase evaluation with respect to an

oscillatory reference was presented in Montemurro et al. (2008).

In our work, we refer to the implementation proposed in Kim

et al. (2018): the binary representation of the input by β

fractional bits is adopted as the oscillatory reference, after

rectifying and normalizing the signal, for each channel, into the

range [0, 1].

2.3.2.3.2. Time-to-first-spike

In Rueckauer and Liu (2018), different strategies to

apply Time-to-First-Spike encoding have been investigated,

depending on the threshold definition for the membrane

potential. In our work, we implement a dynamic threshold by

means of an exponentially decaying function as in Park et al.

(2020):

Pth(t) = θ0e
−t/τth (14)

where θ0 is a constant and τth represents the decay time of

the membrane potential. For the here reported investigation,

we used θ0 = 1 and τth = 0.1. With respect to other

implementations, we also adopted a bitwise approach similar

to the procedure employed with Phase Encoding, eventually

providing a bin-based binary-like representation of the input

signal values. Such additional step, although increasing the total

number of spikes, can result in a more robust encoding typical

of spike bursts (Lisman, 1997).

2.3.2.4. Latency/ISI

Neural communication through bursts of spikes, namely the

increase from 1 to N of the number of spikes sent to carry

information of a specific event, is known to improve reliability.

However, also the latency between these N spikes, typically

referred to as the inter-spike interval (ISI), can be taken into

account to effectively encode information (Izhikevich et al.,

2003). As a result, the Latency/ISI class of encoding algorithms

is defined, with Burst Encoding as representative example.

2.3.2.4.1. Burst encoding

As clearly pointed out in Guo et al. (2021), Burst Encoding is

a well suited technique to carry information taking advantage

of two different time-based characteristics of a single spike

train. Such algorithm relies indeed on both the number of

spikes and the ISI by employing the following three quantities:

Nmax, namely the maximum number of spikes in each burst,

tmin, representing the minimum temporal distance between the

spikes, and tmax, which defines the maximum ISI value. By

means of them, and by introducing the additional parameter

rate, defined from a normalization procedure for each signal

channel, the number of spikes and their relative distance are

defined as:

SpikeNumber = ⌈rate · Nmax⌉ (15)

ISI =







⌈tmax − rate(tmax − tmin)⌉ if SpikeNumber > 1

tmax otherwise

(16)

Similarly to the previous two algorithm classes, Burst

Encoding also results in spike trains with single polarity.

2.4. Transfer learning

To date, there are numerous algorithms for SNN training,

which can be based on a global or local method. Global learning

approaches consist in updating all the hyperparameters of the

network at each training step, similarly to the classical approach

applied for ANN architectures; such algorithms include Spike-

Time-Dependent Plasticity (Kheradpisheh et al., 2018) and

Back-Propagation Through Time (Lee et al., 2016). By contrast,

in local approaches, only a subset of the hyperparameters

are modified at each step; examples of these are Hebbian

learning (Hebb, 1950) and E-prop (Bellec et al., 2020).

In the field of neuromorphic state-of-the-art for

classification of audio signals (Acharya et al., 2018; Anumula

et al., 2018; Dominguez-Morales et al., 2018; Ceolini et al.,

2019), the method most often used to train an SNN is the

Transfer learning approach. This technique is performed by

training an artificial neural network (ANN) and subsequently

porting the resulting weights to a spiking network of identical

structure (Turner et al., 2022). The steps here applied to

perform the training of the network and subsequently classify

the samples are shown in Figure 1. Starting from the raw data,

the time-varying signal is decomposed into different frequency

channels through a bank of filters, whose structure and type

mimics the ability of the cochlear hair cells in the human ear

to decompose audio signals. The structure of the filter bank is

as described in Ambikairajah et al. (2001): a battery of parallel

band-pass filters, either of the Butterworth (Kayser et al., 2009)

or gammatone (Ambikairajah et al., 2001; Katsiamis et al.,

2006; Dennler et al., 2021) type. Each individual frequency

channels is then encoded, using one of the methods introduced

in Section 2.3, obtaining a translation of the original signal

into the spike domain. In order to proceed with the training

and classification process, a feature extraction phase is applied

producing the sonogram, a reprocessing of the encoded spike-

domain signal in the form of an image. For the creation of the

sonogram, we employ the procedure described in Anumula

et al. (2018), using the Time Binning process, which converts

spike signals into frame-based features by counting the events

over non-overlapping, fixed-length time windows.

