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Introduction: Sleep is an essential function to sustain a healthy life, and sleep 
dysfunction can cause various physical and mental issues. In particular, obstructive 
sleep apnea (OSA) is one of the most common sleep disorders and, if not treated 
in a timely manner, OSA can lead to critical problems such as hypertension or 
heart disease.

Methods: The first crucial step in evaluating individuals’ quality of sleep and 
diagnosing sleep disorders is to classify sleep stages using polysomnographic 
(PSG) data including electroencephalography (EEG). To date, such sleep stage 
scoring has been mainly performed manually via visual inspection by experts, 
which is not only a time-consuming and laborious process but also may yield 
subjective results. Therefore, we have developed a computational framework 
that enables automatic sleep stage classification utilizing the power spectral 
density (PSD) features of sleep EEG based on three different learning algorithms: 
support vector machine, k-nearest neighbors, and multilayer perceptron (MLP). 
In particular, we propose an integrated artificial intelligence (AI) framework to 
further inform the risk of OSA based on the characteristics in automatically 
scored sleep stages. Given the previous finding that the characteristics of 
sleep EEG differ by age group, we employed a strategy of training age-specific 
models (younger and older groups) and a general model and comparing their 
performance.

Results: The performance of the younger age-specific group model was 
similar to that of the general model (and even higher than the general model 
at certain stages), but the performance of the older age-specific group model 
was rather low, suggesting that bias in individual variables, such as age bias, 
should be considered during model training. Our integrated model yielded an 
accuracy of 73% in sleep stage classification and 73% in OSA screening when 
MLP algorithm was applied, which indicates that patients with OSA could 
be screened with the corresponding accuracy level only with sleep EEG without 
respiration-related measures.

Discussion: The current outcomes demonstrate the feasibility of AI-based 
computational studies that when combined with advances in wearable devices 
and relevant technologies could contribute to personalized medicine by not only 
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assessing an individuals’ sleep status conveniently at home but also by alerting 
them to the risk of sleep disorders and enabling early intervention.
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1. Introduction

Sleep is an essential part in human life. Poor sleep quality can lead 
to reduced physical performance and have a negative impact on 
cognitive functions (Yuan et al., 2019). The number of patients with 
sleep disorders has been constantly increasing due to light pollution 
at night, shift work, and altered lifestyles with the recent pandemic of 
COVID-19 (Marvaldi et al., 2021). One of the most common sleep 
disorders is obstructive sleep apnea (OSA), which is estimated to affect 
one-seventh of the global population (Lyons et al., 2020). Patients with 
OSA have interrupted sleep because they repeatedly stop and resume 
breathing while they are asleep. They not only have difficulty with 
daytime activities but can also develop serious health concerns, such 
as hypertension and heart problems, if their OSA is not treated in a 
timely manner (Kumari et al., 2020).

To evaluate sleep quality and diagnose sleep disorders, 
polysomnography (PSG) is widely used. PSG measures  
various bio-signals including electroencephalography (EEG), 
electromyography (EMG), and electrooculography (EOG) signals 
and respiratory and cardiac activities. Through comprehensive 
analyses using the acquired multimodal data, individuals’ sleep 
conditions are assessed. A crucial first task in such analyses is to 
classify sleep stages based on the PSG data (mainly, sleep EEG). To 
date, sleep scoring has been performed manually by experts 
following standardized manuals such as the American Academy of 
Sleep Medicine (AASM) manual (Loh et al., 2020). According to the 
AASM manual, sleep is classified into the following five stages: 
wake, rapid eye movement (REM), and three non-REM (NREM) 
stages including N1, N2, and N3. Experts divide the acquired PSG 
data into 30-s epochs and then assign sleep stages to each epoch 
according to standardized criteria. Sleep stage scoring can be  a 
time-consuming, laborious process because it is performed 
manually and because the time length of one full night of collected 
PSG data is approximately 7–8 h. Another problem with traditional 
sleep scoring is that the results might be subjective depending on 
which experts conducted the scoring. Therefore, it is desirable to 
devise an automatic process for sleep staging to overcome the 
abovementioned difficulties.

OSA is diagnosed by comprehensive analyses using questionnaires 
and various bio-signals obtained during PSG. In particular, airflow via 
a nasal pressure sensor and thermistor, oxygen saturation via pulse 
oximetry, and respiratory effort via chest and abdominal belts are used 
as important indices. EEG, electrocardiography (ECG), EOG, and 
EMG signals emitted during sleep are also used for diagnosis (Gottlieb 
and Punjabi, 2020). Based on these bio-signals, indices to evaluate 
sleep quality, including total sleep time, time spent in each sleep stage, 
frequency of arousal, and apnea–hypopnea index (AHI, the number 

of apnea and hypopnea events per hour of sleep) are calculated, which 
determine the presence and severity of OSA (Patil et al., 2007). Recent 
studies have demonstrated that there are significant differences in 
sleep EEG between OSA and healthy groups (Kumari et al., 2020; 
Kang et al., 2021), suggesting the need to focus more on sleep EEG. In 
particular, Kang et al. (2021) demonstrated marked differences in the 
power spectral densities (PSDs) of beta and sigma frequency bands 
and indicated that those differences were more pronounced during 
NREM than during REM stages.

Meanwhile, following the development of artificial intelligence 
(AI) technologies, recently, the studies attempting to automatically 
classify the sleep stages based on PSG data are increasing (Zhao et al., 
2019; Sekkal et al., 2022). In particular, studies that have built sleep 
stage scoring models by applying conventional machine learning 
techniques, such as linear discriminant analysis (Liang et al., 2012; 
Long et al., 2013), k-nearest neighbors (kNN) (Li et al., 2012), and 
support vector machine (SVM) (Willemen et al., 2013; Huang et al., 
2014; Wu et al., 2014; Zhu et al., 2014; Acharya et al., 2015; Enshaeifar 
et al., 2015), and overall, they have shown a classification performance 
of 70–90%. More recently, studies utilizing deep learning and artificial 
neural networks have been reported, where they adopted various 
architectures, including convolutional neural networks (CNNs; 
Chambon et al., 2018; Mikkelsen and De Vos, 2018; Supratak and 
Guo, 2020), recurrent neural networks (RNNs; Malafeev et al., 2018; 
Phan et al., 2018, 2019), deep neural networks (DNNs; Wei et al., 
2018), or combinations thereof, such as CNN + RNN (Biswal et al., 
2018; Stephansen et al., 2018; Korkalainen et al., 2019; Mousavi et al., 
2019) and DNN + RNN (Dong et al., 2018). These state-of-the-art 
studies have further improved the performance of sleep stage 
classifications to the 80–90% level, without explicitly defining 
classification rules or features of each sleep stage. However, depending 
on the complexity of the model, more computational resources and 
time are required, thus, the trade-off between model accuracy and 
computational load may need to be considered, depending on the 
circumstances (e.g., in a mobile device-dependent environment) 
(Janiesch et al., 2021).

