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A thorough understanding of the neuroanatomy of peripheral nerves is required

for a better insight into their function and the development of neuromodulation

tools and strategies. In biophysical modeling, it is commonly assumed that the

complex spatial arrangement of myelinated and unmyelinated axons in peripheral

nerves is random, however, in reality the axonal organization is inhomogeneous

and anisotropic. Present quantitative neuroanatomy methods analyze peripheral

nerves in terms of the number of axons and the morphometric characteristics of

the axons, such as area and diameter. In this study, we employed spatial statistics

and point process models to describe the spatial arrangement of axons and

Sinkhorn distances to compute the similarities between these arrangements (in

terms of first- and second-order statistics) in various vagus and pelvic nerve cross-

sections. We utilized high-resolution transmission electron microscopy (TEM)

images that have been segmented using a custom-built high-throughput deep

learning system based on a highly modified U-Net architecture. Our findings

show a novel and innovative approach to quantifying similarities between spatial

point patterns using metrics derived from the solution to the optimal transport

problem. We also present a generalizable pipeline for quantitative analysis of

peripheral nerve architecture. Our data demonstrate di�erences between male-

and female-originating samples and similarities between the pelvic and abdominal

vagus nerves.

KEYWORDS

peripheral nervous system, neuroanatomy, neuromodulation, spatial point process,

optimal transport problem, Sinkhorn distance

1. Introduction

Understanding the functionalities of the peripheral nerves and developing

neuromodulation tools require an in-depth quantitative characterization of the anatomy of

the nerves. A large portion of the quantitative neuroanatomical studies focus on counting

and comparing the number of myelinated and unmyelinated axons in the peripheral nerves

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1072779
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1072779&domain=pdf&date_stamp=2023-03-09
mailto:brajwa@purdue.edu
https://doi.org/10.3389/fnins.2023.1072779
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1072779/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Shemonti et al. 10.3389/fnins.2023.1072779

in different animals (Hoffman and Schnitzlein, 1961; Krous et al.,

1985; Asala and Bower, 1986; Prechtl and Powley, 1990; Pereyra

et al., 1992; Soltanpour and Santer, 1996; Safi et al., 2016). There

are studies on analyzing the changes in the number of myelinated

and unmyelinated axons as the function of animals’ age (Krous

et al., 1985; Pereyra et al., 1992; Soltanpour and Santer, 1996). The

morphometric characteristics of the axons, such as area of axon

cross-section, diameter, myelin thickness, are also well-developed

and helpful for estimating electrode distances for neuromodulation

purposes (Asala and Bower, 1986; Prechtl and Powley, 1990;Walter

and Tsiberidou, 2019; Pelot et al., 2020; Havton et al., 2021; Settell

et al., 2021).

The vagus is a complex, multi-functional peripheral nerve

of the autonomic nervous system, containing both sensory and

motor axons that regulate a wide variety of functions (Câmara and

Griessenauer, 2015; Breit et al., 2018). These include regulation of

the heart, respiratory tract, and many areas of the gastrointestinal

system, influencing motility, secretions, and communication with

the immune system. This breadth of activity and its bidirectional

connectivity with the central nervous system have led to the vagus

becoming a promising target for bioelectric medicine, through

development of specific protocols for vagal nerve stimulation

(VNS) (Bonaz et al., 2017a,b; Horn et al., 2019).

In addition to providing an alternative therapeutic approach for

drug-resistant clinical conditions within organs, the vagal afferent

connections to the brain provide opportunities for novel therapies

directed to various psychiatric disorders. To improve the efficacy

and specificity of VNS for each type of clinical condition, a

greater understanding of the intra-vagal neural elements relating

to each organ system is required (Howland, 2014; Thompson

et al., 2019, 2023), as demonstrated by a recent study showing

that fascicle-selective stimulation can reduce off-target effects of

VNS (Thompson et al., 2023). This includes understanding the

spatial organization of different functional classes of axons within

and between fascicles. This spatial organization has not been

investigated in depth within the visceral nervous system.

