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Statistical image properties
predict aesthetic ratings in
abstract paintings created by
neural style transfer
Hannah Alexa Geller, Ralf Bartho, Katja Thömmes and
Christoph Redies*

Experimental Aesthetics Group, Institute of Anatomy I, Jena University Hospital, Friedrich Schiller
University Jena, Jena, Germany

Artificial intelligence has emerged as a powerful computational tool to create

artworks. One application is Neural Style Transfer, which allows to transfer the

style of one image, such as a painting, onto the content of another image,

such as a photograph. In the present study, we ask how Neural Style Transfer

affects objective image properties and how beholders perceive the novel

(style-transferred) stimuli. In order to focus on the subjective perception of

artistic style, we minimized the confounding effect of cognitive processing

by eliminating all representational content from the input images. To this

aim, we transferred the styles of 25 diverse abstract paintings onto 150

colored random-phase patterns with six different Fourier spectral slopes.

This procedure resulted in 150 style-transferred stimuli. We then computed

eight statistical image properties (complexity, self-similarity, edge-orientation

entropy, variances of neural network features, and color statistics) for each

image. In a rating study, we asked participants to evaluate the images along

three aesthetic dimensions (Pleasing, Harmonious, and Interesting). Results

demonstrate that not only objective image properties, but also subjective

aesthetic preferences transferred from the original artworks onto the style-

transferred images. The image properties of the style-transferred images

explain 50 – 69% of the variance in the ratings. In the multidimensional

space of statistical image properties, participants considered style-transferred

images to be more Pleasing and Interesting if they were closer to a

“sweet spot” where traditional Western paintings (JenAesthetics dataset) are

represented. We conclude that NST is a useful tool to create novel artistic

stimuli that preserve the image properties of the input style images. In

the novel stimuli, we found a strong relationship between statistical image

properties and subjective ratings, suggesting a prominent role of perceptual

processing in the aesthetic evaluation of abstract images.
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Introduction

The question of whether computers can create artworks
has intrigued computer scientists and artists alike (Hertzmann,
2018; Lomas, 2018; Mazzone and Elgammal, 2019; So, 2020;
Cetinic and She, 2022). In the art world, the usage of computers
has been a research subject for more than 50 years (Giloth and
Pocock-Williams, 1990; for a review, see Nake, 2012). After
decades of relative quiescence, artificial intelligence (AI) has
taken the art world by storm. A key trigger of this recent
development was the introduction of Convolutional Neural
Networks (CNNs), which have gained enormous popularity, in
part because of their highly effective application in computer
vision (LeCun et al., 2015). CNNs are neural networks with
convolutional layers, which are particularly well suited for
processing images. Under supervised training with more than
a million stimuli, they can achieve extraordinarily high (human-
like) accuracy rates, for example, in recognizing large series
of natural objects and scenes (LeCun et al., 2015). Low- and
intermediate-level responses of the network resemble those
recorded in the early human visual system (Krizhevsky et al.,
2012; Yosinsky et al., 2014; Güçlü and van Gerven, 2015;
Cadena et al., 2019; Kindel et al., 2019). At higher levels,
feature responses integrate over larger input regions to represent
increasingly more complex (parts of) objects, similar to neural
responses in extrastriate cortical regions (Cadieu et al., 2014;
Yamins et al., 2014).

At present, an increasing number of artists are
experimenting with computer-assisted art creation and
automation in their work. The most widely used approach to
generating art is based on a type of CNN called Generative
Adversarial Networks (GANs; Goodfellow et al., 2014), as well as
their advancements, such as AI Creative Adversarial Networks
(AICANs; Elgammal et al., 2017). These developments give
rise to questions about ethics, authenticity, and autonomy as
well as to philosophical controversies regarding creativity and
artistry (Mazzone and Elgammal, 2019; So, 2020; Cetinic and
She, 2022).

Neural Style Transfer (NST; Gatys et al., 2015) represents
another way of how CNNs have found their way into the art
world. By applying NST, the color and texture information of
one input image [termed style image by Gatys et al. (2015)] can
be transferred onto another input image [termed content image
by Gatys et al. (2015)], thus generating a novel style-transferred
output image (So, 2020). Artists and scientists have widely used
these algorithms to generate artworks and experimental stimuli
(for reviews, see Semmo et al., 2017; Jing et al., 2020; So, 2020;
Santos et al., 2021; Zhang et al., 2021). In recent years, many
different NST algorithms have been published with distinct
properties, features and performance. Note that the meaning of
the term “style” in NST differs from its definition in art history
or art theory. In NST, style refers to the perceptual texture
of a single artwork, which is represented in a feature space

designed to capture texture information (Gatys et al., 2016). In
the present study, we use the term in this sense. By contrast,
artistic style can be defined as the style of a particular artist
or school or movement. For example, Davis (2011) uses the
term “style” to denote specific pictorial configurations that stem
from the artwork being of a particular origin. Style analysis
(“stylometry”) allows art experts, for example, to identify the
artist of an artwork. Style identification can be assisted by
computers, utilizing CNNs for instance (Wallraven et al., 2009;
Graham et al., 2012; Van Noord et al., 2015; Chu and Wu,
2018).

Neural style transfer (NST) facilitates the creation of large
numbers of artworks for statistical analysis and experimental
investigations. However, the use of NST-generated stimuli for
aesthetic research has several shortcomings. (1) Although the
computational paradigms underlying NST are relatively well
defined and understood (Semmo et al., 2017; Kotovenko et al.,
2019; Hien et al., 2021), it is less well known how objective
(physical) image properties are modulated by NST and how they
mediate the aesthetic attributes and the liking of the generated
images (Zhang et al., 2021). (2) The responses of beholders may
be biased against computer-generated art (Chamberlain et al.,
2018). (3) There is a debate of whether artificial intelligence
can create artworks at all (for a review, see Cetinic and She,
2022). For example, Hertzmann (2019) reasoned that computers
cannot be credited with authorship of artworks, but they can
assist artists and serve as an engine for innovation. Similarly,
McCormack et al. (2019) contest that computers can have
artistic creativity and autonomy. Taking an opposite viewpoint,
Mazzone and Elgammal (2019) claimed that they succeeded in
developing an almost autonomous computer algorithm that is
capable of producing artworks.

The present study is an attempt to shed more light on
computer-generated art. Using NST, we created a set of artificial
abstract artworks and analyzed their perceptual structure by
calculating statistical image properties (SIPs) that have been
associated previously with aesthetic perception and affective
images (Braun et al., 2013; Brachmann et al., 2017; Redies
and Brachmann, 2017; Grebenkina et al., 2018; Redies et al.,
2020; see also Supplementary material for a comprehensive
description of the SIPs used in the present study). In a behavioral
experiment, we investigated how the SIPs relate to subjective
aesthetic ratings.

It is generally accepted that aesthetic ratings depend not
only on perceptual processing, but also on cognitive processing
and emotional attributes of images (Jacobsen, 2006; Chatterjee
and Vartanian, 2014; Graf and Landwehr, 2015; Redies, 2015).
Cognitive and emotional factors may potentially modify or
confound aesthetic responses to perceptual features of visual
stimuli, such as the SIPs. Therefore, in line with our focus on
perceptual factors, we minimized the effects of cognitive and
emotional processing in the present study by using abstract
(non-figurative) stimuli. We combined 25 abstract artworks
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from different artists and diverse art styles (that served as style
images for NST; Gatys et al., 2015; see Supplementary Table 1)
with 150 random-phase images (content images for NST; Gatys
et al., 2015) to generate 150 novel style-transferred images. Note
that our content images for NST did not display any recognizable
content. In the following, we will therefore refer to them as
random-phase images.