To date, studies in this area have been mainly conducted based on 
data obtained from healthy subjects (particularly younger adults). 
Recently, machine learning studies using large datasets including data 
from patients with sleep disorders and subjects with wide age ranges 
have been reported (Korkalainen et al., 2019; Jarchi et al., 2020; Sharma 
et al., 2021; Hussain et al., 2022). In particular, Korkalainen et al. (2019) 
proposed a deep learning-based sleep stage classification model using a 
clinical dataset of patients with suspected OSA and demonstrated that 
classification accuracy decreased as the OSA severity increased (84.5% 
for individuals without OSA; 76.5% for severe OSA patients). Sharma 
et  al. built the models by applying six traditional machine learning 
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classifiers (decision trees, logistic regression, naive Bayes, SVM, kNN, 
and ensemble bagged trees) based on a dataset, which included healthy 
subjects and patients with multiple sleep disorders, including insomnia, 
narcolepsy, REM behavior disorder, etc., and achieved a maximum 
accuracy of 85% (Sharma et al., 2021). However, studies based on large 
clinical datasets are still limited, while few studies have systematically 
investigated the effects of individual variables such as the presence of 
sleep disorders, age, and gender in subjects.

Previous studies with sleep EEG analysis have revealed that even 
healthy individuals without sleep disorders may have different 
characteristics depending on their age. It has been found that not 
only does the time consumed for slow-wave sleep (SWS) decreases 
with aging but also the power of the activity itself during SWS is 
reduced (Landolt et al., 1996; Campos-Beltrán and Marshall, 2021). 
In addition, the sleep spindle, which is the key feature of the N2 stage 
(Werth et  al., 1997; Fogel and Smith, 2011), has been found to 
decrease in its amplitude, density, and length with aging (Campos-
Beltrán and Marshall, 2021). Therefore, in building a model that 
automatically evaluates sleep EEG, it is necessary to consider the age 
of subjects in the training dataset and to systematically analyze the 
effect thereof.

In this study, we  first built a machine learning model that 
automatically performs sleep stage classification using the PSD 
features of sleep EEG and three different algorithms: SVM, kNN, and 
multilayer perceptron (MLP). In particular, we  analyzed the 
age-related effects by constructing a general model trained on the data 
of all subjects regardless of their age and age-specific models (younger 
and older group models) and compared their performance. We then 
conducted OSA screening based on a model trained on EEG features 

for each sleep stage and evaluated its feasibility. Therefore, we provide 
a comprehensive computational framework that automatically scores 
sleep stages and further determines the risk of OSA.

2. Methods

2.1. Data acquisition and preprocessing

Data from a total of 139 subjects from standard PSG conducted at 
Ewha Womans University Mokdong Hospital were employed in this 
study (Table 1). The age of the subjects ranged from 18 to 65 years. To 
investigate age-related effects, we divided the subjects into two groups: 
a younger group aged 18–45 years, including young and early middle-
aged adults, and an older group aged 46–65 years, including late 
middle-aged adults (Medley, 1980). The number of subjects in the 
younger and older groups were 69 and 70, respectively. The dataset 
included 42 healthy subjects and 97 patients with OSA. The patients 
with OSA were further subdivided into mild to moderate (mtom) and 
severe groups according to clinical indices evaluating the severity (Gul 
et al., 2018), and the values in each group for Respiratory Disturbance 
Index (RDI) and blood oxygen saturation (SpO2), which are key 
clinical indices, are presented in Table 1. To examine only the effects 
of OSA, all subjects with other medical histories such as stroke, 
neurological disorders, alcoholism, cancer, hypertension, and thyroid 
problems were excluded. More detailed demographic characteristics 
for the 139 subjects are provided in Table 1.

Data from all subjects were collected with Twin PSG Clinical 
Software (Glass Technologies, Warwick, RI, United States) (Choi et al., 

TABLE 1 Demographic characteristics of the subjects involved in this study.

Younger group (aged 18–45 years) Older group (aged 46–65 years)

Numbers of subjects 69 70

Age (mean ± SD) 32.91 ± 8.9 52.47 ± 7.22

OSA diagnosis (N, RDI, SpO2)

Healthy 22 (RDI = 4.35 ± 15.33, SpO2 = 89.40 ±8.07) 20 (RDI = 5.97 ± 10.03, SpO2 = 88.4 ± 6.41)

Mild to moderate OSA 25 (RDI = 15.90 ± 9.07, SpO2 = 82.92 ± 4.39) 24 (RDI = 12.46 ± 11.12, SpO2 = 83.70 ± 5.84)

Severe OSA 22 (RDI = 53.51 ± 26.61, SpO2 = 73.40 ± 10.95) 26 (RDI = 51.05 ± 20.15, SpO2 = 74.92 ± 7.90)

Gender (N)

Female 8 24

Male 61 46

Body mass index (mean ± SD) 27.12 ± 5.23 26.39 ± 3.95

Smoking status (N)

Never 42 42

Ex-smoker 7 15

Current 20 13

Number of epochs for each sleep stage

(total, mean ± SD)

Wake 8,027 (116.33 ± 103.16), 14.24% 8,218 (117.40 ± 72.13), 14.63%

N1 12,234 (117.30 ± 118.89), 21.71% 13,365 (190.93 ± 117.64), 20.23%

N2 25,799 (373.90 ± 122.47), 45.78% 25,167 (359.52 ± 114.79), 44.81%

N3 2,502 (36.26 ± 47.24), 4.44% 1,181 (16.87 ± 30.70), 2.10%

REM 7,796 (112.90 ± 50.90), 13.83% 8,235 (117.64 ± 51.73), 14.66%
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2021). Full night sleeps of approximately 5–7 h were recorded for each 
subject. Sleep EEG was recorded using six electrodes (F3, F4, C3, C3, 
O1, and O2) following the international 10–20 system. A single 
ground electrode was attached on the forehead, and two linked ear 
electrodes were used as references. Impedances of electrodes were 
kept under 10 kΩ and the sampling rate was 200 Hz. A more detailed 
description of PSG data acquisition can be  found in our previous 
paper (Choi et al., 2021). The sleep EEG was segmented into 30-s 
epochs, and each epoch was scored as one of five sleep stages (wake, 
N1, N2, N3, REM), as inspected by experts following the AASM 
manual (version 2.6; Berry et al., 2020).

The artifacts of EEG tend to contribute to the features of distinct 
sleep stages (Brunner et al., 1996); therefore, preprocessing of the sleep 
EEG was performed simply with bandpass filtering of 0.5–50 Hz. Out 
of data from 139 subjects, data from 111 subjects were used for the 
training set, and the remaining data (from 28 subjects) were used for 
the test set. The training and test sets were evenly distributed by age 
and OSA diagnosis.