In order to validate the transfer of the parameters obtained

during CNN training into the SNN, it is necessary to use
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some precautions in the selection of the layer structure and

the perceptor model, so as to guarantee equivalent behavior in

the two architectures. Employing the method suggested by Liu

et al. (2017) and applied in Dominguez-Morales et al. (2018) for

the CNN architecture, a pooling layer implements an average

pooling operation. The neuron model used in the convolutional

and fully connected layers is the modified ReLU described

in Liu et al. (2017), and in the output layer we use the Softmax

activation function. Finally, the bias parameter is set equal to

0 for all neurons. At this point, as shown in the bottom left

of Figure 1, the sonograms are presented as input data to the

CNN. The network’s training can then be performed through

any of the classic methods, such as the Back-propagation or

Stochastic gradient descent algorithm. Once the CNN training

process is completed, a “twin” SNN network is built; this new

network employs the Leaky Integrate and Fire (LIF) neuron

model, while the synaptic weights are set equal to those extracted

from the CNN. A final Poisson Rate encoding step is applied to

the sonogram, in order to adapt the data to the input layer of

the SNN. This procedure allows to obtain a uniform and fair

evaluation method for the various coding techniques, since all

encoded data are processed through the same procedure.

2.5. Model compression

As reported in Figure 1, model compression is the last step of

the process: at this point, various optimization techniques may

be employed to reduce the size of the network. In this work,

we applied two successive phases: synapse reduction, which

allows to selectively reduce the number of connections between

neurons, and fine-tuning, where the remaining parameters of

the network are optimized. The advantages in applying model

compression are many, from a qualitative and quantitative

point of view: obtaining a much smaller network, suitable for

embedded systems thanks to a reduced memory footprint and

a smaller computational cost, making the simulation of the

network in non-neuromorphic hardware faster, and, in some

cases, improving the accuracy due to the reduction of the overall

stimulus transmitted through the synapses, which can introduce

noise during the classification process.

The synapse reduction process carried out here consists

in a selective elimination of the connections between neurons

in all layers except the pooling layer, based on the weight

associated to the synapse. Without changing the network’s

structure from the perspective of the number of layers and

the neurons contained in each, this elimination is applied by

calculating the distribution of the values for synaptic weights

and then eliminating synapses with gradually greater weight.

This procedure allows to eliminate synapses which contribute

in a marginal way to the production of spikes, since, in the

case of excitatory connections, a greater weight associated with

a synapse corresponds to greater excitability of the neuron when

stimulated. The reverse behavior occurs in inhibitory synapses.

After the synapse reduction process, the classification

accuracy of the network generally worsens. In order to restore

the original classification performance or even improve on it,

a fine-tuning step is applied: constraining to 0 the eliminated

weights, a CNN with the remaining connections is retrained

for 5 epochs, and finally the weights are transferred back to the

SNN version.

3. Results

In this section, we present the results of experiments

aimed at evaluating several metrics of the signal processing,

encoding and classification techniques presented in Section 2.

We tested different configurations of the pipeline described in

Figure 1 in an attempt to characterize the various encoding

techniques’ ability to handle time-varying input data. The

resulting comparisons are proposed here not to highlight a single

catch-all solution, but in order to provide detailed information

to developers wanting to select the most suitable methods for

their desired application; to that end, we benchmarked the

pipeline configurations on two very different types of input data:

the FSD and WISDM datasets.

The parameters we considered in order to tune the pipeline

can be divided into two broad categories: in Section 3.1,

we analyze input encoding and processing methods, including

all elements contributing to the conversion of the data

into the spike domain, and in Section 3.2 we characterize

the impact of architectural parameters, focusing on the

optimization of the network structure and its reduction through

model compression.