Aesthetic ratings can be defined along different dimensions.
Berlyne (1970) asked participants to describe artworks in
terms of pleasingness and interestingness. The two terms
correlated with other rating terms, such as complexity
and novelty, to different degrees. Augustin et al. (2012)
found that for different image categories, including artworks,
landscapes, and faces, participants use different sets of
aesthetic terms to describe them. Lyssenko et al. (2016)
studied the qualitative descriptions of abstract artworks
and identified both descriptive, image-related terms (for
example, structured, colorful, and dark) and affective terms
(for example, happy, boring, and warm). Marković and
Radonjić (2008) established four subjective dimensions of the
aesthetic experience of paintings, which represent the main
psychological and behavioral domains: Hedonic Tone and
Relaxation (affective or emotional), Regularity (perceptual or
cognitive), and Arousal (motivational). For our study, we
chose rating dimensions for each of these domains to cover
a wide range of the aesthetic experience: Pleasing (Hedonic
Tone), Harmonious (Regularity), and Interesting (Arousal).
The aesthetic scales used in the present study were previously
shown to correlate with image properties (Schwabe et al., 2018;
Stanischewski et al., 2020), and they have been associated
with different aspects of aesthetic perception and evaluation
(Cupchik and Gebotys, 1990; Marković, 2012; Graf and
Landwehr, 2015).

As shown before, the SIPs of abstract or modern artworks
overlap to a large extent with those of traditional artworks of
different cultural provenance, but particular subtypes of modern
art can also deviate substantially from traditional art (Redies
and Brachmann, 2017; Mather, 2018). We therefore compare
the artificially created artworks with a set of 1629 traditional
Western paintings (JenAesthetics dataset; Amirshahi et al.,
2015). This dataset comprises diverse artworks from different
periods, styles, artists, and depicted subject matters. We also
investigate how and if this comparison can be related to the
aesthetic ratings of our style-transferred images.

Individuals share common aesthetic taste, but they also
show individual preferences. The proportion of private taste
versus shared taste varies according to the type of images
viewed (Leder et al., 2016; Vessel et al., 2018). Some of
the differences in private taste for artworks can be related
to differences in the personality traits of the beholders, for
example, openness to experience (Chamorro-Premuzic, 2009).
Interestingly, the subjective interpretation of the rating terms
by individual beholders also depends on personality traits

(Lyssenko et al., 2016). In view of these previous results, we also
clustered participants and analyzed their results separately.

The purpose of the present study is to address the following
research questions: (1) In an exploratory analysis, we compare
the SIPs of the input images (original artworks and random-
phase images) with their style-transferred derivatives to find
out how well NST transfers SIPs. (2) We investigate whether
NST transfers participants’ subjective ratings from the two
types of input images to the style-transferred (output) images.
This analysis was also done for clusters of participants. We
hypothesize that the rating responses are largely driven by the
style of the original paintings, and that, as a consequence,
preference for a particular style is transferred from the original
abstract artworks onto their style-transferred counterparts. (3)
Furthermore, we were interested in how well the SIPs can
predict the aesthetic ratings of the style-transferred images.
(4) We compare the artificially created artworks with the
JenAesthetics dataset. We hypothesize that style-transferred
images prompt higher aesthetic responses in the beholders if the
values for the SIPs of the style-transferred images are closer to
those of traditional artworks.

Materials and methods

Stimuli

We used three different types of stimuli. First, we selected
25 abstract artworks by different artists. Care was taken to
include paintings from diverse abstract art styles, including
Abstract Expressionism, Art Informel, Color Field Painting,
Constructivism, Dadaism, Hard-Edge Painting, Monochrome
Painting, Neo-Expressionism, Op Art, Orphism, and Tachism.
Most of the images were from a dataset used in previous studies
(Mallon et al., 2014; Lyssenko et al., 2016). Two additional
images were downloaded from the internet. The artists and
information on the paintings are listed in Supplementary
Table 1. Example paintings are shown in Figures 1A–C.

Second, we generated a set of 150 random-phase images
with different Fourier spectral properties (for examples, see
Figures 1D,F,H; Simoncelli and Olshausen, 2001; Galerne et al.,
2010). Grayscale random-phase images can be generated easily
and in great numbers for different slopes in log-log plots of
Fourier power versus spatial frequency (Spehar et al., 2016).
The random-phase patterns with different spectral slopes vary in
their relation of fine detail and coarse image structure. Because
the neural network used by the NST algorithm is trained on
colored images and color is an important attribute of aesthetic
judgments, we decided to generate colored versions of the
random-phase images (Galerne et al., 2010). Colored versions of
the random-phase patterns were obtained by merging different
grayscale images of the same slope in the three channels of the
RGB color space. In the present study, random-phase patterns
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FIGURE 1

Examples of the three image categories studied. Original artworks (A–C) are shown on top of the random-phase images (D,F,H) that were used
to generate the style-transferred images (E,G,I), respectively. The slope of the log-log plots of Fourier power vs. spatial frequency is indicated on
the left-hand side of each row. Original artworks are (A) Gelb-Rot-Blau by Wassily Kandinsky (1925); (B) Z VII by László Moholy-Nagy (1926); and
(C) Untitled by WOLS, ca. 1940.

had Fourier slopes that ranged from –5 to 0 in increments of
1 (–5, –4, –3, –2, –1, and 0). For each slope, 25 images were
created. The images had a resolution of 1024 × 1024 pixels.

Third, we generated 150 images with NST (for examples, see
Figures 1E,G,I). Each of the 25 styles of the original paintings
was transferred onto 6 colored random-phase images with the
different slopes (see above). Each style transfer was based on
a different random-phase image. We used a revised version

of the Style Transfer by Relaxed Optimal Transport and Self-
Similarity (STROTSS) algorithm by Kolkin et al. (2019)1. The
reasons for choosing this neural style transfer method were
the availability of verified code, the speed of the method and

1 Kolkin, N. (2020). STROTSS. Available at: https://github.com/
nkolkin13/STROTSS (Accessed: 16 July 2020).
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the ability to produce images at a relatively high resolution
(1024 × 1024 pixels). In addition, STROTSS is an optimization-
based style transfer method that produces similar quality images
for different styles and content. The parameter settings were
identical to those used by Kolkin et al. (2019).

For the rating experiment, the stimuli were displayed on
a ColorEdge CG241W screen (Eizo, Hakusan, Japan) in a
darkened environment. A viewing distance of 80 cm was secured
using a chin rest, resulting in a viewing angle of 20◦ for the
target stimuli that were presented at 28.22 cm × 28.22 cm
(800 × 800 pixels). The monitor was calibrated with an i1
Display pro calibrator (X-Rite, Grand Rapids, MI, U.S.A.;
settings, brightness 120cd/m2; white point D65; gamma, 1.0 for
all RGB channels).

Participants

Forty volunteers (14 male and 26 female) participated
in the rating experiment at Jena University Hospital. The
duration of the experiment was about 60 min. Participants
were paid €8 for taking part in the rating study. The mean
age of the participants was 23 (range 18 to 30) years. One
participant reported left-handedness, the remaining 39 were
right-handed. In a short questionnaire on art interest, applied
at the beginning of the experiment, one participant reported
no interest in art, 13 participants reported being somewhat
interested, and 26 participants reported an interest in art.
Sixteen study participants had a medical background (mostly
medical students), eleven studied history of art and film studies,
the remaining 13 were university students from various other
fields, such as economy, law, or chemistry.

The study was designed according to the specifications of
the World Medical Association Declaration of Helsinki and
approved by the Ethics Committee of Jena University Hospital
(approval no. 2021-2223-Bef). The participants gave their
written informed consent prior to the experiment. They were
informed that they can freely withdraw from the experiment at
any time without any repercussions.

Procedure

Prior to the experiment, the participants were presented
with a sheet of instructions for the experiment. Moreover, the
participants were asked to answer a few demographic questions
(age, gender, profession/field of study, level of interest in art,
vision impairment and handedness). After completing the short
questionnaire, the experiment was launched in full screen (1920
× 1200 pixels). Participants were asked to complete a short test-
like run to familiarize them with the experimental procedure
and the rating scale. For this supervised run, unrelated figurative
paintings were used.