2.2. Integrated AI framework for sleep 
staging and OSA screening

We propose an integrated AI framework that automatically 
classifies sleep stages by analyzing the acquired sleep EEG and further 
screens OSA based on those results. The overall pipeline on this is 
depicted in Figure 1. The preprocessed sleep EEG was divided into 
30-s epochs in the same manner as experts review, and eight main 

features were extracted from the spectrogram obtained via time-
frequency analysis of the signal at each epoch. The features were 
extracted from the signals for each channel. A more detailed 
description for feature extraction is provided in the following section. 
A sleep stage classification model was built by training the features for 
each epoch and the labels (sleep stage) scored by experts based on 
three different algorithms: SVM, kNN, and MLP. An OSA screening 
model was built by training the eight features in the REM and NREM 
(N1, N2, N3) stages of the healthy and OSA groups using the 
corresponding algorithms. In particular, to examine the age-related 
effect, a general model trained on the data of all subjects regardless of 
their age and age-specific models trained on only data from each age 
group were separately constructed, and their performance was 
compared. Each model was verified through five-fold cross-validation 
repeated 10 times, and the performance of the final model was further 
evaluated using the test set that was uniformly extracted according to 
the age and OSA diagnosis.

2.3. Feature extraction

For model training for sleep stage classification, we employed 
frequency-domain features that can directly quantify specific patterns 
crucial for discriminating sleep stages with relatively simple 
computations (Aboalayon et  al., 2016; Malafeev et  al., 2018). 
According to the AASM manual, the epoch is labeled ‘wake’ if 50% or 
more of the signal has an alpha rhythm. Stage N1 is scored when the 
alpha rhythm is attenuated and replaced with lower amplitude, mainly 

FIGURE 1

Integrated AI framework for sleep staging and OSA screening. The sleep EEG acquired from each subject is divided into 30-s epochs after 
preprocessing. Then, a spectrogram of the epoched signal is derived through short-time Fourier transform. Based on this, the following eight features 
are extracted: low_delta, K_comp_1, K_comp_2, theta, alpha, spindle_1, spindle_2, and beta. The feature extraction is performed on signals obtained 
from each channel (F3, F4, C3, C4, O1, and O2); thus, a total of 48 features are derived per epoch. A sleep stage classification model is constructed by 
training those features and the sleep stage labels scored by experts using the three different algorithms: SVM, kNN, and MLP. An OSA screening model 
is further built by training the average features of the REM and NREM (N1, N2, and N3) stages and OSA diagnosis for each subject. Based on this 
integrated model, as sleep EEG data from new subjects are input, the model can automatically analyze them to classify sleep stages and inform the risk 
of OSA for each individual.
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theta power. Stage N2 is similar to N1, except that the epoch has 
unique features called a K complex and sleep spindle (Krauss et al., 
2018; Ioannides et al., 2019). The K complex refers to a large abrupt 
activity with a delta frequency component, and the sleep spindle refers 
to a brief burst of the sigma band. They occur approximately every two 
epochs and have a duration of 0.5–1.5 s (Huang et al., 2014). Finally, 
stage N3 is scored when the slow waves of delta band continue 
(particularly low delta components of 0–2 Hz (Huang et al., 2014)).

To consider the abovementioned characteristics, we  first 
performed a short-time Fourier transform (STFT) using MATLAB 
(version R2019b) to derive the spectrogram of the signal at each 
epoch. The STFT was calculated based on time windows of 1 sec with 
50% overlap, resulting in 59 PSD vectors in one epoch (30 s). PSD 
vectors derived from each time window were normalized by their 
sum. The frequency band was divided into low delta (0.5–2 Hz), delta 
(1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), sigma (12–15 Hz), and beta 
(15–30 Hz) bands, and eight features to be used for model training 
were extracted from these results. In particular, to detect the K 
complex and sleep spindle, maximum values of 59 relative PSDs were 
extracted in the delta and sigma bands, respectively, and the mean 
values of the remaining 58 values were also extracted (Huang et al., 
2014). For other frequency bands, an average value of 59 relative PSDs 
was extracted (Figure 1). Consequently, a total of 48 features were 
derived per epoch because eight features were extracted from the 
signals of each channel (F3, F4, C3, C4, O1, and O2).

Referring to a previous paper that demonstrated significant 
differences in sleep EEG characteristics in REM and NREM stages 
between healthy and OSA groups (Kang et al., 2021), we derived the 
average features corresponding to the REM and NREM (including N1, 
N2, and N3) stages based on the extracted features for each epoch, and 
used those features for OSA screening model training.

2.4. Model training

Both the sleep stage classification and the OSA screening models 
were trained with a supervised machine learning approach that learns 
the extracted EEG features and labels assigned by experts (sleep stages 
or OSA diagnosis). For the model training, three different algorithms 
were employed including SVM, kNN, and MLP.

Regarding the kernel for the SVM, the radial basis function (RBF) 
was used (Huang et al., 2014). The kernel trick is remapping to a 
different plane or dimension to obtain a decision boundary, wherein 
the SVM operates with two hyperparameters called C and gamma. A 
grid search was performed to set the parameter values, within a set C 
[0.1, 1, 10, 100] and gamma [0.001, 0.01, 0.1, 1, 10], and the best 
parameters calculated per the experiments were applied. With respect 
to the hyperparameters of kNN, the number of neighbors (n_
neighbors), weights between the neighbors, and metric used for 
distance calculation were adjusted, and the best parameter values 
acquired from the grid search, within a set n_neighbors [1, 3, 5, 7, 9, 
11, 13, 15, 17, 19], weights [‘uniform’, ‘distance’], and metric [‘euclidean 
distance’, ‘manhattan distance’], were used. For the MLP, the number 
of hidden layers and the number of nodes for each hidden layer that 
determine the neural network structure were used as hyperparameters. 
The optimal combination was derived and used through the grid 
search, within a set the number of hidden layers [1, 2] and the number 
of nodes for each hidden layer [16, 32, 64]. Weight optimization at 

each node was performed based on Adam, which is a stochastic 
gradient-based optimization algorithm (Kingma and Ba, 2014), and a 
rectified linear unit activation function, and the maximum number of 
iterations was set to 200.

2.5. Model validation and performance 
evaluation

Five-fold cross-validation was repeated 10 times on the built 
models, and the performance between the models was statistically 
analyzed based on the 50 accuracy values derived from this 
assessment. Comparisons between the built models or groups were 
performed through one-way ANOVA, which is based on the F-statistic 
(Verma, 2013). ANOVA results are presented as p-values and F-values 
with degrees of freedom (between and within groups). The significance 
level was defined as p < 0.01, and post-hoc analyses were performed 
for significant results using independent-samples t-test with 
Bonferroni correction.

The performance of the final models was further assessed by 
employing the test set evenly extracted depending on age and 
OSA diagnosis.

