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Recent studies have suggested a role for N6-methyladenosine (m6A) modification

in neurological diseases. Hypothermia, a commonly used treatment for traumatic

brain injury, plays a neuroprotective role by altering m6A modifications. In this

study, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) was applied to

conduct a genome-wide analysis of RNA m6A methylation in the rat hippocampus

of Sham and traumatic brain injury (TBI) groups. In addition, we identified the

expression of mRNA in the rat hippocampus after TBI with hypothermia treatment.

Compared with the Sham group, the sequencing results of the TBI group showed

that 951 different m6A peaks and 1226 differentially expressed mRNAs were found.

We performed cross-linking analysis of the data of the two groups. The result

showed that 92 hyper-methylated genes were upregulated, 13 hyper-methylated

genes were downregulated, 25 hypo-methylated genes were upregulated, and 10

hypo-methylated genes were downregulated. Moreover, a total of 758 differential

peaks were identified between TBI and hypothermia treatment groups. Among these

differential peaks, 173 peaks were altered by TBI and reversed by hypothermia

treatment, including Plat, Pdcd5, Rnd3, Sirt1, Plaur, Runx1, Ccr1, Marveld1, Lmnb2,

and Chd7. We found that hypothermia treatment transformed some aspects of the

TBI-induced m6A methylation landscape of the rat hippocampus.

KEYWORDS

traumatic brain injury, m6A methylation, hypothermia, rat hippocampus, epigenetic
modification

Introduction

Globally, traumatic brain injury (TBI) is one of the main causes of death and disability
(Coronado et al., 2012). It has been reported that in Europe over 7 million people suffer
from learning and physical disability induced by TBI (Tagliaferri et al., 2006), and patients
diagnosed with severe TBI mortality over a third (Stein et al., 2010). Society and healthcare
systems worldwide are heavily burdened by TBI patients’ clinical management and associated
socioeconomic problems (Khellaf et al., 2019). Patients with TBI may have a range of functional
problems, such as cognitive, sensorimotor, and post-concussive symptoms, the impact and
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severity of which depend on the position and severity of injury
(Blennow et al., 2016; Pavlovic et al., 2019). The TBI can be
categorized as (1) closed head, (2) penetrating, and (3) explosive
blast TBI, according to the specific physical mechanisms of injury
(Bruns and Hauser, 2003). The primary damage caused by the
injury depends on the mechanical forces impacting the brain
tissues directly. The secondary damage is caused by a cascade of
cellular and molecular changes triggered by the primary damage.
Furthermore, the secondary damage includes hypoglycemia, hypoxic,
and hypotensive forms, which cause high intracranial pressure
reducing cerebral blood supply (Andriessen et al., 2010; McGinn and
Povlishock, 2016; Dixon, 2017). Over time, studies have used TBI
models to show that a certain level of hypothermia is effective in
reducing brain edema and improving functional outcomes (Ahmed
et al., 2016; Docherty et al., 2018). Evidence has increasingly indicated
that the TBI instigates the cascade of brain injury in several ways,
while hypothermia has a protective effect against brain injury via
several mechanisms, including inhibiting the production of lactic
acid and energy metabolism in the brain (Zhang et al., 2011),
reducing endoplasmic reticulum stress-induced apoptosis (Wang C.
et al., 2019), promoting neuronal sprouting (Zhao et al., 2017),
and alleviating inflammation caused by an elevated NO, ROS, and
inflammatory factors and activated glial cells (Lee et al., 2016; Liu
et al., 2016; Truettner et al., 2017). According to the results of
multiple preclinical studies, mild to moderate hypothermia at an early
stage following focal or diffuse TBI has beneficial histopathological,
behavioral, and cognitive outcomes (Yokobori et al., 2011; Yokobori
et al., 2013; Jin et al., 2015; Lei et al., 2015).

However, the translation of these research findings into
the clinical application has proved controversial. Multiple large
multicenter clinical trials have not found hypothermia treatment
to have a significant protective effect on the brain (Andriessen
et al., 2010; Clifton et al., 2011), probably due to the complex
and multifactorial nature of cellular responses, as well as a lack
of understanding of TBI. Therefore, there is an urgent need to
thoroughly investigate the key aspects of physiology in TBI and to
improve the patient’s prognosis.

7-methylguanosine (m7G), m1G, m2G, m6G, 5-methylcytosine
(m5C), N1-methyladenosine (m1A), and m6A are common RNA
methylation sites (Roundtree et al., 2017; Weng et al., 2018). Recent
studies have shown that m6A modifications participate in various
basic biological processes, such as controlling mRNA translation,
splicing, maturation, stability, regulating stem cell differentiation
and self-renewal, and regulating RNA–protein interactions (Tong
et al., 2018; Zhou et al., 2018). Most of the m6A modifications
are enriched at specific transcript landmarks, especially in stop
codons, long internal exons, and 5′ and 3′untranslated regions
(UTR) (Dominissini et al., 2012). RNA methyltransferases (writers)
including METTL3, METTL14, and their cofactors WTAP, catalyze
m6A modification. Demethylases (erasers) including FTO and
ALKBH5 can remove m6A modification, and m6A-binding proteins
(readers) including YTHDC1-2, YTHDF1-3, and IGF2BP1-3 can

