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Introduction: The presence of focal cortical and white matter damage in patients

with multiple sclerosis (pwMS) might lead to specific alterations in brain networks

that are associated with cognitive impairment. We applied microstructure-weighted

connectomes to investigate (i) the relationship between global network metrics and

information processing speed in pwMS, and (ii) whether the disruption provoked

by focal lesions on global network metrics is associated to patients’ information

processing speed.

Materials and methods: Sixty-eight pwMS and 92 healthy controls (HC) underwent

neuropsychological examination and 3T brain MRI including multishell diffusion

(dMRI), 3D FLAIR, and MP2RAGE. Whole-brain deterministic tractography and

connectometry were performed on dMRI. Connectomes were obtained using the

Spherical Mean Technique and were weighted for the intracellular fraction. We

identified white matter lesions and cortical lesions on 3D FLAIR and MP2RAGE

images, respectively. PwMS were subdivided into cognitively preserved (CPMS) and

cognitively impaired (CIMS) using the Symbol Digit Modalities Test (SDMT) z-score at

cut-off value of −1.5 standard deviations. Statistical analyses were performed using

robust linear models with age, gender, and years of education as covariates, followed

by correction for multiple testing.

Results: Out of 68 pwMS, 18 were CIMS and 50 were CPMS. We found significant

changes in all global network metrics in pwMS vs HC (p < 0.05), except for

modularity. All global network metrics were positively correlated with SDMT, except

for modularity which showed an inverse correlation. Cortical, leukocortical, and

periventricular lesion volumes significantly influenced the relationship between

(i) network density and information processing speed and (ii) modularity and
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information processing speed in pwMS. Interestingly, this was not the case, when

an exploratory analysis was performed in the subgroup of CIMS patients.

Discussion: Our study showed that cortical (especially leukocortical) and

periventricular lesions affect the relationship between global network metrics

and information processing speed in pwMS. Our data also suggest that in CIMS

patients increased focal cortical and periventricular damage does not linearly affect

the relationship between network properties and SDMT, suggesting that other

mechanisms (e.g. disruption of local networks, loss of compensatory processes)

might be responsible for the development of processing speed deficits.

KEYWORDS

multiple sclerosis (MS), connectomics, structural connectivity, neuropsychological test,
information processing speed

Highlights

– Microstructural connectomics showed a decrease in global
efficiency, clustering coefficient, network density, and mean
strength in pwMS compared to healthy subjects.

– In pwMS, the combination of lesion type [periventricular,
cortical (especially leukocortical)], and global graph metrics
(density/modularity) influenced SDMT performance.

– In CIMS patients increased focal cortical and periventricular
damage does not influence the relationship between SDMT and
global graph metrics.

1. Introduction

Multiple Sclerosis (MS) is a chronic, autoimmune,
neurodegenerative, and demyelinating disease of the central
nervous system causing sensory and motor deficits, fatigue and
cognitive impairment (Sparaco et al., 2021).

Impairment in cognitive functions occurs in 40–65% patients
with MS (pwMS) (Jongen et al., 2012) and can be seen in
all subtypes of MS. PwMS may suffer from cognitive deficits
encompassing executive function, complex attention, episodic
memory and information processing speed (Filippi et al., 2010).
Information processing speed is a measure of the efficiency of
cognitive functions (Sweet, 2011) and its impairment has been
reported in approximately 40–70% of pwMS (Filippi et al., 2010).
Besides, it is one of the first cognitive deficits to be observed in
cognitively impaired MS patients (CIMS) and correlates strongly
with working memory performance (Giorgio and De Stefano, 2010;
DeLuca et al., 2015). The Symbol Digit Modalities Test (SDMT) is
considered the gold standard to assess processing speed and working-
memory related cognitive performance in pwMS and to discriminate
between HC and pwMS (Langdon et al., 2012; Benedict et al.,
2017).

Diffusion magnetic resonance imaging (dMRI) provides images
that can be exploited to reconstruct the direction of fiber
bundles in the brain (tractography) (Sporns et al., 2005) and
the organization of neuronal networks (connectomics) (Sporns
et al., 2005; Kocevar et al., 2016; Welton et al., 2020). Previous
work using connectomics in pwMS showed that brain network

dysfunction contributes to cognitive impairment (Dineen et al., 2009;
Schoonheim et al., 2015).