3. Results

3.1. Sleep stage classification

3.1.1. Performance comparison between the 
general model and age-specific models

The sleep stage classification models were built based on three 
different learning algorithms (SVM, kNN, and MLP), and each model 
was evaluated via five-fold cross-validation repeated 10 times, in 
which each iteration was performed based on a newly shuffled dataset 
(Figure 2A). To investigate the age-related effects, two types of models 
were built with each learning algorithm, and their performance was 
assessed: a general model trained with data from all subjects regardless 
of age and age-specific models trained only with data from younger or 
older subjects. The age-specific models were validated using subjects’ 
data in their own age-group (Y-Y, O-O) as well as data from the other 
age-group (Y-O, O-Y).

The classification accuracy for each sleep stage (wake, N1, N2, N3, 
REM) and the overall accuracy across all stages of the abovementioned 
models are presented in Figure  2B. In the SVM-based models, 
statistical analyses demonstrated significant differences among the 
accuracies of the general model and age-specific models [in all stages: 
F(2,147) = 15.27, p < 0.001; wake: F(2,147) = 7.35, p = 0.239; N1: 
F(2,147) = 8.88, p < 0.001; N2: F(2,147) = 35.99, p < 0.001; N3: 
F(2,147) = 141.92, p < 0.001; REM: F(2,147) = 14.64, p = 0.002], and 
group pairs with significant differences in each post-hoc analysis are 
indicated by gray lines in Figure 2B (top row). The overall performance 
of the younger group model showed no noticeable difference with that 
of the general model, whereas the older group model revealed 
significantly poorer performance than the general model (mean ± SD 
of f1-scores in all stages: general model = 0.69 ± 0.02, Y-Y = 0.69 ± 0.03, 
O-O = 0.67 ± 0.02, p < 0.001 for the general model > O-O). The results 
for each sleep stage showed similar patterns to the overall outcome for 
all stages. The young group model demonstrated better (in N3: general 
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model = 0.56 ± 0.08, Y-Y = 0.65 ± 0.11, p < 0.001 for the general model 
< Y-Y) or similar performance (in wake: general model = 0.78 ± 0.03, 
Y-Y = 0.77 ± 0.05; N2: general model = 0.77 ± 0.02, Y-Y = 0.79 ± 0.03; 
REM: general model = 0.70 ± 0.03, Y-Y = 0.68 ± 0.05) compared with 
the general model, except for the N1 stage (general model = 0.49 ± 0.03, 
Y-Y = 0.47 ± 0.04, p = 0.001 for the general model > Y-Y). On the other 
hand, the older group model exhibited significantly lower accuracy in 
N2 and N3 stages than the general model (in N2: O-O = 0.74 ± 0.03, 
p < 0.001 for the general model > O-O; N3: O-O = 0.30 ± 0.13, p < 0.001 
for the general model > O-O). There were no statistically significant 
differences in the other stages (in wake: O-O = 0.77 ± 0.04; N1: 
O-O = 0.49 ± 0.04; REM: O-O = 0.71 ± 0.04). In addition, with respect 
to age-specific models, the accuracy when using the validation set 

from their own age group was relatively higher than that obtained 
when using the validation set from the other age group (in all stages: 
Y-O = 0.68 ± 0.02, O-Y = 0.66 ± 0.03, p = 0.002 for Y-Y > Y-O, p = 0.029 
for O-O > O-Y; Supplementary Figure S1).

The patterns of performance differences among the general model 
and age-specific models identified in the kNN-based models were 
fairly similar to those identified in the SVM-based models (Figure 2B, 
middle row). In particular, in terms of overall accuracy for all sleep 
stages, a statistically significant difference was derived among the 
models [in all stages: F(2,147) = 9.11, p < 0.001], and while the younger 
group model showed no significant difference from the general model, 
the older group model demonstrated significantly lower accuracy than 
the general model (in all stages: general model = 0.64 ± 0.02, 

FIGURE 2

Performance comparison between the general model and age-specific models. (A) Model training and validation procedures. Each model was 
assessed by five-fold validation repeated 10 times, and every five-fold validation was conducted based on a newly shuffled dataset. The general model 
was trained and validated based on the data from all subjects, the age-specific models were trained with the data corresponding to each age group, 
and the validation was performed using data belonging to their own age group (Y-Y, O-O) as well as data from the other age group (Y-O, O-Y). 
(B) Validation results for the general model and age-specific models. The figures show the results obtained by the validation procedures of each model 
for each sleep stage. Pairs with statistically significant differences in classification accuracy are indicated by solid gray lines. An asterisk represents a 
significant difference (* p < 0.01).
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Y-Y = 0.63 ± 0.03, O-O = 0.62 ± 0.03, p < 0.001 for the general 
model > O-O).

In contrast to the findings in the SVM- and kNN-based models, 
in MLP-based models, no significant performance differences were 
identified among the models by age group [in all stages: F(2,147) = 2.30, 
p = 0.104; Figure 2B, bottom row]. Compared with the general model, 
both age-specific models demonstrated no significant difference in  
the overall accuracy across all stages (in all stages: general 
model = 0.69 ± 0.02, Y-Y = 0.69 ± 0.03, O-O = 0.68 ± 0.02), even though 
the younger group model and older group model revealed lower 
accuracy than the general model for the N1 and N3 stages, respectively 
(in N1: general model = 0.48 ± 0.04, Y-Y = 0.45 ± 0.05, p < 0.001  
for general model > Y-Y; N3: general model = 0.56 ± 0.10, 
O-O = 0.30 ± 0.15, p < 0.001 for general model > O-O).

The classification accuracy for sleep stage also demonstrated a 
significant difference depending on the learning algorithm (in all 
stages using the general model: F(2,147) = 130.57, p < 0.001). The 
SVM- and MLP-based model showed similar levels of accuracy, 
whereas the kNN-based model yielded significantly lower accuracy 
than those two models (SVM-based model = 0.69 ± 0.02, kNN-based 
model = 0.64 ± 0.02, MLP-based model = 0.69 ± 0.02, p < 0.001 for 
the SVM-based model > kNN-based model, p < 0.001 for the 
MLP-based model > kNN-based model). This difference in 
performance among the models using the different algorithms was 
consistently identified not only across all stages but also for each 
sleep stage except for the N3 stage [in wake: F(2,147) = 18.17, 
p < 0.001; N1: F(2,147) = 89.71, p < 0.001; N2: F(2,147) = 20.80, 
p < 0.001; N3: F(2,147) = 1.37, p = 0.257; R: F(2,147) = 160.23, 
p < 0.001].

3.1.2. Sleep stage prediction results using the 
general model

The results of the previous section indicated that the age-specific 
model may have poorer performance than the general model 
depending on the age groups. Therefore, we selected the age-integrated 
general model as a representative model for sleep stage classification 
and employed it for subsequent work. With respect to the learning 
algorithm, all three different algorithms, SVM, kNN, and MLP, were 
used independently.