The experiment was divided into three blocks, one for
each of the three image categories (abstract paintings, random-
phase images, and style-transferred images; Figure 2C). Each of
these main blocks consisted of three sub-blocks for the three
rating dimensions (Pleasing, Harmonious, and Interesting).
The experiment started in a randomized order with either the
random-phase image block or the style-transferred image block
(Figure 2C). The abstract paintings were always presented as
the final block so that the participants’ ratings of the style-
transferred images were not influenced by the original paintings.
A disadvantage of this schedule is that the first two blocks
possibly affect the ratings of the last block (original paintings).
All 40 participants rated all 25 abstract paintings and all 150 style
transfers. To avoid screen fatigue, every participant rated only
30 out of the 150 random-phase images (balanced with respect
to their Fourier slope), resulting in 8 ratings per random-phase
image. Within all main blocks, the order of the sub-blocks was
randomized as was the image sequence within all sub-blocks
(Figure 2C). In between blocks and sub-blocks, participants
were allowed to take an optional break.

Within each trial, first, a blank black screen was presented
for 500 ms followed by a white fixation cross, which appeared for
a random duration between 300 and 800 ms (Figure 2A). Then,
the target image was presented on the same black background
alongside with a continuous rating scale below the image
(Figure 2B). The rating scale for Harmonious ranged from “not
harmonious” to “very harmonious.” The other ratings scales
(Pleasing, Interesting) were presented in an analogous manner.
Viewing time was not limited, but when participants entered the
response by clicking on the scale using the computer mouse,
the next trial was initiated. Median response time was 2.1 s
(interquartile range: 1.6–3.0 s) with no difference between the
image categories. The code for the presentation procedure was
based on PsychoPy (Peirce, 2009).

Statistical image properties

Aesthetic ratings by human observers correlate with
statistical image properties (SIPs; see Introduction section).
Previous studies indicated that SIPs can overlap to a large degree
in their predictive power for aesthetic ratings (for example,
see Redies et al., 2020), possibly because many of these SIPs
cover similar aspects of image structure (Braun et al., 2013;
Van Geert and Wagemans, 2020). Consequently, the SIPs do
not predict aesthetic ratings independently of each other, which
can cause problems with multicollinearity in multiple linear
regression analysis. Therefore, we needed a set of SIPs that
showed as little overlap as possible while still covering the
multidimensional SIP space well.

Our starting point was a set of 29 SIPs (calculated at
a resolution of 800 × 800 pixels), which are described in
detail in the Supplementary material. An exploratory principal
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FIGURE 2

Experimental procedure. The schedule is shown in (A) with the presentation times indicated below each screen shot. (B) Shows a magnification
of the screen display where ratings are entered by a mouse click on the scale below the image. (C) Illustrates the sequence of the rating blocks.
Within the blue boxes, images and block sequences were randomized while the green box indicates a fixed position. n, number of images.

component analysis (PCA) with the 29 SIPs revealed that each
of the three image categories can be described by a different
combination of the variables, confirming the usefulness of
the variables in describing images with different structural
characteristics. For the subsequent analyses, we reduced the
initial set of 29 SIPs to eight largely independent SIPs (Table 1)
by pursuing the following strategies:

(1) We decreased multicollinearity between the 29 variables
(SIPs) by regression subset selection. To this aim, we
performed an exhaustive search for the subset of SIPs
that best predicts the three rating dimensions for the 150
style-transferred images. Regression subset selection was
accomplished with the leaps package of the R project
(Miller, 1990). The leaps package returned the 10 best
models (i.e., models with the highest R2

adj values) for
all possible model sizes (one to 29 predictive variables).
The output graphs indicate how often a given variable is
predictor in the different models. Based on these results,
we selected the twelve variables that predicted the ratings
most robustly across different models, for at least one of
the rating dimensions.

(2) We then calculated a correlation matrix for the twelve
remaining SIPs. Spearman’s rank (non-parametric)
correlation coefficients ρ were used as many SIPs were not
normally distributed. We eliminated another four SIPs
which showed relatively high correlations with other SIPs
(ρ > 0.6). Figure 3 lists the Spearman coefficients of the
correlations between the eight remaining variables. They

reflect the complexity and distribution of luminance and
color gradients, and features derived from the CIELab and
HSV color spaces (Table 1).

(3) The predictive power of the eight remaining variables
and their large degree of independence was confirmed by
calculating coefficients of determination (R2) in multiple
linear regression models. R2 values were adjusted to
account for the number of predictors and the number of
datapoints (R2

adj). The R2
adj values in the final (reduced)

model with eight variables (Supplementary Table 2) were
of similar magnitude as the R2

adj values in a model
comprising the first eight principal components (PCs) of
the 29 original variables (see Supplementary Table 2).
This result suggests that much of the predictive power was
preserved in the final model.

We exploratively plotted another regression subset selection
for the remaining eight variables for all image categories
and all rating dimensions (leaps function of R statistics; R
Development Core Team, 2017). It reveals that our variable
selection consistently predicts the ratings for one or more of the
three image categories (see Supplementary Figure 1).

Statistical methods

For statistical analyses, we used the R program (R
Development Core Team, 2017) and PRISM for macOS,
version 8.4.3 (GraphPad Software, San Diego, CA, U.S.A.). To
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TABLE 1 Statistical image properties used in the analysis.

Abbreviation Description Correlation with (Spearman’s
coefficient ρ)1

References

Complexity Mean of all gradient strengths in the gradient image (HOG
approach)

Fourier slope, 0.70; Pf(2), –0.63; Pf(4), –0.67; Pa(8),
–0.60; Pa(16), –0.64; Pa(30), –0.67; HSV (V)
entropy, 0.63

Braun et al. (2013)

Self-similarity Similarity of the histograms of oriented gradients for a
subregion of an image, compared to the histogram of the
entire image (PHOGs approach)

symmetry lrud2 , 0.72; Pf(8), –0.68; Pf(16), –0.63 Amirshahi et al. (2012)

2nd-order entropy 2nd-order entropy based on pairwise statistics of edge
orientations across an image

PHOG anisotropy, –0.72; 1st-order entropy, 0.84 Redies et al. (2017)

Variance Pa(2) Total variance over all CNN filter entries of 2 × 2 subregions
at convolutional layer 1 (inverse measure of richness)

Pa(4), 0.92; Pa(8), 0.83; Pa(16), 0.77; Pa(30), 0.70;
HSV (S) entropy, –0.71; HSV (V) entropy, –0.70

Brachmann et al. (2017)

Variance Pf(30) Median over the variances of each of the CNN filter entries for
30 × 30 subregions at convolutional layer 1 (measure of
variability)

Pf(8), 0.63; Pf(16), 0.86; symmetry lrud2 , –0.61;
HSV (S) entropy, 0.60

Brachmann et al. (2017)

Lab (b) Mean value for the b (yellow-blue) channel of the L*a*b* color
space

Lab (L), 0.62; HSV (H), –0.64; HSV (V), 0.62 Li and Chen (2009), Mallon et al.
(2014)

HSV (S) Mean value for the S (saturation) channel of the HSV color
space

Pa(4), 0.63; Pa(8), 0.65; Pa(16), 0.69; Pa(30), 0.73 Li and Chen (2009), Mallon et al.
(2014)

HSV (H) entropy Shannon entropy of the histogram of values for the H (hue)
channel of the HSV color space (colorfulness)

HSV (S) entropy, 0.83

1Correlations are listed if the Spearman coefficient |ρ| is larger than 0.60 for the style-transferred images.
2Combined mirror symmetry (left/right and up/down).

compare multiple median values, we used the (non-parametric)
Kruskal-Wallis test because most SIPs were not normally
distributed. Subsequently, Dunn’s post-test was applied to
obtain multiplicity-adjusted p-values for pairwise comparisons.

For the β∗ values, we use the following definitions for the size
of the observed effects (Acock, 2014): | β∗| < 0.2, weak effect;
0.2 ≤ | β∗| < 0.5, moderate effect; and | β∗| ≥ 0.5, strong effect.
The same scheme was used to describe the strength of Spearman
correlations. In the Figures and Tables, β∗ values for variables

FIGURE 3

Correlation matrix for the eight SIPs that were investigated. The
numbers represent the Spearman’s coefficients ρ that were
calculated for the 150 style-transferred images. The color
indicates positive (blue) and negative (red) correlations. The
shading represents the strength of the correlations, with darker
shadings representing stronger correlations (see color bar).

with asterisks had a significant effect on the ratings when the
other variables were controlled for in the respective models.