Other studies comparing structural network changes and
information processing speed in pwMS and HC have shown that
networks in pwMS patients are less efficient (Schoonheim et al., 2015;
Shu et al., 2016; Charalambous et al., 2019; Bosticardo et al., 2021),
and that pwMS have an increase in network segregation and inversely
a decrease in network integration (Van Schependom et al., 2014;
Charalambous et al., 2019; Welton et al., 2020). A recent study by
Welton and colleagues also reported that pwMS with low SDMT
score had reduced “small-worldness” (i.e., less efficient information
segregation and integration), lower global efficiency and longer
average path lengths compared to healthy controls (Welton et al.,
2020). All these studies were performed using connectomes weighted
by the number of streamlines (NOS) connecting couples of brain
areas; yet, we have recently shown that microstructure-weighted
connectomes provide more sensitive measure of MS pathology
compared to NOS- weighted connectomes (Bosticardo et al., 2021).

Focal cortical pathology is correlated with the development
of cognitive impairment in pwMS. In fact, cortical lesion volume
correlates with information processing speed as measured by
the SDMT (Papadopoulou et al., 2013). Further, cortical subpial
pathology, as measured by a T2

∗ increase at 7T MRI, appears to
be strongly associated with cognitive function in pwMS in a way
that is independent from white matter pathology and diffuse cortical
damage, as quantified using cortical thickness (Forn et al., 2011;
Louapre et al., 2016). In addition, alterations in T2∗ across the whole
cortex relate to lower performance in SDMT (Forn et al., 2011).
On the other hand, the number of juxtacortical lesions in pwMS
correlates with a global scale of cognitive impairment (Lazeron et al.,
2000), and those lesion types seem to be also associated with specific
deficits in information processing speed (Forslin et al., 2018).

A role of white matter (WM) lesions in cognitive impairment has
also been established in previous works (Papadopoulou et al., 2013);
yet to date, the relationship between the location of WM lesions,
global brain network properties alterations and cognitive impairment
has not been investigated.

In this work, we used microstructure-weighted connectomics to
explore the hypothesis that MS lesion types affect the relationship
between global brain network metrics and cognitive performance.
Our specific aims were to (i) assess differences in global network
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metrics (modularity, density, efficiency, mean strength, and
clustering coefficient) obtained with microstructure-weighted
connectomics between pwMS and HC; (ii) to investigate the
relationship between those global network metrics and cognition
measured with SDMT in pwMS; and finally (iii) to assess if this
relationship is influenced by either volume or number of subtypes of
cortical or white matter lesions.

2. Materials and methods

2.1. Study participants

We enrolled pwMS recruited between January 2019 and June
2021 within the INsIDER study at the University Hospital of Basel
(Basel, Switzerland). Main inclusion criteria for this study were: age
between 18 and 75 years, MS diagnosis (RRMS, PPMS, and SPMS)
fulfilling revised 2017 McDonald criteria (Thompson et al., 2018),
absence of severe psychiatric condition or neurological disease other
than MS. Progressive MS patients were non-active (i.e., no relapses
and no MRI activity) and relapsing-remitting MS patients were active
but the MRI was performed with a 3-month delay from the last
relapse.

Exclusion criteria were pregnancy, contraindication (e.g.,
claustrophobia, pacemaker) to magnetic resonance imaging (MRI)
and inability to give informed consent. All subjects, healthy
controls and pwMS, underwent neuropsychological examination
and advanced MRI at 3T. Participants were excluded if SDMT,
fatigue questions, demographic variables were missing or if data
did not pass strict quality check. The Ethic Review Committee of
the University of Basel approved the INsIDER study (registration
number: NCT05177523) and all participants signed informed
consent. Only few patients were recruited after the beginning of the
COVID-19 pandemic in Europe in March 2020 with no apparent
changes in the neuropsychological testing.

2.2. Clinical assessment and patients’
stratification

Patients with multiple sclerosis (PwMS) and HC underwent a
neurological and neuropsychological assessment including the oral
version of the Symbol Digit Modalities Test (SDMT) (Smith, 1968)
and MUSIC test (Kalbe et al., 2013). Within the MUSIC test three
questions on fatigue; subdivided into cognitive and physical fatigue
and fatigue impacting work and social life were asked. We examined
the HADS (Hospital Anxiety and Depression Scale) questionnaire
that were collected at the time of the cognitive examination in our
cohort of pwMS (Zigmond and Snaith, 1983). We then calculated
whether symptoms of depression, anxiety and fatigue differed
between cognitively preserved and cognitively impaired MS patients
using the Mann-Whitney U-Test. SDMT raw scores (Kurtzke, 1983)
were used for the statistical analysis. Clinical disability in pwMS was
assessed with the Expanded Disability Status Scale (EDSS) (Kurtzke,
1983). PwMS were divided into cognitively impaired (CIMS) and
cognitively preserved patients (CPMS) using the SDMT z-score at
−1.5 standard deviations (Lorefice et al., 2021). PwMS and HCs were
asked the number of years of educations in the neuropsychological
assessment.