Figure 3A depicts the hypnograms for a single subject (healthy 
older adult) among a test set of 28 subjects. The upper red graph 
indicates the expert scored sleep stages, and the lower blue graph 
shows the automatically classified stages by the SVM-based model. 
Prediction via the model demonstrated an overall similar hypnogram 
for ~7 h of total sleep and yielded an accuracy (f1-score) of 0.82 in this 
particular subject. The test results for a total of 28 subjects in each 
model (age-integrated general model) trained based on the three 
different learning algorithms are presented in Figures  3B,C. The 
SVM-, kNN-, MLP-based models revealed average accuracies of 0.72, 
0.67, and 0.73, respectively, for all stages. For each stage, they showed 
high accuracies for the wake and N2 stages but relatively low 
accuracies for the N1 and N3 stages. Consistent with the model 
validation results in the previous section, the kNN-based model 
demonstrated relatively poorer performance than the SVM- and 
MLP-based models in terms of accuracy at each stage and overall 
accuracy across all stages; however, in the current test results, the 
difference in accuracy among the models did not reach statistical 
significance. The confusion matrices (Figure  3C) visualize the 

performance of each model at a glance and inform the ratios of the 
predicted sleep stages to the actual stages (expert-scored sleep stages).

3.2. Obstructive sleep apnea screening

3.2.1. Differences in EEG features according to 
the presence and severity of OSA

Patients with OSA diagnosed based on multiple clinical indices, 
including respiration-related indices, demonstrated marked 
differences in the characteristics of sleep EEG as well as in 
corresponding indices compared with healthy subjects. Such 
differences in EEG features according to the presence or severity of 
OSA also differed by age group. Figure 4 shows eight EEG features of 
healthy subjects, patients with mtom OSA, and patients with severe 
OSA for the NREM (including N1, N2, and N3) and REM sleep stages 
in the younger and older groups.

Statistical analysis in the younger group demonstrated significant 
differences in the K complex, beta-band, and spindle features 
according to OSA severity [in NREM stages: K_comp_1: 
F(2,53) = 7.61, p = 0.001; K_comp_2: F(2,53) = 7.67, p = 0.001; Beta: 
F(2,53) = 6.10, p = 0.004; in REM stages: K_comp_1: F(2,53) = 8.90, 
p < 0.001; K_comp_2: F(2,53) = 7.31, p = 0.002; Spindle_1: 
F(2,53) = 5.10, p = 0.009; Spindle_2: F(2,53) = 6.21, p = 0.004; Beta: 
F(2,53) = 7.01, p = 0.002]. In particular, the K complex features (K_
comp_1, K_comp_2) exhibited a tendency to decrease toward severe 
OSA in both the NREM and REM sleep stages, and statistically 
significant pairs are indicated by gray lines. In contrast, although there 
was no significant difference between the healthy and mtom OSA 
groups, the beta-band features showed a tendency to increase toward 
severe OSA in both sleep stages. In the REM stages, significant 
differences were elicited in the spindle features (spindle_1 and 
spindle_2) in addition to the K complex and beta-band features; there 
was no significant difference between the healthy and mtom OSA 
groups, but the severe OSA group showed significantly higher values 
than those two groups.

In contrast to the younger group, differences in EEG characteristics 
depending on OSA severity were not clearly observed in the older 
group. In particular, in the NREM stages, K complex and beta-band 
features represented similar tendencies to those identified in the 
younger group [only the beta-band features reached statistical 
significance; F(2,53) = 7.57, p = 0.001], but no between-group 
differences (according to OSA severity) were elicited in the REM stages.

3.2.2. Performance analysis of the model
The OSA screening model was built by training the EEG features 

in the REM/NREM stages (expert-scored stages) and OSA diagnostic 
results for each subject based on the three learning algorithms. As in 
the previous section (section 3.1), to examine the age-related effect, 
the general model and age-specific models were independently 
generated, and their performance was compared. The models were 
further evaluated by comparison with models trained on SpO2, a 
respiration-related measure, along with EEG features, to investigate 
the feasibility of using EEG features.

The average accuracies of the OSA classification (healthy vs. mtom 
OSA vs. severe OSA) in the general models were 0.46, 0.47, and 0.50 
for the SVM, kNN, and MLP algorithms, respectively, when evaluated 
by performing 10 iterations of five-fold cross-validation; these were 
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far below the average accuracies of the models trained on the EEG 
features and SpO2 (0.64, 0.67, and 0.64 for the SVM, kNN, and MLP 
algorithms, respectively) (Table 2). However, in the case of the models 
trained excluding the features of the mtom OSA group, which had 
intermediate characteristics between the healthy and severe OSA 
groups, the accuracies considerably increased to 0.74, 0.69, and 0.74 
for the SVM, kNN, and MLP algorithms, respectively, even though 
they did not reach those of the models based on both EEG features 
and SpO2 (0.86, 0.87, and 0.89 for the SVM, kNN, and MLP 
algorithms, respectively). These patterns were consistently observed 
in age-specific models as well as the general models.

With respect to the age-related effect, no statistically significant 
differences were elicited in the performance of the general and age-specific 
models across all the three learning algorithms. However, in terms of the 
OSA classification, the age-specific models tended to show slightly lower 
accuracies than the general model, and the older group model had the 

lowest accuracy (Table 2). In the healthy vs. severe OSA groups, the 
younger group model derived a similar accuracy to the general model, but 
the older group model yielded a relatively lower accuracy than those two 
models; these characteristics were more pronounced in models trained 
using the SVM or kNN algorithms.

Finally, regarding the effect of learning algorithms, although 
MLP-based models demonstrated slightly better performance overall 
than SVM- and kNN-based models, there was no statistically 
significant difference.

3.2.3. OSA prediction results using the integrated 
model combining the sleep stage classification 
model and OSA screening model

Referring to the results of the analysis in the previous section, 
the age-integrated general model trained excluding the features of 
the mtom OSA group was defined as an OSA screening model 

FIGURE 3

Performance evaluation of sleep stage classification model. (A) Test result of a particular subject using the SVM-based general model. The upper red 
hypnogram represents the expert scored sleep stages, and the lower blue hypnogram indicates the automatically classified stages by the model. 
(B) Sleep stage classification accuracy using the entire test set for each model trained by three different learning algorithms and (C) their confusion 
matrices. The table exhibits the overall accuracy for all stages and the accuracy for each stage. The confusion matrices show the ratios of the predicted 
stages to the expert-scored stages.
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(healthy vs. OSA), and its performance was evaluated by applying 
the test set. The test was conducted in a manner that first 
automatically classified the sleep stages using the model built in the 
previous section 3.1 and then applied the results to the OSA 
screening model. The outcomes revealed that the accuracy varied 
depending on the learning algorithms used in training the sleep 

stage classification model and OSA screening model (Table 3). In 
particular, the highest accuracy of 0.73 was derived when the MLP 
algorithm was applied to both models for training, which indicates 
that patients with OSA could be screened with the corresponding 
accuracy level only with sleep EEG characteristics without any 
respiration-related measures.