Abbreviations: TBI, traumatic brain injury; m6A, N6-methyladenosine; ER,
endoplasmic reticulum; MeRIP-Seq, methylated RNA immunoprecipitation
sequencing; m7G, methylguanosine; m5C, methylcytosine; m1A,
methyladenosine; UTR, untranslated regions; HE, hematoxylin and eosin;
mNSS, modified neurological severity score; MWM, morris water maze; OSM,
oncostatin M; IL, interleukin; CNS, central nervous system; t-PA, tissue-type
plasminogen activator; CBF, cerebral blood flow; BBB, blood–brain barrier;
Chd7, chromodomain-helicase-DNA-binding protein 7.

regulate interaction with m6A (Lan Q. et al., 2019). Several studies
(Wang and Zhao, 2016; Li et al., 2018) have indicated that the
m6A is closely associated with neural degenerative diseases and
the development of the nervous system, but the relevant roles
and mechanisms remain unclear. Recent research involving whole-
genome profiling of m6A-tagged transcripts in the hippocampus of
a TBI mouse model found that METTL3 was downregulated. Using
methylated RNA immunoprecipitation sequencing (MeRIP-Seq), 922
significantly differentially expressed m6A peaks were identified, with
370 upregulated and 552 downregulated (Wang Y. et al., 2019). Our
research team previously performed an mRNA m6A methylation
profile in a genome wide of rat cortex after TBI by m6A MeRIP-Seq
(Yu et al., 2020). We found that the expression levels of METTL14
and FTO were significantly downregulated, and the combination of
m6A modifications peaks and mRNA-seq analysis showed that 175
mRNAs were significantly altered both in m6A modification and
mRNA expression levels after TBI.

To date, the association between m6A methylation and the
protective effect of hypothermia against brain injury has not been
clarified. With the aim of exploring the mRNA m6A epigenetic
modifications in hypothermia protective effects after TBI, we
performed an m6A modification analysis of the rat hippocampus
following TBI with and without hypothermia treatment. We
identified the expression of mRNA in the rat hippocampus after TBI
and analyzed m6A methylation and mRNA expression levels. The
overall goal of this research is to uncover new approaches for further
investigation of TBI hypothermia therapy.

Materials and methods

Animals

Adult male Sprague Dawley rats weighing about 250–300 g were
bought from the Charles River Laboratories (Beijing, China). All
animals were fed in the Animal Experiment Center of Zhongnan
Hospital, Wuhan University. All animals were kept in controlled
conditions, with the temperature maintained at 25± 2◦C, the relative
humidity at 50 ± 5%, and a 12:12 h light–dark cycle. Food and
water were always offered to the rats but were withheld overnight
before surgery. Animal experiments were conducted in accordance
with the Guidelines of Animal Care and Use. The study was approved
by the Animal Experiment Center of Zhongnan Hospital, Wuhan
University. All animals were allocated to the following groups: (1)
Sham; (2) TBI; and (3) TBI+Hypo (hypothermia) (n = 22 per group).

Controlled cortical injury animal model

We used a controlled cortical impact (CCI) device (Custom
Design & Fabrication, USA) to build the animal TBI model as
described previously (Osier and Dixon, 2016; Siebold et al., 2018).
Rats were anesthetized using an intraperitoneal injection of 5%
phenobarbital (50 mg/kg). The skull was exposed via a midline
incision on the scalp; then, a 5-mm diameter bone window was drilled
over the right cerebral hemisphere between the bregma and lambda.
The rat was placed on the CCI device with an impact depth of 2 mm,
a velocity of 5 m/s, and an impact dwell time of 200 ms, and the
impactor tip was used to impact the center of the craniectomy. After
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impact, the bone was fixed using bone wax and absorbable sutures
were used to close the incision. Sham group rats were subjected to the
same anesthetic and surgical procedures as those in the TBI group
without being subjected to cortical injury. Animals that experienced
CCI or sham surgery were held at normothermia or hypothermia for
6 h.

Temperature manipulations

We referred to the temperature manipulation of the previous
research (Cheng et al., 2018). In general, 30 min after completion
of sham surgery or CCI, the temperature was manipulated in
the TBI + Hypo group. A temperature controller (BP-2010A,
Softron, Tokyo, Japan) was used to continuously monitor core body
temperature using rectal temperature probes. The back of the prone
rat was covered with an ice blanket until the body temperature
reached 32 ± 0.5◦C and then intermittently used an ice blanket to
maintain the temperature of rats at 32 ± 0.5◦C. In accordance with
the previous research (Silasi and Colbourne, 2011; Jin et al., 2016)
and the American Association of Neurological Surgeons Guidelines
(Marion et al., 1997), the hypothermia therapy temperature was
set at 32◦C. After receiving the hypothermia treatment for 6h, the
animals were rewarmed over a 1-h period to baseline temperature
(37± 0.5◦C) using an infrared lamp and a heating blanket. TBI group
and Sham group animals did not receive hypothermia treatment
and were kept at normal baseline temperature after sham surgery or
injury.