2.3. MRI data acquisition

All subjects underwent brain MRI on a 3T system (Magnetom
Prisma, Siemens Healthcare, Erlangen, Germany) with a 64-
channel head and neck coil for RF reception. The acquisition
protocol included (i) 3D FLuid Attenuated Inversion Recovery
[FLAIR, repetition time (TR)/ echo time (TE)/ inversion
time (TI) = 5,000/386/1,800 ms] 1 mm3 isotropic spatial
resolution; (ii) 3D Magnetization Prepared 2 Rapid Acquisition
Gradient Echoes (MP2RAGE, TR/TI1/TI2 = 5,000/700/2,500 ms)
1 mm3 isotropic spatial resolution; (iii) multi-shell diffusion
[TR/TE/impulse duration (d)/time between impulses
(D) = 4,500/75.0/19.2/36.5 ms] 1.8 mm3 isotropic spatial resolution
with b-values 700/1,000/2,000/3,000 s/mm2 and 6/20/45/66 diffusion
directions, respectively, per shell, and 12 measurements at b-value
0 s/mm2 with both anterior to posterior as well as reversed phase
encoding. Diffusion MRI images were pre-processed including
denoising, motion correction, eddy currents and bias field correction
as described in Bosticardo et al. (2021).

2.4. MS lesion identification and
connectomics

White matter and cortical MS lesions were segmented with
an automatic deep learning-based method (La Rosa et al., 2020),
followed by manual correction by two expert raters. Lesion-filled
MP2RAGE were processed with FreeSurfer1 and the standard
Desikan-Killiany atlas was used for the automatic segmentation
that provides cortical and subcortical parcellation of 85 regions of
interest (ROIs). We identified as juxtacortical lesions, areas of T2-
hyperintensities that are abutting the cortex without intervening
normal-appearing white matter. To facilitate the identification of
these lesions, we automatically segmented an area of 3 mm from the
cortex, which covers the entire thickness of the U-fibers. Lesions in
this area were then manually identified as juxtacortical or not.

We considered periventricular lesions those that were located
within a 3-mm boundary from the ventricles. If confluent,
periventricular lesions were manually split by an experienced
neuroradiologist and neurologist (when possible) or counted
as one (when not possible to split them). Intracortical and
leukocortical lesions were identified manually on MP2RAGE images
using the lesion map obtained as detailed above. With currently
available techniques it is challenging to detect intracortical lesions
programmatically. They were therefore assessed through individual
inspection by a trained neuroradiologist and neurologist. Each
leukocortical lesion was split into its white matter and gray
matter components on MP2RAGE images by two trained experts.
MP2RAGE images provide in fact a sharp contrast between cortical
gray and the underlying white matter, which is facilitating this
task. We performed this anatomical distinction to better understand
whether the pathology affecting the inner cortical layers or the one
impacting the function of the underlying U-fibers best correlates with
processing speed as measured with SDMT.

Connectomes were reconstructed using MRtrix3 (Tournier et al.,
2019) and were weighted by a microstructural map that was derived

1 http://surfer.nmr.mgh.harvard.edu
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from the Spherical Mean Technique (SMT), which is a technique used
for microscopic diffusion anisotropy imaging to map microstructural
features that are not confounded by orientation dispersion or fiber
crossing (Kaden et al., 2016; Bosticardo et al., 2021). For the
estimation of the Neurite Volume Fraction map (INTRA) (Bosticardo
et al., 2021) derived from SMT, an open-source code was used.2

2.5. Graph metrics estimation

Using Brain Connectivity Toolbox,3 we extracted the following
global network metrics in brain connectomes weighted by INTRA: (i)
Modularity, which measures the capability of a network to be divided
into modules and reflects the network segregation; (ii) Density,
which is a measurement of the ratio between the actual and possible
connections (iii) Clustering coefficient, which describes the tendency
of two neighboring nodes to be connected to a common node; (iv)
Mean strength, which measures the average sum of edge weights
that are connected to a node; and (v) Efficiency, which measures the
capability of the exchange of information across the whole network
(Rubinov and Sporns, 2010; Zalesky et al., 2010; Sporns, 2013;
Kocevar et al., 2016; Bosticardo et al., 2021).