FIGURE 4

Differences in eight EEG features among healthy subjects, patients with mtom OSA, and patients with severe OSA in the younger and older groups. 
Results show differences in eight features among the three groups according to OSA severity in REM and NREM sleep stages. Pairs with statistically 
significant differences are marked by solid gray lines. Asterisk represents a significant difference (*p < 0.01).

TABLE 2 Validation of OSA screening model.

Validation results of the OSA screening model (10 iterated five-fold cross validation, N = 111; Healthy = 34, Mtom 
OSA = 39, Severe OSA = 38)

General Age-specific (Y-Y) Age-specific (O-O)

Model trained 

with REM/NREM 

EEG features

Model trained with  

REM/NREM EEG 

features + SpO₂ index

Model trained 

with REM/NREM 

EEG features

Model trained with  

REM/NREM EEG 

features + SpO₂ index

Model trained 

with REM/NREM 

EEG features

Model trained with  

REM/NREM EEG 

features + SpO₂ index

SVM

Healthy vs. Mtom  

OSA vs. Severe OSA
0.46 ± 0.10 0.64 ± 0.09 0.44 ± 0.13 0.67 ± 0.15 0.43 ± 0.13 0.57 ± 0.16

Healthy vs. Severe OSA 0.74 ± 0.12 0.86 ± 0.08 0.74 ± 0.17 0.88 ± 0.08 0.70 ± 0.14 0.83 ± 0.11

kNN

Healthy vs. Mtom  

OSA vs. Severe OSA
0.47 ± 0.11 0.67 ± 0.10 0.42 ± 0.16 0.67 ± 0.13 0.42 ± 0.15 0.55 ± 0.15

Healthy vs. Severe OSA 0.69 ± 0.11 0.87 ± 0.07 0.70 ± 0.19 0.88 ± 0.11 0.62 ± 0.15 0.84 ± 0.12

MLP

Healthy vs. Mtom  

OSA vs. Severe OSA
0.50 ± 0.11 0.64 ± 0.10 0.48 ± 0.14 0.66 ± 0.15 0.45 ± 0.14 0.55 ± 0.15

Healthy vs. Severe OSA 0.74 ± 0.12 0.89 ± 0.08 0.71 ± 0.16 0.90 ± 0.11 0.72 ± 0.15 0.85 ± 0.12
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4. Discussion

We have proposed an integrated computational framework that 
can automatically analyze sleep EEG data obtained from each subject, 
classify sleep stages using machine learning techniques, and determine 
the risk of OSA based on these findings. The current outcomes have 
demonstrated the feasibility of AI technologies that can play a 
beneficial role in clinical applications by enabling automated and 
systematic analyses.

With respect to automatic sleep stage classification, we constructed 
a general model that trained on data from all subjects regardless of age 
and age-specific models that trained only on data from each age group 
and compared their performance. As a result, the younger group 
model showed similar accuracy to the general model and even higher 
accuracies in some stages, although they did not reach statistical 
significance. In contrast, the older group model exhibited significantly 
lower accuracies than the general model. In the case of the age-specific 
models, when the data of subjects belonging to their own age group 
were used for validation, the accuracy was generally higher than when 
data belonging to the other age group were used. All these results 
suggest that there are some differences in sleep EEG characteristics 
between age groups, as evidenced by the findings of previous studies 
(Landolt et  al., 1996; Campos-Beltrán and Marshall, 2021). In 
particular, the results imply that the sleep EEG data of younger 
populations have homogeneous characteristics, given that the younger 
group model showed similar or higher accuracies despite the smaller 
training sets than the general model. On the other hand, the 
performance degradation of the older group model may be interpreted 
as individual variability increases as aging progresses; thus, the older 
population has more heterogeneous characteristics.

Previous studies have demonstrated that the older group has 
larger inter-individual variability than the younger group in terms of 
not only macro-level sleep architecture (including total sleep time, 
sleep efficiency, and the ratio of time spent in each sleep stage) but also 
micro-level architecture that can be identified from the EEG, such as 
spindle density and REM density (Peters et al., 2014; Mander et al., 
2017). Moreover, such characteristics were also observed in the 
current data set. As a result of examining inter-individual variability 
based on the Pearson correlation coefficient using the PSD features of 
each subject’s sleep EEG, a significant difference was found between 
the two age groups; in general, higher correlation values   were derived 
between individuals in the younger group than in the older group, 
indicating that the features in the younger group are more 
homogeneous (Supplementary Figure S2). These group differences 
were especially pronounced in the wake, REM, and N1 stages. In 
contrast, in the N3 stage, the older group showed higher correlation 
values; however, it should be considered that the number of samples 
for the N3 stage in the older group was significantly smaller than that 
of the younger group due to the nature of reduced deeper NREM sleep 
in the older population. The results emphasize that attention should 

be paid to the bias of individual factors, such as age bias, when training 
a model using sleep EEG data. Furthermore, future studies are needed 
to systematically investigate aging-related effects on sleep, especially 
in terms of changes in brain network characteristics.

The sleep stage scoring accuracy also differed depending on the 
algorithms used to train the model. Based on the age-integrated 
general model, the test results for all stages yielded average accuracies 
of 72, 67, and 73%, when applying the SVM, kNN, and MLP 
algorithms, respectively, and the SVM- and MLP-based models 
derived relatively higher performance than the kNN-based model 
across all stages and for each stage, although not reaching statistical 
significance. The classification accuracy of sleep stages revealed 
differences for each stage. While the accuracies for the wake and N2 
stages were fairly high, the accuracies for the N1 and N3 stages were 
relatively low, and these characteristics were consistently observed in 
the models trained with three different algorithms.

Regarding the N3 stage, the accuracy was somewhat lower than 
that reported in previous studies (Huang et al., 2014; Zhu et al., 2014; 
Acharya et al., 2015), and it was often mispredicted as the N2 stage. 
This outcome may be due to the characteristics of the data set used in 
this study. To investigate the effects of age and OSA, in the current 
study, we included more data from patients with OSA as well as older 
adults compared to the existing studies. In other words, the proportion 
of older adults and patients with OSA in the entire data set is quite 
high. The N3 stage represents deep sleep that constitutes approximately 
10–20% of total sleep time in healthy people (Kryger et al., 2017), 
which naturally decreases with aging or as sleep quality deteriorates 
due to sleep disorders, such as OSA. Therefore, the low accuracy of the 
model for the N3 stage is likely to be induced by insufficient learning 
of the features of the corresponding stage, along with increased 
individual variability with aging, depending on the demographic 
characteristics of the data set; The model often misclassified N3 as the 
N2 stage, which was relatively well-trained. This can be improved by 
acquiring more data sets and training them further.