Hematoxylin and eosin (HE) staining

One day after TBI, rats (n = 3 per group) were anesthetized
and a thoracotomy was performed to expose the heart area. A 4%
solution of buffered saline and paraformaldehyde (pH 7.2–7.4) was
injected to flush the blood and fix the tissue. After full perfusion, the
whole brain was extracted and then placed in 4% paraformaldehyde
maintained at 4◦C overnight. After paraffin embedding, the brain was
cut into three 2-mm-thick coronal slices covering the whole damaged
area. The sections were then stained with HE (Baso, Wuhan, China)
following the conventional method (Tian et al., 2020). After the
sections are dewaxed, they are stained with hematoxylin solution for
5 min and then washed with water for 15 min. Then, the slides were
stained with eosin solution for 2 min, washed again, and dehydrated
with ethanol. A mounting medium was applied once the slides were
dried, and the slides were cover-slipped and photographed under a
light microscope. Tissue loss area calculations were performed using
Image J software.

Behavioral testing: mNSS and MWM

The modified neurological severity score (mNSS) was evaluated
1 day after injury (n = 5 per group). The mNSS is a comprehensive
test to evaluate neurological function deficits in rats, including motor,
sensory, balance, and reflex assessment, with maximum scores of 6,
2, 6, and 4, respectively (Gold et al., 2013). Total scores of 13–18
indicate severe injury, 7–12 moderate injury, and 1–6 mild injury.
Morris water maze (MWM) was used to assess the spatial learning

and memory ability of rats at post-injury day 2 (n = 5 in each group).
As previously described (Vorhees and Williams, 2006), rats were
placed on a circular tank containing opaque water from the four water
entry points to train them to find a submerged platform, undergoing
four trials every day for 5 consecutive days. The incubation period
is the time from entering the water to reaching the platform. After
5 days of trials, the escape latency time of each rat was recorded from
entering the water to reaching the platform.

Methylated RNA immunoprecipitation
sequencing (MeRIP-Seq)

N6-methyladenosine methylation levels in RNA were measured
via MeRIP-Seq. At 24 h after CCI, animals were anesthetized and
hemispheres were carefully dissected and stored in liquid nitrogen.
Three biological replicate samples were modeled in the Sham group,
the TBI group, and the TBI + Hypo group, and four hippocampi
were collected per group. The total RNA was isolated from the
hippocampus of each rat using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA), according to the manufacturer’s protocol. Over 200 µg
total RNA was collected per sample, and the poly (A) mRNA was
isolated using poly-T oligo attached magnetic beads (Invitrogen,
USA). The poly (A) mRNA was then fragmented into ∼100-nt-long
oligonucleotides using divalent cations at a high temperature, and
cleaved RNA fragments were placed into the m6A-specific antibody
(No. 202003, Synaptic Systems, Germany) in IP buffer (50 mM
Tris-Hcl, 750 mM NaCl, and 0.5% IGEPAL CA-630) with BSA
(0.5 µg/µl) for 2 h at 4◦C. The mixture was incubated by protein-
A beads and eluted by buffer (1 × IP buffer and 6.7 mM m6A).
The eluted m6A-containing fragments (IP) and untreated input
control fragments were used to construct final cDNA libraries. The
mean insert magnitude for the paired-end libraries was ∼150 bp.
Finally, the paired-end 2 × 150 bp sequencing was conducted using
an Illumina Nova 6000 platform (OE Biotech Co., Ltd., Shanghai,
China).

Data processing and bioinformatics
analyses

First, Trimmomatic software was used to process the raw data
(raw reads) (Bolger et al., 2014), to remove low-quality reads and
those including ploy-N, and to retain the clean reads. The paired
reads from clean data were aligned using BLAST software and NT
database1 with an e-value of <1e-10 and a coverage of >80%. In
addition, ribosomal RNA reads were removed using SortMeRNA
software (Kopylova et al., 2012), and the clean reads were mapped
to the reference genome using HISAT2 (Kim et al., 2015) with the
default parameters. Unique reads with a high mapping quality were
reserved.

Guitar (Cui et al., 2016) R package and deepTools (Ramírez
et al., 2014) software were used to assess the sequencing data
quality of methylated RNA immunoprecipitation. MeTDiff (Cui
et al., 2018) software was used with parameters fragment_length
200 bp, peak_cutoff_p-value 0.01, and peak_cutoff_FDR 0.05 to

1 ftp://ftp.ncbi.nih.gov/blast/db
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identify the m6A-enriched peaks in each m6A-immunoprecipitation
sample compared with the corresponding input sample. ChIPseeker
was applied to interpret the identified peaks through the intersection
with the gene construction (Yu et al., 2015). Gene Ontology
(GO) enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses of peaks and differential peaks
were performed using R software based on the hypergeometric
distribution. Sequence motif was detected using MEME (Bailey
et al., 2009) and DREME (Schulz et al., 2012) and annotated using
TomTom software. Protein–protein interaction network of mRNA
expression and m6A peak was performed with Cytoscape Version
3.7.2 software. The statistical analysis was conducted using SPSS
Version 25.0 software (IBM, Armonk, NY, USA).

Results

Reduced neurological damage and
improved behavioral outcome in TBI after
hypothermia

The HE staining of brain tissue sections confirmed that
hypothermia reduced neurological damage (Figure 1A). Due to
cytotoxic or vascular edema, and hydrocephalus induced by trauma,
the TBI group showed extensive injury in regions from the cortex to
the hippocampus. Quantitative analyses showed volume lesions of
24.33 ± 4.59 mm3 in the TBI group and 3.33 ± 0.68 mm3 in the
Sham group (p < 0.001). In agreement with the previous studies,
hypothermia significantly decreased CCI-induced damage volumes

(15.53 ± 1.80 mm3) compared with the TBI group (p < 0. 01)
(Figure 1B).