2.6. Statistical analysis

We assessed the following H0-hypotheses:

• H0-1: There is no difference between individual global network
metrics in pwMS and HC.

• H0-2: There is no correlation between global network metrics
and information processing speed in pwMS and HC.

• H0-3: The combination of global network metrics, cortical (CL)
or white matter (WM) lesion number or volume is not related to
information processing speed in pwMS.

All statistical analyses were done using R Studio (R Core Team,
2017) with the help of a senior statistician (SS).

To evaluate whether variables were normally distributed, we
used the Shapiro-Wilk test. Demographics and clinical variables were
assessed with t-tests if variables were normally distributed or with
the Mann-Whitney U-test (e.g., EDSS, fatigue/depression/anxiety
scores or lesion number and volume) if variables did not follow
normal distribution.

With a principal component analysis (PCA), we first attempted
at reducing the dimensionality of the variables that we planned to
compare between pwMS and HCs.

Then, H0-1 was confuted using linear robust models controlling
for eventual outliers with age, gender, patient’s years of education and
network density as covariates. Density was considered as covariate,
since recent studies have shown that the network density strongly
differs among pwMS and HC (Schiavi et al., 2020a,b; Bosticardo
et al., 2021). We reported adjusted p-values with Holm correction for
multiple testing in Table 2.

2 https://github.com/ekaden/smt

3 https://sites.google.com/site/bctnet/

To confute H0-2 we calculated Spearman correlations
between each global graph metric and information processing
speed in pwMS and HC.

To assess H0-3 we tested whether lesion types (CL or WM) and
lesion characteristics (lesion volume or number), and global graph
metrics were associated with information processing speed in pwMS
using linear robust models followed by Bonferroni correction.

In an exploratory way, we then assessed which combination of
variables is best related to SDMT in a subgroup of patients, namely
CPMS and CIMS. To achieve this goal, we performed linear robust
models for each condition, where SDMT score was considered as
dependent variable whereas lesion type (juxtacortical, periventricular,
leukocortical GM and leukocortical WM, and intracortical) and
lesion volume or number together with global graph metrics
were the independent variables. Gender, education, and age were
applied as covariates.

For all hypotheses, a two-sided p-value of ≤ 0.05 and a confidence
interval of 0.95 was considered as statistically significant.

3. Results

3.1. Study population

Out of 155 INsIDER pwMS and 103 INsIDER HC, 68 pwMS
and 92 HC were eligible for participation. PwMS and HC underwent
neuropsychological examination and MRI usually within 60 days.
The results of the oral SDMT z-scores were used to determine
CPMS and CIMS categories, resulting in 50 CPMS (30 females) and
18 CIMS (12 females) patients. Figure 1 displays the consort flow
diagram of participants who met inclusion criteria for the study
population.

3.2. Baseline characteristics and results of
neuropsychological testing

Demographic variables of HC and pwMS are depicted in Table 1.
HC were younger and had more years of education than MS
patients. Compared to pwMS, HC had on average a higher SDMT
score. CIMS and CPMS had lower SDMT z-scores, and raw-scores
(Supplementary Table 1) compared to HC. CIMS had a longer
disease duration compared to CPMS and EDSS differed significantly
between CPMS and CIMS patients (p < 0.001, Supplementary
Table 1).

Multiple sclerosis (MS) subtypes in CPMS and CIMS are shown
in Supplementary Table 1. The majority of the CPMS subgroup
patients suffered from relapsing-remitting multiple sclerosis (RRMS)
(80%, 40 patients), whereas clinical MS subtypes were equally
represented in the CIMS subgroup (Supplementary Table 2).

Total Fatigue scores, as measured within the MUSIC
questionnaire differed significantly between the two patient
groups (p < 0.05). However, the subscale of cognitive fatigue did
not show significant differences between CPMS and CIMS patients
(p = 0.1472). Interestingly, motor fatigue differed significantly
between groups with more difficulties in CIMS in comparison to
CPMS patients (p < 0.05). Symptoms of depression (p = 0.176) and
anxiety (p = 0.926) did not differ between CPMS and CIMS.
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FIGURE 1

Consort flow diagram of participants who met inclusion and exclusion
criteria. In total 160 subjects were included in the analysis, 68 were
patients with multiple sclerosis (pwMS), and 92 healthy controls (HC).