The low accuracy for the N1 stage and especially the confusion with 
the N2 stage have been frequently observed in the existing machine 
learning studies for automatic sleep stage classification (Panossian and 
Avidan, 2009; Hsu et al., 2013; Supratak et al., 2017; Sors et al., 2018). In 
fact, both stages belong to shallow sleep and share similar characteristics. 
According to the AASM manual, the scoring for the N2 stage is based on 
the occurrence of a K-complex or sleep spindle. However, if the N2 stage 
has preceded beforehand, the following epoch is also scored as N2 in the 
absence of arousal or interruption, even if those two features are not 
observed. In other words, the scoring is performed not only by the 
features of the sleep EEG but also by the pre-post relationship of the sleep 
stages. The learning algorithms we applied here, which classify sleep 
stages by training the PSD features of the sleep EEG for each epoch, have 
a limitation in that they cannot reflect the scoring considering such a 
pre-post relationship, thereby exhibiting relatively low performance for 
the N1 stage. To overcome this issue, it may be an alternative way to use 

TABLE 3 OSA screening results.

OSA screening result using the general model (Testset N = 28; Younger adults = 13, Older adults = 15)

Sleep stage classification model SVM SVM SVM kNN kNN kNN MLP MLP MLP

OSA screening model SVM kNN MLP SVM kNN MLP SVM kNN MLP

0.65 0.45 0.71 0.58 0.52 0.71 0.65 0.53 0.73
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an algorithm that can learn the pre-post data features and use them for 
stage scoring, such as bidirectional long short-term memory (Zhang 
et al., 2019; Kuo and Chen, 2020), even at an increased computational cost.

Table  4 presents a summary of the characteristics of several 
recently published notable EEG-based sleep stage classification 
models. As expected, models trained on data from healthy subjects 
with a small age variance demonstrated relatively high overall 
performance across different learning algorithms compared to other 
models (Ghasemzadeh et al., 2019). In particular, the model built with 
data from young, healthy subjects demonstrated the highest accuracy. 
Direct comparison may be  unreasonable given that models can 
operate at different performance levels depending on the data set, even 
if the same training approach is applied (Fan et al., 2021); however, the 
current model exhibited accuracy similar to existing models built on 
data sets including subjects with sleep disorders and middle-aged 
adults (75% in Tzimourta et al., 2018, 72% in Tripathy et al., 2020, and 
75% with the original unbalanced training approach in Sharma et al., 
2021). Recent studies have applied additional processes during model 
training to improve the classification accuracy of the model. Sharma 
and colleagues performed unbiased training by equalizing the number 
of epochs used in each sleep stage learning (i.e., generating a balanced 
dataset) using over-sampling and under-sampling techniques to 
resolve the learning imbalance for each sleep stage, which elicited 
markedly improved performance compared to the training model on 
the original unbalanced dataset (85% in the balanced dataset and 75% 
in the original unbalanced dataset; Sharma et al., 2021). Hussain and 
colleagues used clean preprocessed EEG data by removing signal 
artifacts (including ocular, muscle, and motion artifacts) via 
independent component analysis and added a feature selection 
procedure based on further statistical analyses, thereby increasing the 
accuracy of the model (84–89%; Hussain et al., 2022). The current 
study aimed to create an EEG-based integrated model for sleep stage 
scoring and OSA screening and evaluate its feasibility under the 
condition of minimizing the amount of computation and complexity, 
considering compatibility with wearable devices and mobile 
applications, thus, we did not apply additional procedures to improve 
the model performance. It is expected that models with enhanced 
performance can be built by applying appropriate additional processes 
considering the trade-off with computational power, if necessary.

Characteristics of sleep EEG at each NREM and REM stage 
demonstrated significant differences between healthy subjects and 
patients with OSA, consistent with previous findings (Kang et al., 
2021). Those differences were more pronounced in the younger group 
than in the older group. The younger group demonstrated significant 
differences in K complex and beta band features across NREM and 
REM stages according to the presence or severity of OSA (healthy vs. 
mtom OSA vs. severe OSA groups). The group showed additional 
significant differences in spindle features in the REM stage. The older 
group exhibited relatively similar patterns to the younger group in the 
NREM stage, but a significant difference was derived only for the beta 
band feature, and no noticeable differences (among the three groups) 
were found in the REM stage. Accordingly, the OSA classification 
model trained on EEG features in NREM and REM stages represented 
generally lower accuracy in the older age-specific model than the 
younger age-specific or general model. Concerning the learning 
algorithm used for model training, the MLP-based model yielded 
higher performance than the SVM- and kNN-based models, but the 
difference was not statistically significant.

The MLP-based OSA screening model trained excluding the 
features of the mtom OSA group, which has intermediate features that 
are relatively indistinguishable compared to the healthy or severe OSA 
groups, exhibited 73% of performance when applying the scoring 
results derived from the automatic sleep stage classification model. 
These results are critically meaningful in that the model was able to 
distinguish patients with OSA (mtom and severe OSA) from healthy 
subjects, using only the characteristics of the sleep EEG without 
respiration-related measures. The results further suggest the need for 
systematic studies for OSA disease in terms of brain networks, 
including whether the altered brain network properties cause 
respiration-related problems during sleep or vice versa. Regarding OSA 
screening, another feature that needs to be carefully investigated in 
sleep EEG is arousal. In fact, one of the main characteristics of patients 
with OSA is frequent arousals from sleep, which are accompanied by a 
sudden increase in EEG frequency (Altevogt and Colten, 2006; Yue 
et al., 2009). In the dataset used in the current study, a significant 
difference was observed in the number of arousals during sleep among 
the healthy, mtom, and severe OSA groups. Furthermore, the 
performance of the OSA screening improved when the model was 
trained by adding the number of arousals in addition to NREM/REM 
EEG features (Supplementary Figure S3). Although the current study 
did not cover the contents related to the arousal index in-depth, given 
that the recent findings demonstrated that gamma power in EEG 
arousal differs according to the severity of the respiratory event and 
sleep stages (Pitkänen et al., 2021), future studies may need to closely 
examine such characteristics and incorporate them into building the 
models as needed.

Although the current results showed the feasibility that the OSA 
screening could be  achieved to some extent with only EEG 
characteristics, the accuracy still did not reach that of the model 
trained by adding the respiratory-related index, SpO2, as features. This 
is in line with the results of a recent paper demonstrating that a deep 
learning-based model trained on pulse oximetry measures is effective 
in scoring sleep stages and estimating AHI (Huttunen et al., 2022), 
and suggests that SpO2 monitoring may be important in increasing 
efficacy for the screening of, at least, OSA, among several other sleep 
disorders. Given that SpO2 could be obtained through a relatively 
simple setup, such as a finger pulse oximeter, current state-of-the-art 
wearable devices, which are being developed for individual sleep 
quality evaluation (Koushik et  al., 2019; Liao et  al., 2020) may 
be expanded into integrated systems that include detecting SpO2 levels 
as well as the EEG. Such systems would be  particularly useful in 
enabling individuals to analyze their sleep patterns and assess their 
risk of sleep disorders, even at home.