3.1. Input encoding and processing

3.1.1. Frequency decomposition

Decomposing the input signal into frequency channels can

influence the encoding performance, increasing the amount of

extractable features and producing a sonogram with a richer

amount of information. We ran comprehensive tests comparing

the impact of input frequency filtering on the accuracy of

an sCNN performing classification of the FSD and WISDM

datasets. The network used consists of 1 convolutional layer with

I feature maps, 1 average pooling, 1 convolutional layer with J

feature maps, 1 average pooling, and K fully-connected layers;

we identify each variation on this structure with the acronym

CI-CJ-FK. A sample architecture, portraying configuration C6-

C12-F2, is portrayed in Figure 4.

In our experiments, the gammatone filter demonstrates a

better performance than the Butterworth filter. When classifying

input data from the FSD, we test decomposition with 32 and 64

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2022.999029
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Forno et al. 10.3389/fnins.2022.999029

FIGURE 4

Architecture of the C6-C12-F2 convolutional neural network.

channels, recording throughout all channel configurations for

the C6-C12-F2 architecture a median accuracy of 77.50% for the

Butterworth filter and 84.00% for the gammatone. We observe

particularly good classification accuracy with Phase Encoding,

reporting 83.00% with Butterworth filters and reaching 93.00%

in the case of gammatone. The latter result is due to redundant

components present in the frequency response that lead to

a higher number of spikes for this algorithm class, allowing

to encode more information. For the WISDM dataset, due

to its reduced sampling frequency, only the 4-, 8-, and 16-

channel separation configurations could be tested. For all

encoding types, lower average test accuracy rates are observed

than with the FSD: 66.67% with the Butterworth filter and

46.67% for the gammatone, both coupled with a C12-C24-F2

network architecture.

3.1.2. Comparing di�erent classes of encoding
algorithms

While the encoding step is fundamental and necessary in

order to use digital input data with an SNN, choosing the

most suitable encoding technique for the signal to be analyzed

can also improve accuracy. Figure 5 shows a comparison of

the median accuracy reached by different families of encoding

algorithms combined with all different channel separations,

feature extraction methods and network architectures. For the

FSD, the Temporal Contrast class presented the best accuracy,

having a median of about 91.00% (Figure 5A). On the other

hand, the Global Referenced class reports the worst median

result—around 53%—with a high variance. This is due to the

very different performance of the two algorithms in the Global

Referenced family: while Phase Encoding yields acceptable

results (median 77.5%, with a maximum of 93%), TTFS reports

very low accuracy (median 35%, with a minimum of 8%). This

is likely due to the reduced number of spikes produced by TTFS,

leading to insufficient stimulation of the network: we will explore

this concept in greater detail in the next subsection.

When performing classification of the WISDM dataset,

while the different algorithms obtain quite heterogeneous

results, the median accuracy aggregated by algorithm class

remains around 48% for all classes except Rate Coding,

which obtains the worst median results at 21.67% and the

overall minimum at 5%. The best median result is achieved

by Burst Encoding with 55% accuracy, while the single

best result is obtained, at 93%, by the ZCSF algorithm

combined with a 16-channel Butterworth filter and a C6-C12-F2

network architecture.

3.1.2.1. Spike density

Spike density is defined as the amount of spikes produced

per unit time. This parameter should be carefully considered

when designing a neuromorphic system, since a lower

spike density leads to energy savings thanks to reduced

communication between layers of the network, but a too

low number of spikes can prove insufficient to efficiently

encode information without loss. Our observations show that

this quantity is greatly influenced by the encoding algorithm:

given the same input data, the different implementation logic

of each algorithm results in different spike densities. The

box plots in Figures 6, 7 describe the distribution of spikes

generated by each coding technique after channel separation by

a Butterworth (left column) or gammatone (right column) filter

bank. In all considered cases, the Deconvolution-based family of

encoding algorithms (HSA, MHSA, BSA) produces the highest

spike count.