At the time of MRI, most patients were treated with Ocrelizumab
(44,1%), followed by Dimethyl fumarate (14,7%), Rituximab
(10,3%), Fingolimod (8,82%), Teriflunomide (4,41%), Natalizumab
(2,94%), Interferon-beta (2,94% and 1,47%), and Sativex Spray
(1,47%). Six pwMS were not treated with medications at time
of MRI (8,82%).

3.3. Group differences in network
organization

Differences in global graph metrics between pwMS and HC are
reported in Table 2 and can be visually seen in Figure 2. Density,
efficiency, clustering coefficient, and mean strength were lower in
pwMS compared to HC. All global graph metrics were significantly
different between pwMS and HC, except for modularity. Density,
efficiency, clustering coefficient, and mean strength were lower in
CIMS/CPMS patients compared to HC but did not differ between the
two patients’ subgroups except for mean strength (Supplementary
Table 3).

3.4. Correlation between SDMT and global
network metrics

Across all participants (pwMS and HC), all five global network
metrics significantly correlated with SDMT score. Correlations with
SDMT were positive for density (r = 0.22, p = 0.0047), clustering

TABLE 1 Descriptive analysis of demographics and clinical variables in
patients with multiple sclerosis (pwMS) and healthy controls (HC).

Variables Healthy
controls (HC)

Multiple
sclerosis
(pwMS)

P-values

N/Gender 92 (48 females) 50 (30 females) p < 0.01

Age 36.2 (12.9) 46.8 (14.4) p < 0.01

Education (years) 17.7 (3.63) 16.5 (4.60) p < 0.05

EDSS 3.11 (1.88)

Disease duration in
years

11.3 (11.8)

SDMT score (*) 64.1 (13.0) 56.2 (15.4) p < 0.01

SDMT z-score −0.0978 (1.04) −0.529 (1.28) p < 0.01

EDSS, Expanded Disability Status Scale; SDMT, Symbol Digit Modalities Test. EDSS was
measured with Expanded Disability Status Scale (Kurtzke, 1983). SDMT z-Scores were
calculated with standardized tables from Smith (1968) controlling for age and education. For
age, years of education, SDMT score, SDMT z-score and disease duration mean, and standard
deviations were calculated. We have calculated p-values with t-tests if variables followed normal
distribution (*) and with Mann-Whitney U-test if they did not follow normal distribution.

coefficient (r = 0.2, p = 0.012), mean strength (r = 0.25, p = 0.0015)
and efficiency (r = 0.21, p = 0.0068). Modularity and SDMT scores
correlated negatively (r = −0.28, p = 0.00029). Depending on each
group, correlations varied between SDMT and each global graph
metrics (Figure 3). We found the strongest association between
clustering coefficient (r = 0.268), efficiency (r = 0.302) and mean
strength (r = 0.268) and SDMT in CIMS patients compared to the
overall patient group and HCs.

3.5. MS lesion load in CPMS and CIMS

White matter (WM) lesions were more frequent, and their total
volume was larger in CIMS compared to CPMS patients (Table 3).
Also, the number of juxtacortical lesions as well as the number of
periventricular and volume of periventricular lesions were higher in
CIMS in comparison to CPMS patients (Table 3). A visualization
of the range for different lesion types (number and volume) can be
found in the Supplementary Figure 2.

3.6. Principal component analysis of
global graph metrics

Principal component analysis for the five global graph metrics
revealed high collinearity for efficiency and clustering coefficient
(r = 0.992), modularity and density (r = −0.805) and efficiency
and mean strength (r = 0.943). In contrast, efficiency and density
(r = 0.6019), efficiency and modularity (r = −0.500) and clustering
coefficient and modularity (r = −0.530) correlated only moderately
with each other (Supplementary Figure 1); Because of the challenges
in interpreting PCA results, we have however chosen to not
calculate one combined global graph metric score for all pwMS
but to perform linear robust models to assess each graph metric
independently, followed by correction for multiple testing (see
Section “3.7. Influence of MS lesions on the association between
global graph metrics and SDMT”).

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1007580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1007580 February 1, 2023 Time: 14:27 # 6

Wenger et al. 10.3389/fnins.2023.1007580

TABLE 2 Specific comparisons between healthy controls (HC) and patients with multiple sclerosis (pwMS) and each global network.