As a measure for the distance between a given image and
the JenAesthetics dataset of paintings in the multidimensional
space of SIPs, we calculated the squared Mahalanobis distance
with the mahalanobis program in the stats package of R
statistics (R Development Core Team, 2017). This measure is a
multivariate equivalent of the Euclidean distance and takes the
full covariance matrix into account.

The participants were clustered according to how they
evaluated images along the three rating dimensions Pleasing,
Harmonious, and Interesting. K-means clustering was carried
out with the kmeans program of R statistics (R Development
Core Team, 2017). The clustering of participants was based
on: (1) the correlations between the rating dimensions for
each participant (five clusters), and (2) the ratings of the
random-phase images (four clusters). To find the optimal
number of clusters within each approach, we considered
the elbow criterion, the silhouette criterion, and the
gap criterion. The clearest results were obtained for the
elbow criterion while the other criteria yielded ambiguous
results. In addition, the number of clusters was chosen so
that the number of participants in any cluster exceeded
three participants.

Results

In the present study, we used a convolutional neural
network (CNN) to create novel artworks by transferring the
artistic style of 25 abstract paintings onto random-phase images
with different Fourier spectral properties (see Materials and
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methods section; Figure 1). In the following sections, we will
address the following questions. (1) How do the objective
statistical image properties (SIPs) transfer from the input images
(original paintings and random-phase images) onto the output
(style-transferred) images? (2) How do the subjective ratings
of the participants transfer from the input images onto the
style-transferred images for the three aesthetic dimensions
(Pleasing, Harmonious, and Interesting)? As a special case,
we will study the relation between the aesthetic ratings and
the initial Fourier power spectra, on which the computer-
generated abstract images are based, also for subgroups of
participants. In addition, we will study the correlations between
the three rating dimensions both across and within participants.
(3) Which of the SIPs can predict the aesthetic ratings and
are there any differences between subgroups of participants?
(4) How do the predictive SIPs in our dataset relate to the
image properties of the JenAesthetics dataset of traditional
Western paintings and how does this relation predict aesthetic
ratings?

Statistical image properties transfer
from the input images onto the
style-transferred images

First, we investigated whether there are differences in
the SIPs’ median values between image categories. Figure 4

shows box plots of the eight selected SIPs for the 25 original
abstract paintings, the 150 random-phase images and the 150
style-transferred images. For comparison, we show results for
the JenAesthetics dataset of traditional Western paintings. As
demonstrated before (Redies and Brachmann, 2017; Mather,
2018), the SIPs of the abstract artworks overlap extensively
with those of traditional artworks. However, the values for the
original abstract art scatter more widely and the median values
differ significantly from traditional artworks for three variables
(Self-similarity, 2nd-order entropy and Variance Pf [30]). As
a control, we contrasted the original abstract paintings to a
set of 572 abstract artworks from the study by Redies and
Brachmann (2017). None of the variables, except for HSV
(S), p = 0.041, differed significantly, suggesting that the 25
original paintings were representative of a larger body of abstract
paintings (data not shown).

As for the random-phase images, all eight SIPs differ
significantly from those of the traditional paintings (except
for HSV [S]) and the original paintings (except for Variance
Pa[2] and HSV [S]), respectively (Figure 4). These objective
differences are in accordance with the unique perceptual
appearance of the random-phase images (Figures 1D,F,H).

The style-transferred images differ from JenAesthetics
paintings in five SIPs (2nd-order entropy, Variance Pa[2],
Variance Pf[30], HSV [S] and HSV [H] entropy) and from the
original paintings in three SIPs (Self-similarity, Variance Pf[30],
and HSV [H] entropy). They differ from the random-phase
images in all image properties, except for Variance Pa(2). We

FIGURE 4

Statistical image properties (SIPs) of the four image categories. The panels (A–H) show box plots of the values of all eight SIPs, respectively, as
indicated on the y-axis of the plots. In each plot, data are shown for the JenAesthetics dataset of 1629 traditional Western paintings (black), the
25 original abstract paintings (red), the 150 random-phase images (green), and the 150 style-transferred images (purple). The boxes encompass
the median (horizontal line) and represent the 25 – 75 percentiles. The whiskers indicate the 5 – 95 percentiles. Significance levels for the
differences between the pairs of image categories are indicated at the top or at the bottom of the panels. Multiplicity-adjusted significance
levels are ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.
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thus conclude that the style-transferred images are more similar
to the original paintings than to the random-phase images,
although both types of images were used in their creation.

Second, the similarity of the input and output images
of NST was assessed by correlating the SIPs of the style-
transferred images with both the original paintings and the
random-phase images. Results are shown in Table 2. All SIPs
correlate strongly between the style-transferred images and the
original paintings (ρ range: 0.60 – 0.95), with highest ρ values
for the three color features. By contrast, only Self-similarity
and Variance Pf(30) showed significant correlations between
the style-transferred images and the random-phase images (ρ
= 0.61 and 0.36, respectively).

Third, we took a closer look at the Fourier spectral slope as
the random-phase images were produced based on this measure.
For the random-phase images, the set (intended) slopes and
measured slopes correspond well to each other (Supplementary
Figure 2A). This result validates our method of producing
the colored random-phase images. Supplementary Figure 2B
illustrates that the slope did not translate from the random-
phase images to the style-transferred images. For the set slopes
of the random-phase images, the slopes measured for the style-
transferred images range from –3.3 to –1.8 (median –2.72; 95%
CI: –2.73 to –2.71). This range is in fact similar to the range of
the 25 abstract paintings in the present study (median: –2.64,
95% CI: –3.11 to –2.49).

Aesthetic responses transfer from the
input images onto the style-transferred
images

Each of the three image categories elicits a wide range of
aesthetic ratings in the beholder (Figures 5, 6). In the following
sections, we will describe how the subjective ratings transfer

TABLE 2 Spearman’s coefficients (ρ) for the correlation between the
eight SIPs for all style-transferred images and original paintings as
well as the random-phase images, respectively.

SIPs Original paintings
vs. style-transferred

images

Random-phase
images vs.

style-transferred
images

Self-similarity 0.60*** 0.61***

Complexity 0.89*** 0.06 (n.s.)

2nd-order entropy 0.87*** 0.089 (n.s.)

Variance Pa(2) 0.80*** –0.044 (n.s.)

Variance Pf (30) 0.72*** 0.36***

Lab (b) 0.95*** 0.027 (n.s.)

HSV (S) 0.94*** 0.013 (n.s.)

HSV (H) entropy 0.87*** 0.040 (n.s.)

Significance levels are ***p< 0.001. n.s., not significant.

from the input images (original paintings and random-phase
images) to the output (style-transferred) images.

Figure 5 shows the mean ratings per artist for the original
paintings (Figure 5A) and for the style-transferred images
(Figure 5B), respectively. Artworks are sorted from left to right
according to the Pleasing ratings. The sequence of the artists
from low to high ratings is roughly similar for the two image
categories (Figures 5C–E). We thus correlated the ratings of the
original paintings and the style-transferred images and found
that the mean responses per artist correlate for all three rating
dimensions, but to different degrees (Spearman’s ρ range: 0.48 –
0.80; Table 3). In other words, if participants rated particular
original paintings more highly, they tended to do so also for
their style-transferred derivatives. Unlike the ratings for the
original paintings, the ratings of the random-phase images did
not correlate significantly with those of the style-transferred
images (Table 3).

Random-phase images with different set slope
values

To create the style-transferred abstract images, we used
random-phase images that possessed slopes of the Fourier power
spectrum ranging from –5 to 0. We thus asked whether the
rating responses for the different set slope values transferred
from the random-phase images onto the style-transferred
images. Results are plotted as a function of the Fourier slope in
Figure 6. We will first consider the ratings for the random-phase
images, followed by the style-transferred images. Note that on a
descriptive level, the style transfer did not translate the original
slopes from the random-phase images to the output images, as
described above (Supplementary Figure 2).