Including the refractory period in the encoding model

also influences the amount of spikes produced. We performed

preliminary experiments using different values for the refractory

period τref : 3ms, 2ms and 1ms. In all cases, the use of this

parameter in the encoding step leads to an excessive reduction

of the number of spikes, such that the layers of the SNN could

not be sufficiently stimulated. This causes a drastic reduction of

the classification performance: the median test accuracy for the

FSD for all architectures, channel decomposition and encoding
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FIGURE 5

Median accuracy values for each encoding class, given di�erent combinations of network architecture, filter type, number of channels and

feature extraction bins. (A) FSD dataset. (B) WISDM dataset.

FIGURE 6

Median spike counts per sample generated by di�erent combinations of encoding techniques, number of channels and filter types for the FSD

dataset. (A) Butterworth filter, 32 channels. (B) Gammatone filter, 32 channels. (C) Butterworth filter, 64 channels. (D) Gammatone filter,

64 channels.

techniques is 22.00%. In the case of WISDM, the value of τref

is bounded by the low sampling frequency fs = 20Hz of the

dataset signals, leading to a lower bound of 50ms. Due to the

performance deterioration we found even with small values

for τref , all results reported within this document are obtained

using τref = 0.
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FIGURE 7

Median spike counts per sample generated by di�erent combinations of encoding techniques, number of channels and filter types for the

WISDM dataset. (A) Butterworth filter, 4 channels. (B) Gammatone filter, 4 channels. (C) Butterworth filter, 8 channels. (D) Gammatone filter, 8

channels. (E) Butterworth filter, 16 channels. (F) Gammatone filter, 16 channels.

FIGURE 8

Median accuracy values for each feature extraction class, given di�erent combinations of network architecture and encoding techniques. (A)

FSD dataset. (B) WISDM dataset.

3.1.3. Feature extraction

The feature extraction step is necessary in order to

use the transfer learning method with a non-spiking CNN

model, and consists of the production of the sonogram, a

binned representation of the input suitable for elaboration by

convolutional layers. We borrow this term from Dominguez-

Morales et al. (2018); while it was originally used to describe the

binned representation of an audio signal, hence the word, we
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FIGURE 9

Visual representation of a 32-channel sonogram processed into 100, 50, and 14 time bins. The 50-bin subdivision strikes the best balance of

resolution and information density. (A) Total number of bind: 100. (B) Total number of bind: 50. (C) Total number of bind: 14.

FIGURE 10

Median test accuracy of all encoding class, filter type, number of channels, feature extraction bins configurations for architectures C6-C12-F2

and C12-C24-F2 performing classification of the FSD and WISDM datasets, after synapse reduction (A,C) and after fine tuning (B,D).

apply the same definition for the corresponding representation

of the WISDM dataset as well as for the FSD. The number

of bins, i.e., the number of intervals in which the spike-coded

signal is to be divided, is the parameter that determines the

resolution of the sonogram and the quality of the feature

extraction. We tested several values in order to identify the
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FIGURE 11

A summary of network configurations that achieved improved performance after model compression, in the case of WISDM dataset.

best separation into bins. In the case of the FSD dataset, the

tested binning intervals are 50 and 250 for the 32-channel

filter bank, 50 and 125 for the 64-channel filter bank. For the

WISDM dataset, we have, respectively, 24, 18, 18 bins for the

separation into 4, 8, and 16 channels; we selected only one

binning type for each channel separation, because other values

showed unsatisfactory accuracy performances. The results of

the comparison are reported in Figure 8. As previously seen

in Section 3.1.1, overall worse accuracies are observed for the

WISDM dataset. Finally, regardless of the number of channels

selected for the pre-processing step, overall worse performances

are obtained for high bin counts. In fact, too large or too small

values for this parameter result in a quasi-uniform pattern with

reduced information, as the difference in intensity between the

pixels of the sonogram becomes too small; an example is shown

in Figure 9.

3.2. Architectural parameters

3.2.1. CNN/SNN architecture

The type and structure of the classification network

is another element that can affect accuracy performance.