Variables Contrasts Estimate Standard error t-ratio Adjusted P-value Multiple R2 and adjusted R2

Density HC-MS 0.0215 0.00612 3.518 0.0006a 0.194 (0.1732)

Efficiency HC-MS 0.0129 0.00413 3.130 0.0021a 0.5316 (0.5164)

Clustering coefficient HC-MS 0.0121 0.00399 3.030 0.0029a 0.5521 (0.5376)

Mean strength HC-MS 0.91 0.288 3.164 0.0019a 0.7513 (0.7433)

Modularity HC-MS −0.0021 0.00169 −1.247 0.2144 0.7648 (0.7571)

For each global graph metric, comparisons between the two groups, HC and MS, were calculated. Global graph metrics differed between healthy controls MS patients. Except for modularity, these
comparisons were highly significant. Adjusted p-values using holm correction are reported. HC, healthy controls; MS, multiple sclerosis; SE, standard error.
aSignificantly different at p <0.01.
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FIGURE 2

Violin plots of the five global network metrics for healthy controls (HC) and patients with multiple sclerosis (pwMS). The figure shows violin plots
between the two groups and the five global network metrics. Bars in the middle represent median values. The whiskers show 95% confidence interval,
and the shape of each violin plot displays the frequencies of values, here: number of participants with same global network value.

3.7. Influence of MS lesions on the
association between global graph metrics
and SDMT

In pwMS the combination of lesion type (cortical or white matter)
and lesion characteristics (number or volume) together with global
graph metrics influenced SDMT.

We found an independent association between cortical lesion
volume, density and SDMT in pwMS (adjusted p-value: 0.00038).
Furthermore, modularity and cortical lesion volume influenced
SDMT in pwMS (adjusted p-value: 0.000155).

Both leukocortical white matter lesion volume (adjusted
p-value: 0.00023) and leukocortical gray matter lesion volume
(adjusted p-value: 0.0000031) together with density influenced
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FIGURE 3

Scatter plots between symbol digit modalities test (SDMT) score and global network metrics, color-coded for the two groups [patients with multiple
sclerosis (pwMS) and healthy controls (HC)]. Spearman’s correlation coefficient suggests an association between each global network metric and
information processing speed in all participants. Correlations are positive for density, clustering coefficient, mean strength and efficiency, and negative
for modularity.

SDMT score in pwMS. Modularity and both white matter (adjusted
p-value: 0.000124) and gray matter leukocortical lesion volume
(adjusted p-value: 0.000213) showed a more pronounced relationship
to SDMT in pwMS.

Additionally, we found an independent association between
mean strength, leukocortical white matter lesion volume and SDMT
in pwMS (adjusted p-value: 0.000351).

Periventricular lesion volume together with density (adjusted
p-value: 0.00003) and modularity (adjusted p-value: 0.000058)
influenced SDMT in pwMS. For statistical details please refer to
Supplementary Tables 4–12. A visualization of these interaction
effects are shown in Figure 4.

3.8. Explorative analysis of global network
metrics, lesion types and SDMT

In an explorative way we have then assessed which combination
of variables best correlated with SDMT in CPMS and CIMS.

Similar as in pwMS, CPMS showed an independent association
between (i) cortical lesion volume and SDMT and (ii) network
density/modularity and SDMT (p ≤ 0.05 for all).

The volume of the white matter part of leukocortical lesions
influenced the relationship between density/modularity and SDMT
in CPMS patients but not in CIMS patients (p ≤ 0.05).
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TABLE 3 Analysis of lesion types in patients with multiple sclerosis (pwMS).

Variables Cognitively preserved
MS (CPMS)

Cognitively impaired
MS (CIMS)