To test whether hypothermia improved behavioral outcomes, we
conducted mNSS and MWM. As shown in Figure 1C, compared with
the Sham group, the mNSS score was significantly higher in the TBI
group on days 1, 3, 5, and 7 post-TBI (p < 0.001 in all groups) and was
significantly lower in the TBI+ hypo group on these 4 days (p < 0.01
on days 1 and 3, p < 0.05 on days 5 and 7). Furthermore, we used the
MWM test to measure the spatial learning and memory of rats over 5
consecutive days. Compared with the TBI group, the escape latencies
were significantly reduced in the TBI + hypo group on days 4 and 5
after TBI (Figure 1D, p < 0.01 and p < 0.05, respectively). On the test
day (day 6), escape latency was significantly longer in the TBI group
than in the Sham group (Figure 1E, p < 0.01). In contrast, escape
latency was significantly shorter in the TBI+ hypo group than in the
TBI group (Figure 1E, p < 0.05).

M6A modification overview after TBI

We used m6A MeRIP-Seq to perform a widespread transcriptome
m6A-seq analysis and, thus, to observe the m6A methylation
modification level in the rat hippocampus after TBI. The detailed
raw sequencing data of each group’s MeRIP-Seq samples and input
samples are shown in Supplementary Table 1. We found average
sequencing data of 11.65 Gb in the MeRIP-Seq samples and 10.25 Gb
in the input samples. The averages in the clean data of the MeRIP-
Seq samples and input samples of each group are also shown in
Supplementary Table 1. Based on the reference genome location

FIGURE 1

Effects of hypothermia treatment on the neurological damage and behavioral outcomes after the traumatic brain injury (TBI). (A) Brain sections stained
with HE (n = 3 per group). (B) Lesion volume calculation from the sections. (C) mNSS score on days 1, 3, 5, and 7 post-TBI (n = 5 per group). (D) Escape
latency in MWM test 1–5 days post-TBI. (E) Escape latency (n = 5 per group) (**p < 0.01, and ***p < 0.001 vs. the Sham group; #p < 0.05 and ##p < 0.01
vs. the TBI group). Error bars represent standard deviation (SD).
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information, the percentage of mapped reads ranged from 80.65
to 92.23% (Supplementary Table 2). In addition, the percentage
of unique mapped reads in each group ranged from 77.01 to
87.60%. The m6A peaks were identified by comparing MeRIP-Seq

sequencing data between IP samples and their corresponding inputs
(Figure 2A), and the m6A peaks were distributed across different
chromosomes. Moreover, we performed a motif-searching analysis
with all m6A peaks and found that consensus GGAC m6A motifs

FIGURE 2

Topological distribution of N6-methyladenosine (m6A) peaks. (A) M6A peaks were distributed in different chromosomes. (B) The sequence logo
represented the deduced consensus motif through the clustering of all enriched m6A peaks. (C) M6A peak distribution patterns along the transcript, m6A
sites were the most abundant at the 5′terminate and 3′ terminate. (D) The sector graph showed the ratio of peaks in each region. (E) IGV plot showed
directly the peaks in the genes of Marveld1, Fastkd3, and Mul1, the peak positions of Marveld1 were at the CDS region and 5′ UTR, the peak position of
Fastkd3 was at the CDS regions, and the peak position of Mul1 was at the CDS and the 3′ UTR regions.
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were enriched in RNA, confirming the quality of our data (Figure 2B;
Dominissini et al., 2012; Meyer et al., 2012). Analysis of the m6A
peak distribution patterns along the transcript showed that the reads
of input samples in the CDS region were higher than those of
IP samples. We found that m6A sites were the most abundant at
the 5′ and 3′ UTR (Figures 2C, D). We chose three significant
genes (Marveld1, Fastkd3, and Mul1) to show m6A methylation
modification distribution patterns (Figure 2E). The peak positions
of Marveld1 were at the CDS region and 5′ UTR, the peak position of
Fastkd3 was at the CDS region, and the peak positions of Mul1 were
at the CDS and the 3′ UTR regions.

Significant m6A methylation modification
changes by TBI

We compared alterations in the m6A methylation modification
levels of the rat hippocampus between Sham and TBI groups
(Supplementary Table 3). In total, 25,486 peaks were identified in
the TBI group and 25,094 in the Sham group. The total length of
peaks (bp), average length of peaks, median length of peaks, and
percentage of the genome of TBI and Sham groups are summarized
in Supplementary Table 3. The significantly changed m6A peaks
in the hippocampus after TBI are summarized in Supplementary
Table 4. We identified 951 significantly changed peaks (p < 0.05 and
fold change≥1.5), including 589 upregulated and 362 downregulated
peaks (Figure 3A). The top 20 differently expressed m6A peaks after
TBI are shown in Table 1. The significantly changed peaks were
mainly distributed in the 5′ UTR (20.93%), 3′UTR (34.17%), 1st Exon
(4.84%), and another Exon (40.06%) (Figure 3B). Altered m6A peaks
were distributed across all chromosomes in the rat hippocampus but
were particularly abundant in chr1, chr3, and chr7 (Figure 3C). We
chose two representative genes (Osm and Sox7) with significantly
changed m6A peaks to show their m6A methylation pattern after TBI
(Figure 3D) and found an obvious upregulation of m6A methylation
modification levels after TBI by a factor of 2.38 and 2.68, respectively.