We have begun to address this knowledge gap using an

extensive dataset of transmission electron microscopy (TEM)

images derived from multiple cross-sections of the rat vagus.

We have included in our study additional TEM images from

the rat pelvic nerve, another multi-functional major nerve of the

autonomic nervous system that supplies sensory and motor axons

to the urogenital organs and lower bowel. Both TEM data sets

have been published through the SPARC Portal RRID:SCR_017041

under a CC-BY 4.0 license (Plebani et al., 2022).

Cross-sections of large peripheral nerves reveal a variety of

components (myelinated and unmyelinated axons, Schwann cells),

high-order structures (fascicles and Remak bundles), and raise

questions regarding the spatial arrangement of these components,

similarities between multiple arrangements, and their relationship

to various biological factors including age, sex, and diseases. This

study focuses on the unmyelinated axons segmented utilizing our

high-throughput deep learningmodel (Plebani et al., 2022).We aim

to define a notion of similarity (or dissimilarity) between the spatial

arrangements of the unmyelinated axons and quantify the distances

between them. We resort to spatial point patterns to represent

the image data conveniently for analyzing the axons’ spatial

organization. We use the centroids of the segmented axons to

construct spatial point patterns.We consider spatial inhomogeneity

and anisotropy to be the spatial features to represent the spatial

arrangement of the axons, and be used for quantification. A known

way to get an intuitive sense of spatial inhomogeneity (inhibition

and/or attraction between points) and anisotropy of a point

pattern is to investigate its second-order statistics (Ripley, 1976,

1977; Sengupta et al., 2013; Dixon, 2014). Since Ripley’s summary

of spatial statistical methods in 1977 the techniques for spatial

pattern analysis have been occasionally employed in neuroscience,

often by statisticians who saw the extraordinary complexity of

neuroanatomical patterns to be a perfect demonstration of the

spatial statistics inference ability (Bjaalie et al., 1991; Diggle et al.,

1991; Prodanov et al., 2007; Jafari-Mamaghani et al., 2010; Waller

et al., 2011).

Although the standard spatial statistical measures can quantify

overall global differences between point interactions, they are not

well suited for calculating distances between complex non-random

patterns with multiple distinct local interactions. Therefore, we

propose a method that involves computing the local second-

order spatial statistics for the nerve fascicles to capture their

spatial arrangement and utilizing a revised optimal transport

distance (Sinkhorn distance) to measure similarities between

the second-order spatial statistics of every pair of nerve cross-

sections. We visualize the resulting Sinkhorn distance matrix

in a new metric space using multi-dimensional scaling that

helps interpret the similarity (dissimilarity) of the spatial features

in the nerve cross-sections. Our concept of Sinkorn distance

embedding was influenced by related work on optimal transport-

based morphometry applications in cell biology (Wang et al., 2013;

Basu et al., 2014).

In addition to addressing a neuroscientific problem of

quantifying the vagus nerve anatomy with computer science tools,

we intend to bring together a variety of approaches from various

computer science domains to extend the toolkit for point-pattern

comparisons in biology. Utilizing the optimal transport framework

to establish a quantitative measure for spatial point patterns and

advance the workflow of quantitative analysis of peripheral nerve

architecture, our method could be used beyond neuroscience. We

believe that our findings contribute to the establishment of spatially

selective stimulation of nerve axons to improve the efficacy of VNS.

Figure 1 depicts a high-level overview of the steps in the

quantitative analysis of the spatial arrangement of axons in the

peripheral nerve architecture presented in this paper. We explain

each component of the pipeline in the following sections. The

biological data and the data preprocessing steps are described in

Section 2.1. The basics of spatial point pattern, spatial statistics,

and optimal transport framework are introduced in Section 2.2 and

Section 2.3, respectively. We provide details on the experimental

setup and results in Section 3, which cover steps 2, 3, and 4 of

the computational pipeline. We discuss the results of the empirical

study in Section 4 before concluding.