The network architecture we selected to perform initial

training and enable transfer learning is the convolutional

neural network (CNN). This choice was made based on

the state-of-the-art results previously reached by this

class of network in the classification of audio signals

recorded by a neuromorphic cochlea (Dominguez-

Morales et al., 2018). Further experiments conducted

by the authors (Fra et al., 2022) confirmed the CNN’s

computational and energetic efficiency in the analysis of

time-varying signals.

We developed several test configurations for the CNN

structure, starting from the work presented in Dominguez-

Morales et al. (2018) and performing structural hyperparameter

optimization. The tested networks all present the basic structure

presented in Figure 4, while varying the number of filters in

the 2 convolutional layers and the number of fully-connected

layers. All networks were trained by transfer learning and the

intermediate results of the corresponding ANNs are reported in

the Supplementary material.

The top performing networks are C12-C24-F1, C6-

C12-F2, and C12-C24-F2. For classification of the FSD, the

median accuracy reported by the C12-C24-F1 configuration is

53.00%, while the other two networks perform substantially

better, obtaining 82.50% for C6-C12-F2 and 84.00% for

C12-C24-F2. C6-C12-F2 and C12-C24-F2 are also the

best-performing architectures for the WISDM dataset,

obtaining median accuracies of 45.00 and 52.50% respectively.

The reason for these low values is not intrinsically tied

to the structure of the network, but, as seen in previous

sections, it is most likely due to a lesser efficiency of

the examined encoding algorithms with this kind of

low-frequency data.

3.2.2. Model compression

After identifying the best-performing CNN structure, we

apply model compression techniques aimed at reducing the

connectivity within the network, thereby reducing its memory,

computation and energy requirements. In order to test the
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FIGURE 12

The characterization of each encoding technique is presented along specific rings of the circle-shaped graph. The bottom, central part reports

the computational complexity, defined through the quantities l (signal length), c (number of channels), n (length of the bitwise representation)

and w (width of the convolution function). The left-hand side refers to the values achieved on FSD data, while the right-hand side refers to those

obtained with the WISDM dataset. The four signals-related metrics, namely S, MIS, HS and ε, are shown in a mirrored arrangement with

respect to the vertical symmetry axis of the circle. For each of them, the results provided by the two filter types, i.e., Butterworth (B) and

Gammatone (G), are reported according to the number of channels used to split the original signal.

effectiveness of the aforementioned techniques, we apply the

synapse reduction process to the best-performing network

configurations from previous experiments: C6-C12-F2 and C12-

C24-F2.We progressively eliminate connections with increasing

synapse weights based on the distribution of their absolute

values: first we remove connections whose weight is less than

or equal to the first quartile, then to the median, and finally

to the third quartile. Figure 10A shows the impact of synapse

reduction on the classification of the FSD dataset: the more

connections removed, the worse the classification performance.

This trend is due to the reduction in the number of spikes

in the network, making it difficult to correctly stimulate the

neurons in the fully connected layers. In order to optimize

the model described by the residual synapses, a fine-tuning
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TABLE 1 Summary of encoding techniques, taking into account their performances with respect to the type of input data.

Encoding class and technique
Temporal data

Spatial dataa

Very-Low frequency Middle frequency

Rate coding Poisson rate ✗ ✓ ✓

Temporal coding

Temporal contrast

TBR ✓ ✓ ✗

SF ✓ ✓ ✗

MW ✓ ✓ ✗

ZCSF ✓ ✓ ✗

Filter and optimizer

HSA − − ✗

MHSA − − ✗

BSA ✓ − ✗

Global referenced
PHASE ✗ ✓ ✓

TTFS ✗ ✓ ✓

Latency/ISI BURST ✗ ✓ ✓

A ✓ indicates the technique is particularly suitable for the purpose, while−means the technique presents some disadvantages and ✗ that it is not suitable for the purpose. aGuo et al. (2021)

and Auge et al. (2021).

process is applied to the smallest network (C6-C12-F2) by

copying the connection settings back to the original CNN

and retraining it for around 10–20 epochs. Once the retrained

weights are transferred to the final version of the sCNN, an

accuracy comparable to the complete network is recorded,

with a few configurations slightly outperforming the original

network by as much as 1.75%. The compressed networks reach

a median test accuracy of 81.00% while retaining only 25% of

the original network size by pruning up to the third quartile

(Figure 10B); this median value is obtained across all filter bank,

feature extraction and encoding algorithm configurations for the

given architecture.