GO analysis and KEGG pathway analysis of
RNA m6A methylation after TBI

We conducted GO and KEGG pathway analyses of significantly
changed m6A peaks after TBI. In the biological process (BP)
category of GO analysis, we observed that the genes with
methylated m6A peaks were significantly enriched in cellular process,
biological regulation, regulation of the biological process, metabolic
process, response to stimulus, cellular component organization
or biogenesis, positive regulation of the biological process, and
multicellular organismal process. Significant GO cell component
(CC) terms showed that m6A methylations were associated with
the cell, cell part, organelle, organelle part, membrane, membrane
part, macromolecular complex, and membrane-enclosed lumen.
For MF term, these methylations were associated with binding,
catalytic, molecular transducer, receptor, transporter, protein-
binding transcription factor, enzyme regulator, and structural
molecule activities (Figure 4A). KEGG pathway analysis revealed
that the pathways affected by significantly changed m6A peaks
were significantly associated with cellular senescence, HIF-1
signaling, PI3K-Akt signaling, MAPK signaling, and transcriptional
dysregulation in cancers (Figure 4B).

M6A modification profiles in the
hippocampus of post-TBI hypothermia
treatment rat model

In order to explore the response of m6A modification to
hypothermia, we compared the m6A methylation between rats
with TBI and post-TBI hypothermia treatment. We identified
758 significantly changed peaks (p < 0.05 and fold change
≥1.5), including 399 significantly upregulated and 359 significantly
downregulated (Figure 5A). The significantly changed m6A peaks
after hypothermia treatment are summarized in Supplementary
Table 5. A total of 951 peaks were modified differently between
Sham and TBI groups and 758 peaks between TBI and TBI + Hypo
groups. The top 20 differently expressed m6A peaks between the
TBI group and TBI+Hypo group are shown in Table 2. Among
these differential peaks, 173 were induced by TBI and reversed by
hypothermia treatment (Figure 5B). Some peaks were upregulated
after TBI and reversed by hypothermia treatment, such as Plat,
Pdcd5, Rnd3, Sirt1, Plaur, Runx1, and Ccr1 (Figure 5C). In contrast,
expression levels of some peaks were downregulated after TBI and
upregulated by hypothermia treatment, such as Marveld1, Lmnb2,
and Chd7 (Figure 5C). We chose two genes (Pdcd5 and Ccr1)
to show the changes in m6A methylation peaks. The m6A levels
of Pdcd5 and Ccr1 were significantly upregulated after TBI and
downregulated after hypothermia treatment (Figure 5D).

United analysis of m6A MeRIP-Seq and
RNA-seq data

The RNA-seq data of input samples were used to determine
transcriptome profiles of differential expression genes in the
rat hippocampus after TBI. We identified significantly expressed
genes (p < 0.05 and fold change ≥1.5) between the Sham
and TBI groups (Supplementary Table 6). We found that 1226
genes were differentially expressed after TBI, including 1003
mRNAs significantly upregulated and 223 mRNAs significantly
downregulated (Figure 6A). The top 20 changed genes are shown
in Table 3. The gene expression pattern is shown by hierarchical
clustering (Figure 6B). The unite analysis results of m6A methylation
modification and mRNA expression after TBI are summarized in
Supplementary Table 7. We found 140 genes that showed significant
changes in mRNA expression levels and m6A methylation peaks,
including 10 hypo-methylated with mRNA down-expression, 25
hypo-methylated with mRNA up-expression, 13 hyper-methylated
with mRNA down-expression, and 92 hyper-methylated with mRNA
up-expression (Figures 6C, D). The link between the proteins
encoded by the 140 modified genes is shown using a protein–protein
interaction network (Figure 6E).

Discussion

As the most widely distributed and plentiful interior
modification of mRNAs, m6A has been a focal point in the
area of epitranscriptomics in recent years. M6A modifications play a
part in nearly all aspects of physiological behavior, and research has
confirmed that m6A modification participates in mRNA splicing,
stability, nuclear transport, orientation, translational efficiency
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FIGURE 3

Distribution of significantly changed peaks after traumatic brain injury (TBI). (A) The volcano plot showed significantly upregulated and downregulated
peaks after TBI. (B) The sector graph showed the ratio of significantly changed peaks in each region after TBI. (C) Distributions of changed
N6-methyladenosine (m6A) peaks in rat chromosomes after TBI. (D) Two representative genes that m6A peak was significantly changed after TBI, the
m6A level of OSM and Sox7 was significantly upregulated after TBI by 2.38-fold and 2.68-fold, respectively.

activation, and reduced target mRNA stability (Liu et al., 2014;
Deng et al., 2018). The scope for m6A modification is extensive in
the central nervous system, where it plays important roles in the

differentiation of embryonic stem cells, cerebral development, and
neurodevelopmental disease (Meyer et al., 2012; Geula et al., 2015).
RNA m6A methylation shows heterogeneity in the methylation site
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TABLE 1 Top 20 differently expressed N6-methyladenosine (m6A) peaks after traumatic brain injury (TBI).