P-value 95% CI

White matter–volume 3.17 [6.64] 9.69 [7.13] 0.00038 4.0039–9.2149

White matter–number 39 [44] 54 [33.5] 0.03116 2.0000–36.9999

Juxtacortical–volume 1.11 [2.54] 3.42 [4.14] 0.00106 1.2039–3.28199

Juxtacortical–number 31.5 [40.2] 63 [51.2] 0.00255 12.000–47.999

Periventricular–volume 0.409 [1.05] 2.28 [2.23] 0.00101 0.4820–2.1489

Periventricular–number 12 [12.5] 19.5 [7] 0.00752 1.9999–12.9999

Cortical–volume 0.0335 [0.224] 0.272 [0.389] 0.003844 0.0200–0.2719

Cortical–number 1 [5.75] 8.5 [13.5] 0.001847 1.0000–9.9999

Intracortical–volume 0 [11.5] 17.5 [63.8] 0.05051 −9.354e-06–2.404e+01

Intracortical–number 0 [1] 1 [3.75] 0.05503 −5.259e-05–1.999

Leukocortical–volume WM 9.5 [106] 78 [200] 0.00849 5.999–97.000

Leukocortical–volume GM 10 [73.8] 117 [174] 0.00357 11.000–119.999

Leukocortical–number 1 [4] 7.5 [11] 0.001873 1.000–8.999

Unit of lesion volume: mm3 , values are expressed as median and interquartile range. Leukocortical–volume WM, leukocortical–volume white matter; leukocortical–volume GM, leukocortical
volume gray matter. P-values and 95% CI were calculated using Mann-Whitney U-test.

For statistical details please refer to Supplementary
Tables 13–16.

4. Discussion

Our study shows that specific MS lesions (leukocortical and
periventricular) affect the association between network metrics
(density, modularity, and mean strength) and SDMT in pwMS,
providing evidence that focal cortical and periventricular damage
influence cognitive performance through global network properties.
Nevertheless, our results also suggest that this holds true for
cognitively preserved but not for cognitively impaired MS patients,
despite the higher periventricular and leukocortical lesion burden
of the latter group. These results extend our knowledge about the
mechanisms leading to cognitive performance in patients suffering
from MS, and show that deficits in processing speed are not linearly
related to global network functions.

We used microstructure-weighted connectomics to assess brain
network metrics in a group of pwMS with and without impairment
in information processing speed, as well as in HC. We opted for this
method and not for the usual count of the number of streamlines,
because it is quantitative, and it has shown to be more sensitive to MS
pathology than the first (Bosticardo et al., 2021).

Global connectomes were weighted using the intra-neurite
volume fraction obtained with the Spherical Mean Technique (Kaden
et al., 2016), which was previously related to axonal damage
(Bosticardo et al., 2021). In this cohort, we found a decrease in
the four global network metrics and an increase in modularity in
pwMS compared to HC as it has been previously shown (Kocevar
et al., 2016; Fleischer et al., 2019; Bosticardo et al., 2021) which
might be plausibly the consequence of axonal degeneration processes.
Interestingly, however, cognitively impaired MS patients (CIMS) did
not show differences in global network metrics when compared to
CPMS.

Adding to previous knowledge (Charalambous et al., 2019;
Welton et al., 2020; Zhang et al., 2021), we also provide evidence that

information processing speed is related to global network properties
in both HC and pwMS. The correlations varied between groups
(Figure 3) with the strongest associations with SDMT and clustering
coefficient, efficiency, and mean strength in CIMS compared to
the whole patient group and HCs. Yet, the modest nature of this
relationship suggests that confounders such as the time during the
day when testing was performed, psychoactive medication, stress-
level, and mood might have contributed to the measured cognitive
performance and hence influenced the strength of the correlations.

In pwMS, we found that a low SDMT was associated with
a high modularity and a low clustering coefficient, which might
appear counter intuitive. In reality, however, this is quite a plausible
scenario in a disease like MS because it indicates that worse cognitive
performance is associated to the segregation of the brain networks
into modules (high modularity) and a low density of “triangle”
pathways vs. total connected nodes [triangle and 2 ways pathways
(low clustering coefficient)].

Our data cast light on the complex relationship between MS
lesion type and size, global network metrics and the performance in
information processing speed in pwMS.

Previous studies showed that lesion number and volume
influence information processing speed in pwMS (Lazeron
et al., 2000; Papadopoulou et al., 2013; Louapre et al., 2016;
Forslin et al., 2018) and that there is a relationship between global
network metrics and cognition (Shu et al., 2016; Welton et al., 2020),
and between global network metrics and lesion number/volume in
pwMS (Tozlu et al., 2020; Rocca et al., 2021). To date, however, there
has been no investigation attempting at elucidating the complex
relationship between focal damage, brain networks and cognition.

We found that leukocortical and periventricular lesion volume
affect the relationship between global networks metrics and
the performance in information processing speed in pwMS.
Larger lesions may possibly impact fiber bundles to a higher
degree than multiple small lesions, and in a way that is more
challenging to compensate.