In the case of WISDM, synapse reduction also causes a

reduction of the accuracy (Figure 10C). However, after applying

the fine-tuning of the network to the C12-C24-F2 architecture

(Figure 10D), an increase in the maximum achievable accuracy

can be recorded for certain configurations, resulting in better

performance for the reduced network than for the complete

one. For example, the ZCSF algorithm for 16 channels, 18

bins with 3rd-quartile synapse reduction obtains an increment

of 1.7 to 91.7%; the SF algorithm for 16 channels, 18 bins

with median synapse reduction achieves an increment of 8.3%,

reaching an accuracy of 95.0%. This improvement can be

traced back to the combined effect of synapse reduction and

fine-tuning, allowing to reduce the number of connections

in the network while maintaining a model suitable for the

representation of the data: this causes a reduction in the

noise traveling through the network, with beneficial effects

on the classification process. Configurations that improve

their performance after model compression are portrayed in

Figure 11.

4. Discussion

We performed a detailed benchmarking of different

possible combinations of frequency decomposition filters,

encoding algorithm, feature extraction parameters and network

architectures, coupled with transfer learning and a spiking

CNN. The aim of the work is to compose a sort of

vademecum providing neuromorphic engineers with valuable

information on the comparative performance of various

encoding techniques. Applying the same pipeline to two

different datasets, our experiment highlighted the importance

of tailoring the encoding type to the input data. Indeed, the

performance of the considered encoding techniques depends

on the frequency of the input data. For the middle-frequency

FSD dataset, having a wider bandwidth, more features can be

extracted form the signal, and it is easier to spot the encoding

classes that enable more accurate classification. On the other

hand, for very-low frequency data like theWISDMdataset, there

is no clear advantage for a given algorithm class over the others;

however, several configurations featuring Temporal Coding

such as ZCSF encoding vastly outperformed Rate-based Coding,

demonstrating that while the algorithm for the encoding must

be carefully chosen, Temporal Coding has a higher ability to

extract from a very-low frequency signal features suitable for

analysis in the neuromorphic domain.We also observed that the

spike count produced by each codingmust be sufficiently high to

stimulate all layers of the downstream SNN properly, therefore

the reduction of spike count aimed at power savings must be

carefully balanced with the retention of information.

In Figure 12, a quantitative and comparative overview

of all the investigated encoding techniques is presented.
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Each of them is characterized through five different metrics:

Shannon entropy S of the encoded signal (Shannon, 1948),

mutual information of the encoded signal with the original

input (Quian Quiroga and Panzeri, 2009) normalized with

respect to entropy MIS, sparsity HS of the encoded

signal (Hoyer, 2004), spiking efficiency ε (Dupeyroux et al.,

2021) and computational complexity O(f ). All the results are

summarized in Supplementary Table S1.

In Table 1, we report a summary of recommendations

matching each encoding technique to the input frequency of

the time-variant input data. We present this table as the focal

result of this work, constituting a first step toward extensive

comparison of the tools available for signal representation in

the neuromorphic domain. As commercial interest for this area

of study increases, we foresee a growing necessity for this type

of research providing guidelines for the solution of engineering

problems in the realm of IoT and Industry 4.0.

In future work, we plan to expand this study by including

in the comparison novel encoding methods directly performed

by neuronal input layers embedded within a SNN. We will also

consider spiking input data produced by event-based sensors

such as silicon cochleas. As more and more options appear

in the field of neuromorphic encoding, benchmarking studies

(Stewart et al., 2015; Blouw et al., 2019; Davies, 2019; Forno et al.,

2021a) are on their way to becoming a valuable tool in guiding

research and development toward the most suitable solution for

any given application.
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