Gene Chromosome Peak start Peak end Lg (p-value) Different log2 (fold change) Up/Down

Pmm2 Chr10 7068131 7074226 −1.92E-11 −0.843 Down

Mcemp1 Chr12 2213717 2214046 −7.96E-10 −0.798 Down

Erbb3 Chr7 2990648 2990849 −9.50E-10 −0.673 Down

Fbln2 Chr4 122835484 122855515 −1.55E-09 −0.613 Down

Tbcd Chr10 110699126 110699324 −2.79E-09 −0.778 Down

LOC100911727 Chr1 75260760 75262381 −6.26E-09 −2.04 Down

Mul1 Chr5 156864121 156864270 −1.13E-08 −0.777 Down

Hectd1 Chr6 72552159 72555267 −3.88E-08 −0.7 Down

Ntmt1 Chr3 9643057 9650355 −1.07E-07 −0.662 Down

Hipk1 Chr2 206273985 206274186 −1.51E-07 −0.591 Down

Cbln1 Chr19 20610268 20610668 −59.5 0.585 Up

Ppp1r12b Chr13 51708294 51709259 −34.7 0.776 Up

Ccdc112 Chr18 40254647 40254796 −32 1.37 Up

Cfap126 Chr13 89492031 89493656 −31.9 0.798 Up

LOC100911068 Chr8 39890890 39891485 −30.8 0.581 Up

Ppfibp2 Chr1 171816230 171820393 −25.6 0.823 Up

Mrvi1 Chr1 175684954 175685154 −25.4 1.18 Up

Far2 Chr4 182563185 182563485 −20.5 0.637 Up

Fam49b Chr7 104523016 104525438 −20.5 0.656 Up

Rapgef2 Chr2 177867728 177867928 −19.9 0.696 Up

and level, as confirmed by m6A immunoprecipitation experiments
in mouse cerebellum, hippocampus, and cortex (Chang et al., 2017;
Wang Y. et al., 2019). Our research team previously used m6A
MeRIP-Seq to measure the m6A methylation modification level of
the cortex in a rat TBI model (Yu et al., 2020). In this study, we
performed an m6A modification analysis in the rat hippocampus of
TBI and post-TBI hypothermia treatment.

We identified 951 significantly changed peaks, including 589
upregulated and 362 downregulated peaks. We performed a motif-
searching analysis of all m6A peaks and found consensus GGAC
m6A motifs were enriched in RNA, in accordance with the previous
reports (Dominissini et al., 2012; Meyer et al., 2012). Interestingly,
the modified m6A methylation peaks in TBI are particularly
evident in CDS, 3′ UTRs, and 5′ UTRs, again consistent with the
previous research (Dominissini et al., 2012). Altered m6A peaks were
distributed across all chromosomes in the rat hippocampus after TBI,
in line with the m6A peaks variation after TBI in mice (Wang Y.
et al., 2019). We demonstrated significant m6A modification in two
genes, Osm and Sox7. It is known that oncostatin M (Osm) is one
of the interleukins (IL)-6 family of cytokines and plays a broad role
in inflammation, cell proliferation, and hematopoiesis (Tanaka and
Miyajima, 2003; Chen et al., 2006). Previous research has shown that
administering recombinant human Osm to mice before the initiation
of ischemia/reperfusion can improve prognosis in mouse models of
ischemic stroke by activating the JAK2/STAT3 signaling pathway in
neurons (Guo et al., 2015). It has also been shown that Osm treatment
significantly diminishes astrocytosis and immune cell infiltration,
reduces lesion size, and improves locomotor recovery after mild and
severe spinal cord injury (Slaets et al., 2014). We found upregulation
of the m6A methylation peak of Osm in the rat hippocampus after

TBI; however, the role of Osm m6A methylation in TBI is less well
understood and needs further study. As a critical member of the Sox
F family, Sox7 has a high mobility group DNA-binding domain. The
study demonstrated a new signaling mechanism in the apoptosis of
neurons and found Sox7 accelerated neuronal apoptosis by affecting
β-catenin activity (Wang et al., 2015). However, the role of Sox7 m6A
methylation in TBI remains unclear.

In addition, it has been found in our study that mild hypothermia
treatment reversed TBI-induced methylation modification of Pdcd5
and Ccr1. Pdcd5 plays an important role in the process of cell
apoptosis, and it was downregulated in many cancers (Choi et al.,
2015). The previous reports have shown that the inhibition of
Pdcd5 expression in a brain ischemia/reperfusion model improves
neurological deficits and cerebral blood flow, reduces the infarct
volume, and protects the BBB via suppressing the process of neuronal
apoptosis and autophagy (Chen et al., 2013; Jiang et al., 2014).
However, it has not been proved that the methylation modification
of Pdcd5 participates in the treatment of TBI in rats. Ccr1 is
involved in the chemotaxis of the nervous system inflammation.
Some reports have proved that Ccr1 plays an important role in
the inflammatory process of a variety of nervous system diseases
(Alzheimer’s disease, multiple sclerosis, and cerebral hemorrhage)
(Halks-Miller et al., 2003; Ubogu et al., 2006; Yan et al., 2020).
Moreover, it has been reported that the inhibition of Ccr1 reduces
BBB damage, brain edema, and neuronal damage and further plays
a neuroprotective role in ICH mice (Yan et al., 2022). Methylation
modification of PDCD5 and Ccr1 may become a new direction of
TBI treatment.