2. Materials and methods

2.1. Biological data and automated
segmentation

Although the vagus nerve anatomy was the primary motivation

behind this study, we use the TEM images of the vagus and pelvic
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FIGURE 1

The pipeline for the quantitative analysis of the spatial arrangement of axons in the peripheral nerve cross-sections.

nerve cross-sections in rats for comparisons. A list of the TEM

images used in this study is shown in Table 1. The protocols and

techniques followed for nerve sample collection, processing, and

imaging are documented in our previous work (Plebani et al.,

2022). The data is publicly available via NIH-supported SPARC

Pennsieve database (Havton et al., 2022). Briefly, the unmyelinated

axons in some of these TEM images were manually annotated

and used as labeled data to train, validate, test, and evaluate an

automated segmentation model based on the U-Net architecture

(Ronneberger et al., 2015; Plebani et al., 2022). The segmentation

model is a U-Net with four stages: the convolutional layers have a

batch normalization layer followed by a ReLU activation layer, and

the bottleneck stage has extra dropout layers between convolutions

(Plebani et al., 2022). The model classifies the TEM image pixels

as one of the three following classes: (a) fiber if it is inside an

unmyelinated axon, (b) border if it is in a boundary region between

an axon and the rest of the image defined by the outer edge of

each axon, and (c) background. An updated version of the model1

was used here to segment the unmyelinated axons. The resulting

axon counts are listed in Table 1. We used the open-source image

processing package Fiji (Schindelin et al., 2012) to extract the

centroid coordinates of the segmented unmyelinated axons and

the functions in R packages to establish the outer boundaries and

inner void spaces of the nerve cross-sections, to construct the

spatial point patterns. Images 15 (vagus) and 29 (pelvic) listed in

Table 1 are shown in Figures 2A, D, respectively, along with their

corresponding automated segmentations and spatial point patterns.

Before reporting the experimental details, we provide a brief

overview of spatial point patterns, spatial statistics concepts, and

optimal transport framework in the following two subsections.

2.2. Spatial point patterns and spatial
statistics

A spatial point pattern (SPP) is a set of spatial locations

associated with entities of interest in 2-D or 3-D space,

encompassed by an observation window (Møller and

1 At https://github.com/Banus/umf_unet.

Waagepetersen, 2003; Stoyan, 2006; Jafari-Mamaghani et al.,

2010; Baddeley et al., 2015). The objective of SPP analysis is to

examine the spatial arrangement of the points in an SPP and

recognize trends that define the point pattern. Two fundamental

descriptive characteristics of an SPP are intensity and interaction.

The intensity ρ or ρ(u) of a point pattern, a first-order statistics, is

the average number of points per unit area, and it can be uniform

across the observation window (homogeneous), or it can vary

according to an intensity function (inhomogeneous). A point

pattern’s intensity is usually denoted by λ in literature, but we use

ρ to avoid confusion with another notation related to the optimal

transport problem. Three SPPs of different average intensity, with

20 (sample 1), 100 (sample 2), and 200 (sample 3) points per unit

area are illustrated in Figure 3.

The interaction is associated with a distance r and describes

the influence the points have on their neighbors within r radius.

The interaction is termed complete spatial randomness (CSR) if the

points are independent. The points can exhibit positive interaction

(spatial attraction), negative interaction (spatial inhibition), or a

combination of both.

It is common practice to use second-order statistics such as

Besag’s centered L-function, which is a transformation of Ripley’s

K-function (Ripley, 1976, 1977; Besag, 1977), to investigate the

interaction in point patterns. Let X be a point pattern and t(u, r,X)

be the number of points in X which lie within distance r of the

location u. Assuming X is a homogeneous point pattern with

intensity ρ, the number of points within distance r of a specific

point is represented by ρK(r) (Ripley, 1976).

Ripley’s K-function: K(r) =
E [t (u, r,X) |u ∈ X]

ρ
,

Besag’s centered L-function: L(r) =

√

K(r)

π
− r

(1)

An estimator for the empirical K-function K̂(r) is formulated

in Equation (2), and represents the cumulative average number of

neighbors within r radius of a typical point, standardized by the

intensity and corrected for edge effects.

K̂(r) =
W

n(n− 1)

n
∑

i=1

n
∑

j=1,j6=i

ν(dij 6 r)eij(r) (2)
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TABLE 1 The list of the TEM images of vagus and pelvic nerve cross-sections in rats used in this study.