Especially the interaction between leukocortical lesions and
global network metrics such as modularity and density were
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FIGURE 4

Interaction plots between symbol digit modalities test (SDMT), different lesion types, and global graph metrics in patients with multiple sclerosis (pwMS).
Only significant interactions are shown. The red line shows the relationship between SDMT and network properties if no lesions are present while the
blue line describes the interaction effect between high lesion volume, global graph metric, and SDMT. (A) Interaction between cortical lesion volume,
density, and SDMT in pwMS. (B) Interaction between cortical lesion volume, modularity, and SDMT in pwMS. (C) Interaction between leukocortical white
matter lesion volume, density, and SDMT in pwMS. (D) Interaction between leukocortical white matter lesion volume, modularity, and SDMT in pwMS.
(E) Interaction between leukocortical gray matter lesion volume, density, and SDMT in pwMS. (F) Interaction between leukocortical gray matter lesion
volume, modularity, and SDMT in pwMS. (G) Interaction between leukocortical white matter lesion volume, mean strength, and SDMT in pwMS.
(H) Interaction between periventricular lesion volume, density, and SDMT in pwMS. (I) Interaction between periventricular lesion volume, modularity, and
SDMT in pwMS.

associated with SDMT outcomes. Due to their location in the
lower part of the cortex and superficial white matter, leukocortical
lesions affect short association fibers connecting two cortical
gyri below the cortex (i.e., U-fibers) (Caucheteux et al., 2015),

whose disruption has been previously associated with memory
and executive function impairment (Miki et al., 1998; Rovaris
et al., 2000). Our results confirm previous findings reporting an
association between juxtacortical lesions and cognitive deficits in

Frontiers in Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1007580
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1007580 February 1, 2023 Time: 14:27 # 10

Wenger et al. 10.3389/fnins.2023.1007580

pwMS (Lazeron et al., 2000; Louapre et al., 2016; Shaaban et al.,
2021), and further elucidate the mechanisms underlying this
association. Furthermore, our data support previous evidence that
SDMT reflects global cognition performances, encompassing not
only information processing speed but also attention and working
memory (Markowitsch and Tulving, 1994; Calabrese et al., 1997).

An association was also found for periventricular lesions and
global network metrics on SDMT. To date, there are only limited
studies about the relationship between periventricular lesions and
cognition (Tiemann et al., 2009), mostly with patients suffering
from dementia or other neuropsychiatric disorders (de Groot et al.,
2001). Our work provides new evidence of their role in modulating
the association between global network metrics and information
processing speed.

Notably, intracortical lesions appeared not to have a significant
impact on SDMT in line with previous findings (Nelson et al., 2011),
and did not disrupt global network metrics. This may well depend
on the low sensitivity of 3T MP2RAGE to this lesion type (Kober
et al., 2012) and/or to the small volume of those lesions compared
to leukocortical ones.

Very interestingly, an exploratory analysis showed there was no
association between network metrics and SDMT performance in
cognitively impaired MS patients, nor a significant interaction with
lesion types. This might suggest that the pathological worsening of
SDMT is not linearly related to the worsening of global network
function, despite CIMS patients had larger WM and cortical lesion
load than CPMS patients. These data suggest that other mechanisms
(e.g., disruption of local networks, loss of compensatory processes)
might be responsible for the development of processing speed
deficits. Longitudinal data are needed to further investigate these
processes in CIMS.

Strengths of our study include the availability of an advanced MRI
protocol providing sensitivity to both cortical lesions as well as the
opportunity to derive network metrics from microstructure-weighted
connectomes. On the other hand, this work has also limitations
including the lack of sensitivity to subpial lesions and the low
representation of patients suffering from progressive MS, which did
not allow us to compare among different MS phenotypes as it was
performed in previous studies (Kocevar et al., 2016; Muthuraman
et al., 2016). Future studies should further investigate this aspect in
larger cohort.

In summary, our study provides novel insights about the
mechanisms leading to alteration in information processing speed,
a cognitive function that is often altered in pwMS since early stages
of the disease. Network-based measures are promising prognostic
biomarkers that have the potential to be used in the clinic not only
to predict disease evolution, cognitive impairment and fatigue but
also to guide clinicians in the early diagnostic phase and in treatment
choices (Colato et al., 2021; Fleischer et al., 2021). Future work
should focus on investigating the cognitive correlate of local network
disruptions in pwMS.
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