For the random-phase images, rating responses for Pleasing
and Interesting follow an inverted u-shape with highest
responses for slopes of –2 and –3 (Figures 6A,C). Differences
are not significant for Harmonious ratings (Figure 6B). These
results were confirmed by least-square fitting of 2nd-order
polynomial (quadratic) functions (Figure 6D). Our findings
thus extend results by Spehar et al. (2016) for grayscale random-
phase images into the color domain.

For the corresponding style-transferred images, participants
tended to rate the style-transferred images as more Interesting
if they were derived from random-phase images with set slope
values of less than –2, with a maximum at a set slope value of
–3 (Figure 6G, blue in Figure 6H). However, the differences
are less pronounced than those of the random-phase images.
Interestingly, there is a weak inverse relation between set slope
values and responses for Harmonious with lower responses for
set slope values of –5 to –2 (Figure 6F, green in Figure 6H).
For Pleasing, no differences in the ratings were obtained for
different set slope values (Figure 6E, orange in Figure 6H).
Taken together, our data suggest that the transfer of ratings from
the random-phase images onto the style-transferred images is
much less effective than from the original paintings.
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FIGURE 5

Mean rating responses of participants for the original paintings (A) and for their style-transferred counterparts (B). Ratings are shown for
Pleasing (blue), Harmonious (green) and Interesting (red). In both panels, individual artists are ordered from left to right in a sequence of
ascending Pleasing responses. Spearman’s coefficients (ρ) for the correlations are listed in Table 3. (C–E) Same data as shown in (A,B) but
plotted in slope graphs, separately for the different rating dimensions. Each line connects the mean rating responses for an original painting of
one artist and for its style-transferred counterpart.

Previous results by other researchers (Bies et al., 2016;
Güclütürk et al., 2016; Spehar et al., 2016) revealed that
individual participants favor different degrees of complexity
in random-phase patterns. We thus asked whether groups
of participants differed in their taste also for the colored
versions of the random-phase images. Hence, we clustered
participants according to the mean responses of each
participant per set slope for all three rating dimensions.
About half of the participants (Clusters 1 and 2) exhibit
an inverted u-shaped response curve for all three rating
dimensions. Linearly decreasing or increasing slope values
were found for the remaining clusters (for detailed results, see
Supplementary Figure 3).

Inter-rating correlations
Table 4 lists correlations between the rating dimensions for

all three image categories across all participants. The lowest
correlations are observed between Harmonious and Interesting

while both dimensions correlate more highly with Pleasing.
Figures 5A,B illustrates that ratings for Harmonious and
Interesting vary widely for many artists.

Despite these general tendencies, we observed marked
differences between participants in the correlations between
the rating dimensions (data not shown). Therefore,
we calculated the inter-rating correlations also within
participants and clustered participants according to these
correlations. Results for the five clusters obtained (Table 5)
indicate that the overlap of Pleasing with Harmonious
and Interesting, respectively, is about equally strong
for most participants. By contrast, Harmonious and
Interesting correlate less strongly with each other (see
also Figures 5A,B) and some participants even showed
anticorrelated response tendencies. However, these results
should be considered to be preliminary because the
number of participants in the different clusters is very
small (Dalmaijer et al., 2022).
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FIGURE 6

Rating responses for set slope values of the random-phase images. The boxplots show mean responses (y-axis) by all 40 participants for
different set Fourier spectral slopes (-5 to 0; x-axis) of the random-phase images (A–C) and the style-transferred images (E–G). The whiskers
represent the 5 – 95% confidence intervals. The rating dimensions are indicated on the top of the panels [(A,E) Pleasing; (B,F) Harmonious; and
(C,G) Interesting]. Multiplicity-adjusted significance levels of pairwise comparisons are indicated by the asterisks (∗p < 0.05; ∗∗p < 0.01;
∗∗∗p < 0.001; ∗∗∗∗p < 0.0001). Panels (D) and (H) show least-square fittings of second-order polynomial (quadratic) functions to the data from
the previous three panels (orange, Pleasing; green, Harmonious; and blue, Interesting).

Statistical image properties explain
aesthetic ratings

To determine how well the SIPs explain the aesthetic
responses along the three rating dimensions, we performed a
multiple linear regression analysis with a model that comprised
the eight independent variables (SIPs) selected for our analysis
(see Materials and methods section). In the following two

TABLE 3 Spearman’s coefficients (ρ) for the correlations between the
three rating dimensions for all style-transferred images and original
paintings as well as the random-phase images, respectively.

Rating
dimensions

Original paintings
vs. style-transferred

images

Random-phase
images vs.

style-transferred
images

Pleasing 0.48* 0.03 (n.s.)

Harmonious 0.80*** 0.05 (n.s.)

Interesting 0.52** 0.09 (n.s.)

Significance levels are *p< 0.05; **p< 0.01; ***p< 0.001. n.s., not significant.

sections, we will describe how each variable predicts the ratings
of the style-transferred images and compare the results to the
original paintings (Figure 7). As described in the Statistical
methods section, we refer to the β∗ coefficients as weak,
moderate, and strong effects, respectively. Because the random-
phase images display a rather unique image structure and differ
in their image properties from both the original paintings and

TABLE 4 Spearman’s coefficients (ρ) for the correlations between the
different rating dimensions (Pleasing, Harmonious, and Interesting)
for all participants.

Pleasing vs.
Harmonious

Pleasing vs.
Interesting

Harmonious vs.
Interesting

Original paintings
(n = 25)

0.54 0.73 0.36

Random-phase
images (n = 150)

0.56 0.56 0.29

Style-transferred
images (n = 150)

0.48 0.53 0.25

All significance levels, p< 0.0001.
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TABLE 5 Average Spearman’s coefficients (ρ) for the correlations between the different rating dimensions (Pleasing, Harmonious, and Interesting)
for the five groups of participants that were clustered on the basis of the inter-rating correlations.

Pleasing vs. Harmonious p Pleasing vs. Interesting p Harmonious vs. Interesting p

Cluster 1 (n = 14) 0.55 <0.0001 0.64 <0.0001 0.47 <0.0001

Cluster 2 (n = 13) 0.44 <0.001 0.39 <0.01 0.31 <0.01

Cluster 3 (n = 4) 0.64 <0.0001 0.29 <0.05 0.01 0.51 (n.s.)

Cluster 4 (n = 5) 0.21 <0.05 0.56 <0.0001 0.04 0.23 (n.s.)

Cluster 5 (n = 4) 0.04 0.37 (n.s.) 0.32 <0.05 –0.34 <0.001

All (n = 40) 0.48 <0.0001 0.53 <0.0001 0.25 <0.0001

n.s., not significant.

the style-transferred images, we will not consider them in the
analysis of how SIPs explain the aesthetic ratings.

Style-transferred images
Figure 7 and Supplementary Table 2 list the explained

variance for each model (R2
adj) and the β∗ coefficient for each

SIP. Overall, the SIPs predict a relatively large part of the
observed variance in the ratings. Except for 2nd-order entropy,
all other SIPs predict the responses to the style-transferred
images for at least two of the rating dimensions (weak to
strong effects, Figures 7B,D,F). Moreover, the direction of the
β∗ coefficients is the same for the three rating dimensions
for most SIPs. Positive β∗ values are obtained for Variance
Pf(30) (Pleasing and Interesting), and negative β∗ values for
Complexity and Variance Pa(2) (Pleasing and Harmonious),
and Lab (b) and HSV (S) (Pleasing and Interesting). Only Self-
similarity and HSV (H) entropy show opposite directions for
Harmonious and Interesting, respectively. Lower levels of Self-
similarity are perceived as more Interesting (Figure 7F) whereas
higher levels of Self-similarity are rated as more Harmonious
(Figure 7D) in the style-transferred images. The opposite
tendency is seen for HSV (H) entropy. Here, higher values
for Variance Pf(30) are perceived to be more Pleasing and
Interesting (Figures 7B,F).