At the cellular level, the damage caused by TBI may occur
through four basic mechanisms: inflammatory events, cytotoxicity,
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FIGURE 4

Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analysis of changed N6-methyladenosine (m6A) transcripts.
(A) Gene ontology classification of the m6A peaks. (B) Top 10 enriched pathways of m6A peaks.

calcium-mediated damage, and free radical-induced alterations
(Gennarelli and Graham, 1998; Sahuquillo and Vilalta, 2007).
Together, these contribute to other lesions, including increased
intracranial pressure and brain swelling, apoptosis, perilesional
depolarization, and mitochondrial dysfunction. In the present study,

GO analysis showed highly enriched m6A methylation for the
regulation of biological and metabolic processes, indicating that
m6A methylation may play an important role in the process of
metabolic alteration after TBI. KEGG pathway enrichment analysis
revealed that HIF-1, PI3K-Akt, and MAPK signaling pathways
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FIGURE 5

Distribution of significantly changed peaks after post-traumatic brain injury (TBI) hypothermia treatment. (A) The volcano plot showed significantly
upregulated and downregulated peaks after TBI. (B) Venn diagram, TBI vs. sham, and TBI + Hypo vs. TBI showed overlap in differentially expressed peaks.
(C) Examples of peaks significantly changed after hypothermia treatment. (D) Two representative genes, Pdcd5, and Ccr1, the m6A level of Pdcd5 and
Ccr1 were upregulated after TBI and reversed by hypothermia treatment.

were significantly enriched, implying that m6A modification may
involve a range of physiological processes in TBI. The previous
study has confirmed that selective inhibition of HIF-1α decreases

brain edema, ameliorates neuronal damage, and improves cognitive
and motor behavior tests outcomes (Shenaq et al., 2012) and that
PI3K-Akt signaling pathway activation improves neurofunctional
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TABLE 2 Top 20 differently expressed N6-methyladenosine (m6A) peaks between the traumatic brain injury (TBI) group and the TBI + Hypo group.

Gene Chromosome Peak start Peak end Lg (p-value) Diff.log2 (fold change) Up/Down

Foxc1 Chr17 33950935 33951235 −32.9 0.751 Up

LOC108350796 Chr4 182563666 182563815 −32.1 1.1 Up

Arhgap26 Chr18 32080267 32092383 −28.3 0.62 Up

Hemk1 Chr8 116085462 116090352 −27.9 0.837 Up

Myh6 Chr15 33607906 33610786 −27.5 0.638 Up

Ppm1l Chr2 166215833 166215983 −25.8 0.848 Up

Tsr2 ChrX 20227301 20227793 −25.1 1.28 Up

Depdc5 Chr14 83197422 83208880 −24.7 0.77 Up

Fam110b Chr5 18902819 18903020 −24.2 0.878 Up

Ak5 Chr9 10023070 10023265 −24 0.704 Up

Fat2 Chr10 40594683 40594833 −9.79E-15 −1.14 Down

Fat2 Chr10 40583124 40583274 −3.29E-14 −2.01 Down

Fat2 Chr10 40616334 40616584 −5.93E-14 −1.91 Down

Dpp10 Chr13 39431186 39431386 −7.36E-14 −1.08 Down

Fat2 Chr10 40613841 40614092 −1.48E-12 −2.26 Down

LOC108349349 Chr19 275607 276917 −1.80E-09 −1.32 Down

Rnd3 Chr3 36643373 36643569 −4.72E-09 −2.13 Down

Bdnf Chr3 100770295 100771082 −6.87E-09 −1.38 Down

Frmpd4 ChrX 27554766 27554917 −3.39E-08 −1.18 Down

Tmem121 Chr6 138000755 138000906 −8.96E-08 −2.72 Down

deficits, preserves blood–brain barrier (BBB) integrity, and leads
to restoration of cognitive function after TBI (Wu et al., 2008;
Wu et al., 2017). Research has indicated that the MAPK signaling
pathway can be activated by TBI and that restraining the MAPK
signaling pathway alleviates damage to cognitive functions and
lowers the BBB permeability induced by TBI (Lan Y. et al.,
2019). However, further research is needed to verify the role of
the m6A modification function of these signaling pathways and
reveal the regulatory mechanism underlying the phenomenon in
TBI.

Microcirculatory disturbances, cerebral blood flow reduction,
and deterioration in the homeostasis of cerebral metabolism are early
changes in post-TBI. Early studies found that the neuroprotective
effect of hypothermia on the brain may be due to a decrease in
the cerebral metabolic rates of glucose and oxygen. The use of
therapeutic hypothermia following TBI has been widely studied,
but the therapeutic mechanisms of hypothermia TBI-induced brain
injury have not been clearly understood. Since the brain is rich
in m6A, the present study explored the m6A landscape in the rat
hippocampus in TBI with and without hypothermia treatment in a
rat model. Compared to the TBI group, we identified 758 significantly
changed peaks, 399 being upregulated and 359 downregulated.
Among these differential peaks, 173 were induced by TBI and were
changed by hypothermia treatment. These peaks may be connected
to the mechanism underpinning hypothermia’s protective effect on
the brain. Among the 173 peaks, many are known to be associated
with neurodegenerative diseases. Peaks such as Plat, Pdcd5, Rnd3,
Sirt1, Plaur, Runx1, and Ccr1 were upregulated after TBI, and
this change was reversed by hypothermia treatment; peaks such