In the current study, an integrated model was constructed that 
performs sleep stage classification and OSA screening based on sleep 
EEG, and its feasibility was verified. However, there are still several 
limitations, and further studies are needed. To investigate age-related 
effects, we divided the subjects into two age groups, built a model for 
each group or the entire group, and elicited meaningful results by 
comparing their performance, but due to the limitations of the data set, 
data from older adults aged 65 years or older were not included. 
Therefore, it is required to expand the model based on sleep EEG 
obtained from older adults and to further verify the current outcomes. 
In addition, due to the nature of OSA, where the rate of diagnosis is 3.3 
times higher in men than women (Bixler et al., 2001), there was a 
gender bias in the current data set (men: 107, women: 32). Moreover, 
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TABLE 4 Summary of existing sleep stage classification models based on conventional machine learning techniques.

Study Dataset Subjects N, 
age, gender

Data 
channels

Features Algorithm Class (the 
number of 
epochs for 
each class)

Accuracy

Tzimourta et al. 

(2018)

ISRUC-sleep 

dataset

100 subjects with 

sleep disorders, 

51 ± 16 

(mean ± SD), 

Female: 45  

Male: 55

6 channels (F3-A2, 

C3-A2, O1-A2, 

F4-A1, C4-A1, 

O2-A1)

Energy for each of 5 

subbands a

Naive Bayes Wake, N1, N2, 

N3, REM 

(20,104, 11,104, 

27,398, 17,325, 

11,256)

56%

Decision Tree 66%

kNN 65%

SVM 67%

Random Forests 75%

Ghasemzadeh et al. 

(2019)

ISRUC-sleep 

dataset

10 healthy 

subjects, 40 ± 10, 

Female: 1, Male: 9

1 channel (C3-A2) Entropy for each of 

11 subbands b (non-

normalized log 

energy)

SVM Wake, N1, N2, 

N3, REM (1702, 

1,123, 2,850, 

1976, 1,238)

82%

EBT 81%

weighted kNN 81%

Entropy for each of 

11 subbands b (non-

normalized 

Shannon)

SVM 76%

EBT 79%

weighted kNN 76%

Sleep-EDF 

dataset

8 healthy subjects, 

28 ± 5, Female: 4, 

Male: 4

2 channels (Pz-Oz, 

Fpz-Cz)

Entropy for each of 

11 subbands b (non-

normalized log 

energy)

SVM Wake, S1, S2, S3, 

S4, REM (8,055, 

604, 3,621, 672, 

627,1,609)

93%

Tripathy et al. 

(2020)

CAP sleep 

dataset

25 subjects 

including 6 

healthy subjects 

and 19 subjects 

with sleep 

disorders, 48 ± 14 

for female, 64 ± 18 

for male, Female: 

10, Male: 15

4 channels (P4-O2, 

C4-A1, F4-C4, C4-P4)

Dispersion entropy, 

Bubble entropy for 

each of 5 subbands c

Hybrid classifier 

(based on class-

specific residuals 

using sparse 

representation and 

distances from 

nearest neighbors)

Wake, S1, S2, S3, 

S4, REM (2,613, 

1,537, 4,955, 

2,707, 2,601, 

2,947)

72%

Sharma et al. 

(2021)

CAP sleep 

dataset

80 subjects 

including 6 

healthy subjects 

and 74 subjects 

with sleep 

disorders, 48 ± 20, 

Female: 32,  

Male: 48

2 channels (F4-C4, 

C4-A1)
Norm features (l l1 1, , 

l° ) and their 

statistics from 6 

subbands signals 

(obtained from 

wavelet 

decomposition)

Decision tree Wake, S1, S2, S3, 

S4, REM for 

original 

unbalanced 

epochs: (15,841, 

3,519, 28,628, 

8,804, 10,188, 

13,687) for 

balanced epochs: 

(13,407, 13,407, 

13,407, 13,407, 

13,407, 13,407)

With EBT, for 

unbalanced 

training: 75%, for 

balanced training: 

85%

Logistic regression

Naive Bayes

SVM

kNN

EBT

Hussain et al. 

(2022)

HMC sleep 

staging dataset

100 subjects with 

sleep disorders, 

54 ± 15 Female: 

66, Male: 88

3 channels (F4, C4, 

O2)

Mean power, median 

frequency, mean 

frequency, spectral 

edge, peak frequency 

for each of 5 

subbandsd, delta-

alpha power ratio, 

delta-theta power 

ratio, slow-fast wave 

power ratio

C5.0 decision tree Wake, S1, S2, S3, 

S4, REM

87%

MLP 89%

CHAID 84%

aSubbands, 0–4, 4–8, 8–13, 13–30, and 30–60 Hz; bsubbands, 0.4–4, 4–8, 8–10, 10–13, 13–18, 18–25, 25–30, 30–36, 36–41, 41–46, and 46–50 Hz; csubbands, 0–4, 4–8, 8–13, 13–30, and 30–
75 Hz; dsubbands, 0.5–4, 4–8, 8–13, 13–30, and 30–44 Hz; ISRUC, Institute of Systems and Robotics, University of Coimbra; CAP, Cyclic Alternating Pattern; HMC, Haaglanden Medisch 
Centrum; kNN, k-Nearest Neighbors; SVM, Support Vector Machine; EBT, Ensemble Bagged Trees; MLP, MultiLayer Perceptron; CHAID, Chi-Squared Automatic Interaction Detector.
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there was a difference in the gender ratio between the two age groups. 
Such a gender bias may have affected the current results, as previous 
studies have demonstrated significant differences in sleep EEG 
characteristics depending on gender groups (e.g., higher PSDs in 
women, especially in delta, theta, low alpha, and high spindle frequency 
bands; Carrier et al., 2001; Simor et al., 2013). Thus, it is necessary to 
systematically analyze the effects of gender by using data sets without 
gender bias or by comparing models built according to gender.

As mentioned earlier, we here used relatively less complex and 
low-computational training approaches to determine the feasibility 
of the integrated model. The accuracy of the model could be further 
improved by removing signal artifacts in the sleep EEG, selecting 
only clean epochs and applying them to the model training, or 
employing a more complex architecture, such as recurrent neural 
networks that can reflect time-varying dynamic features. In addition, 
regarding the features used for model training, frequency-domain 
features, which can directly quantify important patterns in sleep stage 
scoring with simple computations, were used in the current study. 
However, given that previous studies used various types of features 
including time-domain and nonlinear features in addition to 
frequency-domain features, and demonstrated quite good model 
performance (Aboalayon et al., 2016), further studies are needed to 
investigate the effects of features by performing comparative analysis 
on diverse features. Applying dimensionality reduction or feature 
selection algorithms could further increase the model efficiency.

Many studies are currently underway to provide individual 
assistance for health management through wearable devices and 
relevant mobile applications (Koushik et al., 2019; Liao et al., 2020). 
The current outcomes suggest that AI-based computational studies, 
combined with such innovative technologies, can not only evaluate 
sleep status in an individual manner but also promote early intervention 
by informing the risk of sleep disorders such as OSA. Those studies 
could ultimately contribute to personalized medicine.
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