Original paintings
Compared to the style-transferred images, significant

predictors (asterisks in Figures 7A,C,E) are less numerous
for the original paintings. This result is expected because the
SIPs were selected based on the style-transferred images (see
Materials and methods section). Moreover, the size of the
sample (25 original paintings) is exceedingly small for statistical
analyses, which must therefore be considered preliminary.
Nonetheless, the data suggests that participants prefer original
paintings with lower values for the variables Self-similarity and
HSV (S) for all three rating dimensions. For Self-similarity,
preferred images are rated more highly if values are more
different from the mean values of all other image categories
(Figures 4B, 7A,C,E). For increasing values of HSV (H) entropy,
ratings increase for Pleasing and Interesting, while the opposite
relation is seen for Harmonious (Figures 7A,C,E). For the sake

of completeness, results for random-phase images are listed in
Supplementary Table 2.

Clustering participants according to
inter-rating correlations

As described above, participants were clustered according
to the correlations of rating responses along the three
rating dimensions (Table 5). Supplementary Figure 4 and
Supplementary Table 3 show the results of the multiple linear
regression model for the five clusters. All models are significant
with explained variances ranging from 0.19 to 0.78. The relation
between the inter-rating correlations and the preferences for
particular SIPs can be described as follows. Clusters 1 and 2
show about equally strong correlations between all three rating
dimensions. Correspondingly, participants preferred images
with similar SIPs for all three rating dimensions. Stronger inter-
rating correlations in Cluster 1 than in Cluster 2 correspond
to more predictive power of the SIPs in Cluster 1. Second,
in Cluster 3, the stronger correlation between ratings of
Pleasing and Harmonious is mirrored by a similar pattern
of β∗ values for the two rating dimensions. Third, Cluster 4
lacks a correlation between the ratings of Harmonious and
Interesting. Accordingly, the SIPs that are associated with these
ratings differ. Fourth, there is a negative correlation between
ratings of Harmonious and Interesting in Cluster 5, which is
also reflected in opposite signs of the β∗ values. Again, these
preliminary results await confirmation by clustering studies with
more participants.

Higher aesthetic ratings for statistical
image properties that resemble
traditional Western paintings

We next studied the rating responses of the style-
transferred images and the relation of their SIPs and those
of the JenAesthetics dataset of traditional Western paintings.
We speculated that style-transferred images are rated more
highly if their SIPs are closer to those of the JenAesthetics
dataset (see Introduction section). To address this hypothesis,
we examined the five variables that differed between the

Frontiers in Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2022.999720
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-999720 October 11, 2022 Time: 10:38 # 13

Geller et al. 10.3389/fnins.2022.999720

FIGURE 7

Standardized β (β∗) values for the influence of the statistical image properties (SIPs) on the rating responses. Data are shown for original artworks
(A,C,E) and style-transferred images (B,D,F). The three rating dimensions are Pleasing (A,B), Harmonious (C,D) and Interesting (E,F). The
explained variance (R2

adj) of the respective model is indicated on top of each panel. Asterisks indicate β∗ values of variables that had a significant
effect on the ratings when the other variables were controlled for; the respective significance levels are *p < 0.05; **p < 0.01; ***p < 0.001.
n.s., not significant. (G) Influence of the SIPs on the rating responses, in relation to the JenAesthetics dataset. This overview summarizes results
for the ratings of the style-transferred images for all participants (A–F). The influence of the eight independent variables (SIPs) on the ratings
(Pleasing, Harmonious, and Interesting) is represented by arrows, which are shown only for those variables that had a significant effect on the
ratings when the other variables were controlled for [marked by asterisks in (B,D,F) and Supplementary Table 2]. The size of the arrows indicates
the strength of the relation [small arrows, | β∗| < 0.2 (weak effect); medium-sized arrows, 0.2 ≤ | β∗| < 0.5 (moderate effect); and large arrows, |
β∗| ≥ 0.5 (strong effect)]. The direction indicates the sign of the relation (upward, positive relation; and downward, negative relation). The colors
indicate the changes relative to the results for the JenAesthetics data set (Figure 4). Blue arrows indicate higher ratings if the SIPs are closer to
the mean SIPs of the JenAesthetics data set. Red arrows indicate higher ratings if the SIPs are more distant from the mean SIPs of the
JenAesthetics data set. Gray arrows indicate no significant differences of the SIPs between the style-transferred images and the JenAesthetics
data set.

style-transferred images and the JenAesthetics images (2nd-
order entropy, Variance Pa[2], Variance Pf[30], HSV [S], and
HSV [H] entropy; Figures 4C–E,G,H). For most of these
variables, responses are higher if the values of the SIPs are
closer to those of the JenAesthetics images (blue arrows in
Figure 7G). In other words, if the median SIP value of
the JenAesthetics dataset is lower than that of the style-
transferred images, β∗ values are negative. Consequently, the
style-transferred images with smaller SIP values are rated
more highly (as an example, see Pleasing and Interesting

ratings for HSV [S]; Figure 7G). If the median SIP value
of the JenAesthetics dataset is higher than that of the
style-transferred images, the inverse applies. For HSV (H)
entropy only, Harmonious and Interesting ratings show
opposite tendencies in comparison to the JenAesthetics dataset
(blue arrow and red arrow in Figure 7G, respectively).
For 2nd-order entropy, the effect on the ratings is not
significant in the model (Figure 7G) although the mean
values for style-transferred images and the JenAesthetics images
differ (Figure 4C).
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For each SIP, we then correlated the rating responses with
the Euclidean distance between the style-transferred images
and the median of the JenAesthetics dataset (Figure 8A).
We find strongest negative correlations for Interesting ratings
which suggests that style-transferred images are rated as more
interesting, if their SIPs approach those of the JenAesthetics
dataset (green shadings in Figure 8A). Similar, yet less consistent
results can be found for Pleasing ratings. An interesting
exception is HSV (H) entropy where images are rated as
more Pleasing and Interesting, the more distant they are
from the JenAesthetics dataset, and more Harmonious, the
closer they are.

To substantiate the above result, we calculated the
Mahalanobis distance of each style-transferred image to the
median of the JenAesthetics dataset in the multidimensional
space spanned by the five SIPs. We correlated the distances
with the aesthetic ratings. Results in Figures 8B–D suggest
that style-transferred images, which are located closer to the
JenAesthetics dataset in this space, are rated as more highly
for Pleasing and Interesting; no such correlation is found for
Harmonious ratings.

Discussion

We investigated how neural style transfer (NST; Gatys et al.,
2015; Kolkin et al., 2019) can be used to generate abstract images
that display a wide range of statistical image properties. With
these images, we pursued four aims to better understand the
style transfer process. (1) We compared the objective properties
(SIPs) and (2) the ratings of the input images (original artworks
and random-phase images) with the output images (style-
transferred images). (3) We asked which SIPs predict aesthetic
ratings by human beholders in the style-transferred images and
(4) how these SIPs and their predictive value for aesthetic ratings
relate to those of a large set of traditional Western paintings
(JenAesthetics dataset).

To describe the objective structure of the images, we selected
a set of eight statistical image properties (SIPs) that have been
related previously to artistic style and aesthetic perception. The
selected SIPs cover different aspects of formal image structure
and composition. They reflect the density and distribution
of oriented luminance and color gradients (Complexity, Self-
similarity, 2nd-order entropy), richness and variability of low-
level CNN filter responses (Variance Pa[2] and Pf[30]) and color
features (Lab [b], HSV [S], and HSV [H] entropy). For the style-
transferred images, the eight SIPs assumed a wide range of values
(Figure 4) and showed relatively weak correlations between each
other (Figure 3).