as Marveld1, Lmnb2, and Chd7 were significantly downregulated
by TBI, and this was reversed by hypothermia treatment. Many
of these peaks have been studied and shown to be associated
with central nervous system injury. The expression of tissue-type
plasminogen activator (t-PA) was encoded by the gene Plat. The
tissue-released t-PA can efficiently eliminate the fibrin deposition
at the luminal side of an intact vascular endothelium, playing an
important role in reducing tissue damage (Kruithof and Dunoyer-
Geindre, 2014). Ascl1, a proneural factor expressed in the embryonic
cortex, reportedly increases neuronal transfer by adjusting Rnd3, a
Rho protein with a role in forwarding extracellular signals to the
actin cytoskeleton (Pacary et al., 2011). Recent research found a
decreased rate of brain apoptosis in Rnd3-knockout mice and that
the regulation of central nervous system apoptosis, via the RND3-
NF-κB P65 signaling pathway, may be an alternative approach for the
treatment of neurodegenerative diseases (Dong et al., 2021). Plaur-
deficient mice show impaired somatomotor recovery and emotional
learning compared with wild-type mice after TBI (Bolkvadze et al.,
2016). Suppression of CCR1 activation by the CCR1/TPR1/ERK1/2
signaling pathway in an intracerebral hemorrhage mouse model can
attenuate neuroinflammation, hence decreasing brain edema and
improving cognitive functions (Yan et al., 2020). Marveld11 plays
an important role in mouse cerebrum development, and a lack
of Marveld11 results in an abnormality of motor and cognition
functions (Liu et al., 2018). As a major regulator of neurogenesis
in the mammalian cerebrum, chromodomain-helicase-DNA-binding
protein 7 (Chd7) plays a vital role in the activation of the neuronal
differentiation program in neural stem cells (Feng et al., 2013).
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FIGURE 6

Unite analysis of N6-methyladenosine (m6A) methylation and RNA expression levels. (A) The volcano plot shows the significantly upregulated and
downregulated mRNA. (B) Hierarchical clustering analysis of the differentially expressed mRNAs. (C,D) Four quadrant graphs and a Venn diagram showed
the relationship between mRNA m6A methylation and its mRNA expression. (E) Protein–protein interaction network was performed to show the
connection between the proteins encoded by genes that their mRNA expression levels and m6A methylation peaks were both changed significantly.

M6A-modification is the most abundant and widespread
modification of mRNA; therefore, the level of m6A-modification
is closely related to RNA nuclear splicing, export, stability,
trafficking, and translation efficiency. M6A reader proteins can

recognize m6A modification sites such as YTHDF2/3 and can
regulate post-transcriptional modification by combining with
different complexes (Yen and Chen, 2021). According to the
analysis of m6A methylation modification and mRNA expression
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TABLE 3 Top 20 differently expressed genes after traumatic brain injury (TBI).

Gene Fold change Log2 fold change P-value P-adj Up/Down

S100a4 5.160487026 2.367507228 2.12E-61 3.95E-57 Up

Itgal 5.894128407 2.559278491 8.38E-48 7.81E-44 Up

Serping1 3.406242319 1.768181072 4.84E-41 3.01E-37 Up

Hspb1 13.08855847 3.710234308 1.30E-38 6.04E-35 Up

Stat3 2.349677698 1.232462878 1.52E-30 5.68E-27 Up

Itgam 2.541809871 1.34585612 2.17E-30 6.73E-27 Up

Sox7 5.702346224 2.511555637 2.36E-28 6.27E-25 Up

Pdpn 4.322268276 2.111788621 7.10E-27 1.66E-23 Up

Clec7a 73.37123169 6.197142599 2.69E-26 5.57E-23 Up

Gbp2 3.632253298 1.860864813 1.86E-25 3.46E-22 Up

C1ql2 0.534533023 −0.903649017 8.50E-16 3.86E-13 Down

Epha8 0.577906089 −0.791093025 9.49E-13 2.68E-10 Down

Btbd17 0.572832805 −0.80381398 2.83E-12 7.65E-10 Down

Tril 0.634224896 −0.656933584 2.66E-11 5.70E-09 Down

Plpp3 0.647303246 −0.627486356 3.93E-11 8.23E-09 Down

Htr5b 0.493345443 −1.019329912 6.67E-11 1.35E-08 Down

Lix1 0.634268658 −0.656834041 1.75E-10 3.14E-08 Down

Yjefn3 0.556260714 −0.846166876 1.87E-10 3.26E-08 Down

Cbs 0.647961446 −0.62602012 3.00E-10 4.90E-08 Down

Col11a2 0.652062245 −0.616918406 9.93E-10 1.43E-07 Down

after TBI, our study identified many genes with significantly
modified mRNA expression levels and m6A methylation
peaks. The results of our study may form a basis for future
research on the function of m6A methylation in traumatic brain
injury.

Conclusion

By using methylated RNA immunoprecipitation sequencing,
we measured the hippocampus m6A methylation level in the rat
after TBI with and without hypothermia treatment. We found
hypothermia treatment transformed some aspects of the TBI-
induced m6A methylation landscape of the rat hippocampus. In
total, 951 significantly changed peaks were identified between
TBI and Sham groups, and 758 significantly changed peaks
were identified between TBI and TBI + Hypo groups. We
found that the epigenetic modifications of RNA may have
functions in the protective effect of hypothermia after TBI.
Using a united analysis of m6A methylation modification
and mRNA expression, our study identified 140 genes with
significantly modified mRNA expression levels and m6A
methylation peaks, which may provide enlightenment and
guidance for future research on the function of m6A methylation in
traumatic brain injury.
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