Image ID Image size Resolution Nerve Location Sex No. of segmented

(pixel×pixel) (nm/pixel) axons

1 2,994× 2,497 11.9 Vagus Right CT F 183

2 10,624× 6,686 11.9 Vagus Right CT F 5,020

3 21,005× 22,847 11.9 Vagus Right CT F 13,375

4 7,707× 7,978 11.9 Vagus AVAT F 4,538

5 9,633× 15,046 11.9 Vagus AVPT F 10,328

6 13,120× 14,400 11.9 Vagus AVAG F 6,566

7 19,921× 9,680 8.7 Vagus AVPT F 8,980

8 5,175× 3,784 11.9 Vagus AVAG F 407

9 12,328×9,692 13.7 Vagus Right CT M 7,647

10 6,794× 5,472 13.7 Vagus Right CT M 871

11 5,262× 7,111 13.7 Vagus AVPT M 9,109

12 24,746× 20,682 11.9 Vagus Right CT F 12,992

13 20,372× 27,269 11.9 Vagus Left CT F 14,155

14 7,953× 5,781 11.9 Vagus AVAG F 1,698

15 8,446× 7,258 13.7 Vagus AVAG M 4,938

16 4,128× 4,068 13.7 Vagus AVAG M 1,061

17 9,935× 8,870 13.7 Vagus AVAG M 4,654

18 5,521× 4,971 13.7 Vagus AVAG M 1,409

19 8,633× 8,866 11.9 Pelvic ≤2 mm from PG M 1,663

20 3,891× 3,334 11.9 Pelvic ≤2 mm from PG M 297

21 2,754× 2,958 11.9 Pelvic ≤2 mm from PG M 209

22 3,357× 3,823 11.9 Pelvic ≤2 mm from PG M 303

23 4,419× 5,701 11.9 Pelvic ≤2 mm from PG M 608

24 2,804× 4,221 11.9 Pelvic ≤2 mm from PG M 350

25 5,064× 7,207 11.9 Pelvic ≤2 mm from PG M 652

26 5,869× 6,268 11.9 Pelvic ≤2 mm from PG M 990

27 7,941× 6,372 11.9 Pelvic ≤2 mm from PG M 1,372

28 4,028× 3,513 11.9 Pelvic ≤2 mm from PG M 460

29 11,129× 7,962 11.9 Pelvic ≤2 mm from PG M 2,363

The vagus and the pelvic nerve cross-sections are collected from the following nerve locations. CT, cervical trunk; AVAT, abdominal vagus anterior trunk; AVPT, abdominal vagus posterior

trunk; AVAG, abdominal vagus anterior gastric (ventral gastric branch); PG, pelvic ganglion. The information regarding the Images 12–29 were published in Plebani et al. (2022).

where ν(.) is an indicator function that equals 1 if the argument is

true and otherwise is 0. Here n is the number of points; W is the

area of the observation window; r is the interaction distance; dij is

the Euclidean distance between xi and xj; and eij denotes weights

for edge correction (Baddeley et al., 2015). The K- and L-functions

can illustrate the non-random spatial arrangement of the points if

compared with CSR. They are invariant to the intensity of a point

pattern and tomissing random points (Ripley, 1976; Baddeley et al.,

2000), which allows these second-order statistics to be compared

when the number of points and observation window vary in the

point patterns under consideration. Positive values of the centered

L-function depict spatial attraction, and negative values describe

spatial inhibition in a point pattern.

When dealing with inhomogeneous point patterns, an

inhomogeneous L-function, based on the inhomogeneous

K-function Kinhom(r) can be evaluated. The estimator for

the inhomogeneous K-function K̂inhom(r) is formulated in

Equation (3) below.