Importantly, the eight SIPs were strong predictors of
the aesthetic rating responses to the style-transferred images
(Figures 7,8 and Supplementary Tables 2,3). The explained
variances R2

adj for models with the eight SIPs are about as

high as the R2
adj values for models with the first eight principal

components of all 29 variables that were considered initially
(Supplementary Table 2; see Materials and methods section).
Thus, the reduction from 29 to 8 variables did not decrease the
explanatory power of the reduced model substantially.

We can only speculate about the origins of the remaining
variance, which is not covered by the SIPs. Besides higher-
order visual features, possible sources of variance include
environmental and genetic factors (Bignardi et al., 2020;
for a review, see Chamberlain, 2022), as also found for
the evaluation of face attractiveness (Germine et al., 2015).
Personality factors also predict aesthetic ratings (Chamorro-
Premuzic, 2009). For instance, they explain a large proportion
of the variance associated with aesthetic chills in response
to art (Silvia and Nusbaum, 2011; Bignardi et al., 2022).
A comprehensive model on how these diverse factors interact
remains elusive at present.

Transfer of statistical image properties
during neural style transfer

Our aim was to quantify how the SIPs changed during their
transfer from original artworks onto random-phase images.
We found that the style-transferred images differ from original
paintings in three SIPs and from random-phase images in seven
SIPs. In other words, the style-transferred images resemble
original abstract artworks more closely in their image properties
than they resemble the random-phase images. The correlation
analyses (Table 2) quantify the transfer effects and provide
evidence that what was originally termed the “style image”
(Gatys et al., 2015) determines the formal features, i.e., the
SIPs, whereas the formal features of the “content image” (Gatys
et al., 2015) get largely lost in the process of NST. This result
suggests that style, as defined in NST (Gatys et al., 2015),
can be represented, at least in part, by the eight SIPs in our
study. In particular, the transfer of color features seems to work
particularly well both subjectively (Figure 1) and objectively, as
indicated by high correlations between color values and ratings
(Tables 2,3).

As an example, the Fourier slope, which was set to fixed
values of –5 to 0 in the random-phase images, transforms
to a relatively narrow range of values between –3 and –2 in
the style-transferred images (Supplementary Figure 2). The
25 abstract paintings in the present study (–3.34 to –1.59;
median: –2.64) also fall within this range. This range of values
is close to the Fourier slope of natural scenes and other visual
artworks (Aks and Sprott, 1996; Graham and Field, 2007;
Redies et al., 2007), which human beholders generally prefer
(Graham and Redies, 2010).

The range of SIPs of the style-transferred images shows
considerable overlap with human-made artworks (Figure 4).
The variance of the individual SIPs of the style-transferred
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FIGURE 8

Influence of the SIPs on the rating responses to the style-transferred images in relation to the median SIP values of the JenAesthetics (JA)
dataset. (A) Spearman coefficients ρ for the correlation between the rating responses and the Euclidean distance between each individual SIP
and the median SIP of the JenAesthetics dataset, respectively. Negative correlations (green) imply that the ratings are higher if the SIPs are
closer to the JenAesthetic dataset. The inverse holds for positive correlations (orange). The second column lists the rank of the style-transferred
images relative to the JA dataset. (B–D) Responses for each rating dimension are plotted as a function of the Mahalanobis distance in the 5d
space spanned by the five SIPs that differ significantly between the style-transferred images and traditional Western artworks (Figure 4). Each
dot represents one style-transferred image. For the linear regression, the solid line represents the fitted line and the dashed lines its 95%
confidence interval. Spearman’s coefficients of correlation ρ are given in (A) and (C) with their respective significance levels. For (A–D),
significance levels are *p < 0.05; **p < 0.01; ***p < 0.001. n.s., not significant.

images is generally higher than that found in traditional Western
paintings (JenAesthetics dataset; Figure 4). A large range of
variation of SIPs has also been described for abstract art (Redies
and Brachmann, 2017) and modern art (Mather, 2018). The
SIPs of the style-transferred images thus represent a wide
range of values that cover also those of traditional art and
abstract/modern art.

Transfer of aesthetic ratings during
neural style transfer

Our results revealed that mean rating responses for the
original abstract paintings correlate positively with their style-
transferred derivatives. This correlation was particularly high for
Harmonious and lower for Pleasing and Interesting. A similar
correlation was not found between the style-transferred images
and the random-phase images. These findings confirm our
hypothesis that not only the visual appearance (i.e., image style,
as manifested by the SIPs) but also the aesthetic preferences
are largely derived from the original abstract paintings rather
than from the random-phase images during NST. Together,
our results suggest that we successfully created a novel type
of image that shared objective and subjective properties with

original abstract artworks, and were not just copies of the input
images. A similar notion was put forward originally by Gatys
et al. (2015).

Several studies described that participants share a prejudice
against computer-generated art. For example, Chamberlain et al.
(2018) studied aesthetic responses to artworks created either
by humans or computers. While participants were able to
readily distinguish between these two categories of images,
they were prejudiced against computer-generated artworks (see
also Ragot et al., 2020). This prejudice, however, is partially
overcome by alerting participants to human-like characteristics
of the computer algorithms (Chamberlain et al., 2018) or
by attaching randomly generated pseudo-profound “bullshit”
titles to computer-generated paintings (Turpin et al., 2019).
Using generative adversarial networks (GANs), Elgammal et al.
(2017) demonstrated that computers can create artworks,
which participants cannot distinguish from art generated by
contemporary artists. In the present study, we show that
different sets of SIPs predicted the aesthetic ratings of original
paintings and style-transferred images (Figure 7). Because we
did not ask our participants to discriminate between computer-
generated and man-made artworks, we do not know whether
the computer-generated images were recognized as such or were
rated in a biased way.
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As a side finding, we studied the preferences for the Fourier
spectral slopes of colored random-phase images, following a
previous study by Spehar et al. (2016) for grayscale random-
phase images. The authors discovered individual differences
between groups of participants. About half of their participants
show the well-known inverted u-shaped response curve with
increasing slope values (Wundt, 1874), about 20% each show an
increasing or decreasing curve, respectively. Similar groups with
ascending and descending preference curves were observed by
Bies et al. (2016) and Güclütürk et al. (2016). Our results extend
these findings to colored versions of the same type of stimuli.
When participants were clustered according to their preferences
for the slope of random-phase images in our study, about half
of the participants retained their inverted u-shaped response
curves (Clusters 1 and 2 in Supplementary Figures 3A,B), while
response rates for other clusters increased and/or decreased with
increasing slope values (Supplementary Figures 3C,D).

A selective preference for random-phase patterns with
different slopes can also be found for thresholded and
edges-only derivatives of these patterns (Spehar et al.,
2016). We therefore asked whether the slope preferences
also transfer to the style-transferred images during NST.
The objective slopes themselves did not transfer onto
the style-transferred images (Supplementary Figure 2).
For the aesthetic ratings, an inverted u-shaped curve was
found only for Interesting ratings (Figure 6G), but it is
much less pronounced than for the random-phase images
(Figures 6D,H). The original set slopes of the random-
phase images only have minor effects on the ratings of
Harmonious and Interesting (Figures 6F,G). These findings
suggest that the original abstract paintings mediate style
transfer predominantly.

High predictability of average aesthetic
ratings

The above results suggest that the artificially generated
images are well-suited to study the effect of SIPs on aesthetic
ratings of artworks. Indeed, a large part of the variance in
the ratings of the style-transferred images can be explained by
eight SIPs (R2

adj ranging from 0.50 to 0.69; Figures 7B,D,F and
Supplementary Table 2). We find that average ratings for all
three aesthetic dimensions can be explained by the same set of
eight SIPs (Figures 7B,D,F). This finding is unlike results from
previous studies. Vessel and Rubin (2010) found stronger shared
taste for real-world images as opposed to abstract images. They
proposed that common semantic interpretations of real-world
images lead to a more uniform experience across observers
whereas reactions to abstract images are more idiosyncratic.
This conclusion is in line with results by Leder et al. (2016)
who found that the proportion of shared taste was much higher
for faces than for abstract artworks. The authors suggested that

participants possibly do not agree on a concept of shared taste
for abstract art (Leder et al., 2016).

The relatively high explanatory power of image style, as
represented by the SIPs, on aesthetic ratings in our study might
be explained by the rather homogenous appearance of the style-
transferred images, as compared to the stimuli studied by Vessel
and Rubin (2010). Consequently, differences in the aesthetic
ratings might be more closely associated with specific SIPs in
our study, as previously observed by Stanischewski et al. (2020)
in simple line patterns. Alternatively, the high explanatory
power may be due to the fact that the original abstract images
and the style-transferred images were rated in separate blocks;
participants might have used multiple non-interacting rating
scales that adapt well to the different types of stimuli (Vessel and
Rubin, 2010). Last but not least, our stimuli are abstract, so that
depicted content cannot affect ratings of formal image structure.

Statistical image properties closer to
traditional paintings predict higher
aesthetic ratings of style-transferred
images

We found that style-transferred images that are more
similar in their SIPs to traditional Western paintings
(JenAesthetics dataset), are rated as more Pleasing and
Interesting (Figures 4, 8). For Harmonious, the ratings and the
Mahalanobis distance did not correlate significantly.

Previous findings indicate that traditional paintings cluster
at particular positions (here called “sweet spots”) in spaces
that are spanned by specific SIPs (Redies et al., 2012; Braun
et al., 2013; Brachmann et al., 2017; Redies and Brachmann,
2017). Interestingly, the sweet spots for Western, Islamic, and
Chinese paintings were found to overlap to a large degree
(Brachmann and Redies, 2017; Redies and Brachmann, 2017).
These and other results (reviewed in Che et al., 2018; Nakauchi
et al., 2022) are compatible with the notion that traditional
artworks – as opposed to some types of modern art (Redies,
2014; Redies and Brachmann, 2017) – exhibit a restricted
set of visual cues that are universally appreciated within and
across cultures. This notion of universal beauty as an intrinsic
perceptual property of artworks has a long tradition in art
theory. For example, Bell (1914) claimed that visual artworks
possess a “significant form,” which can elicit an aesthetic
experience that is universal amongst humans and is unrelated
to the cultural context or the displayed content of artworks.
In the present study, we observed that formal properties of
images (i.e., the SIPs) correlate with higher aesthetic ratings
when they are closer to the sweet spot, where traditional
paintings are represented. However, the existence of a significant
form (sweet spot) has been contested by some contemporary
researchers (for examples, see Conway and Rehding, 2013;
Zeki, 2013).
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Differences between rating dimensions

The rating dimensions used in the present experiment
reflect three components of aesthetic experience (Berlyne,
1974; Marković, 2012): hedonic tone (Pleasing), regularity
(Harmonious), and arousal (Interesting). In all three image
categories, Harmonious and Interesting represent relatively
independent rating dimensions (Spearman coefficients ρ range:
0.25 to 0.36; Table 4) whereas Pleasing/Harmonious and
Pleasing/Interesting correlate to a higher degree (ρ range: 0.48
to 0.73). These findings, particularly the low correlation between
Harmonious and Interesting, are substantiated by the following
results. First, the correlation of the two rating dimensions with
the SIPs has an opposite direction for Self-similarity and HSV
(H) entropy (Figure 7). Second, mean ratings for individual
artists tend to assume diverging values for Harmonious
and Interesting (Figures 5A,B). Third, different groups of
participants seem to interpret the rating dimensions differently,
as reflected by the clusters based on the inter-rating correlations
(Table 5). Here, the mean coefficients for the correlations
between Harmonious and Interesting range from 0.47 (Cluster
1) to –0.34 (Cluster 5). Fourth, correlations between the ratings
of Harmonious/Interesting and the distance to the JenAesthetics
dataset tend to assume opposite signs (Figure 8A).

Our findings are consistent with results by Schwabe et al.
(2018) who examined the perception of abstract artworks with
another method that largely prevents cognitive processing,
i.e., ultrashort exposure times (gist perception). The authors
found that structure-related terms such as Harmonious are
more stable and consistent under these viewing conditions than
cognition-related ratings such as Interesting, while ratings of
Pleasing are inconsistent. In contrast to harmony, which has
been less well investigated, several studies have addressed the
role of pleasure and interest in aesthetic judgments. Berlyne
(1974) described that interestingness and pleasingness vary with
the same independent variables (for example, complexity and
novelty) but the exact nature of relations differs. Silvia (2005)
interpreted interest as an emotion that consists of appraisals of
novelty and coping potential. Fayn et al. (2015) found that the
personality trait of Openness was predictive of greater interest
and pleasure in response to visual art. Last but not least, in their
fluency-based hierarchical model of aesthetic liking, Graf and
Landwehr (2015) invoked pleasure and interest as the major
outcomes of stimulus-driven processing and perceiver-driven
processing, respectively.

Groups of participants also differ in their aesthetic taste
when clusters are formed according to inter-rating correlations
(Supplementary Figure 4). Such differences in aesthetic taste
have been linked to personality traits. For example, the trait
Openness predicts preference for abstract art over other art
styles (Furnham and Walker, 2001) and over Renaissance art,
respectively (Pelowski et al., 2017). Lyssenko et al. (2016)
demonstrated that, within abstract art, preferences for particular
SIPs correlated with individual personality traits. Besides

complexity, preference for other SIPs is shared by groups of
participants, for example, for color and self-similarity (Mallon
et al., 2014) as well as for curvature (Cotter et al., 2017).

Methodological limitations

Our study has the following limitations. (1) We devised
our stimuli with the intention that they do not show any
figurative content. On the one hand, this lack of figurative cues
is advantageous for studying perceptual aspects of aesthetic
judgments because figurative elements do not confound
rating responses. On the other hand, our approach cannot
take interactions between perception of aesthetic form and
processing of image content and context into account (Locher
et al., 1999; Leder et al., 2004; Estrada-Gonzalez et al., 2020).
Such interactions can occur for ordinary aesthetic experiences
outside the laboratory setting (Specker et al., 2017). Whether our
conclusions also hold for more “natural” aesthetic experiences
thus remains to be studied. (2) The vast majority of the 40
participants in the rating experiments were students of medicine
and art history in Jena, Germany. They rated style-transferred
images that represent a relatively uniform set of abstract images.
In how far their aesthetic ratings are representative also for
other (larger) groups of beholders, other cultural backgrounds,
or other artistic styles is unclear. (3) The sample size of original
paintings (n = 25) analyzed in the present study is exceedingly
small and can thus not deliver robust statistical results. (4)
In order to avoid problems in our statistical analyses, such as
overfitting and multicollinearity, we reduced the number of
independent variables to a relatively small subset of eight SIPs.
It remains to be studied whether this subset can also predict
aesthetic ratings of other datasets of artworks. (5) Ratings for
the three types of images studied cannot be compared directly
in absolute terms because they were tested in separate blocks.
Under these conditions, participants are likely to use multiple
non-interacting scales for the different types of stimuli (Vessel
and Rubin, 2010). (6) By presenting the original paintings as
the last (third) block, we cannot exclude the possibility that the
ratings are affected by the first two blocks (Figure 2). (7) Last
but not least, the present findings are based on the NST method
by Kolkin et al. (2019) and it is unclear whether they generalize
to other NST methods.

Conclusion

Our results suggest that NST can be used to create novel
abstract images that possess statistical image properties similar
to those of the original artworks. Moreover, the participants’
preferences partly transfer onto the novel images. The novel
images are rated higher if their SIPs assume values closer to those
of the JenAesthetics dataset of traditional Western paintings
(“sweet spot”). We were able to explain a large portion of the
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aesthetic ratings with a representative set of only eight SIPs. We
see these results as a successful example of how to use NST-
generated images in experimental aesthetics research. Whether
the images created in the present study can be considered
genuine artworks depends on how we define creativity and art.
At present, these terms lack a precise and objectifiable definition.
Nevertheless, we agree with other researchers (Lomas, 2018;
Hertzmann, 2019; McCormack et al., 2019) that computers
provide a highly versatile artistic medium, which can assist
artists and serve as an engine for artistic innovation.
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