K̂inhom (r) =
1

DpW

n
∑

i=1

n
∑

j=1,j6=i

ν(dij 6 r)

ρ̂ (xi) ρ̂
(

xj
) eij(r),

Dp =

(

1

W

n
∑

i=1

1

ρ̂ (xi)

)p

, p ∈ {1, 2}

(3)
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FIGURE 2

(A, D) The transmission electron microscopy (TEM) images of the nerve cross-section of Image 15 (vagus) and Image 29 (pelvic) listed in Table 1,

respectively. The visible void spaces in the nerve cross-sections are blood vessels. The tiny light gray regions without any border are the

unmyelinated axons. The myelinated axons have slightly darker gray borders. (B, E) The automated segmentation of the unmyelinated axons (the

white regions) in the nerve cross-sections. (C, F) The spatial point patterns constructed with the centroid locations (the black circles) of the

segmented unmyelinated axons.

FIGURE 3

An illustration of spatial point patterns with di�erent spatial

intensities. Samples 1, 2, and 3 have 20, 100, and 200 points per unit

area, respectively.

where ρ̂(u) is an estimator of the intensity function ρ(u),

obtained using a kernel-smoothed (described later in the paper)

intensity estimator (Baddeley et al., 2015). Figure 4A shows

three SPPs portraying complete spatial randomness (Sample 1),

spatial inhibition (Sample 2), and spatial attraction (Sample

3). These point patterns were formed by the Poisson process,

the hardcore process, and the Matern cluster process (Baddeley

et al., 2015). The L-function illustrates the differences in spatial

interaction of these SPPs, as shown in Figure 4B. The blue

curve’s fluctuation about zero within its significance band indicates

that the point pattern in Sample 1 is most likely random, but

the green and orange curves’ prominent negative and positive

peaks imply spatial inhibition and attraction in Samples 2 and

3, respectively.

Similar analysis of spatial interaction can be done for

the biological point patterns as well. Figure 5 shows the

Besag’s centered inhomogeneous L-function computed

for Image 15 (vagus) and Image 29 (pelvic), listed in

Table 1 and displayed in Figure 2. For both samples, this

demonstrates spatial inhibition over a narrow interaction

distance range, followed by spatial attraction. The clustering

tendency (spatial attraction) is more pronounced in the

pelvic sample.

An SPP is anisotropic if any of its statistical characteristics

change when the point pattern is rotated about any axis in 2-

D or 3-D space. The K- and L-functions can be modified in

various ways to estimate anisotropy (Ohser and Stoyan, 1981;

Chiu et al., 2013). Computing the cumulative distribution of the

neighbors within a section of the disc of r radius between two

directional preferences θ1 and θ2, instead of the entire disc of r

radius, gives the sector K- and L-functions (Baddeley et al., 2015).

Figure 6A depicts three random point patterns with no preferential

direction (Sample 1) as well as horizontal (Sample 2) and vertical

anisotropies (Sample 3).We compute sectorK-functions for sectors

forming a 15◦ segment around the horizontal (0◦) and vertical

(90◦) axes, and if these two functions are not approximately equal,

we conclude that the point patterns are anisotropic (Baddeley

et al., 2015). Figure 6B shows the differences between the horizontal

and vertical K-functions for the three aforementioned point

patterns. We observe that the difference between the sector K-

functions fluctuates around zero for Sample 1, indicating the

absence of anisotropy, holds positive values for Sample 2 and

negative values for Sample 3, indicating horizontal and vertical

preferences, respectively, up to a certain interaction distance.

When an SPP exhibits different interactions in

different places, it is beneficial to look into the spatial

statistics locally by decomposing them into contributions

from individual points (Baddeley et al., 2015). If the
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FIGURE 4

An illustration of spatial point patterns with di�erent spatial interactions. (A) SPPs portraying complete spatial randomness (sample 1), spatial

inhibition (sample 2), and spatial attraction (sample 3). (B) Besag’s centered L-function computed for the patterns shown in (A). The solid lines

illustrate the spatial interaction of the patterns compared to CSR. The shaded area around the solid lines shows the boundaries of 95-percentile

confidence interval.

FIGURE 5

Besag’s centered inhomogeneous L-function computed for Images

15 and 29. The shaded area around L(r) = 0 shows the significance

bands of complete spatial randomness (CSR). The solid lines

illustrate the non-random spatial arrangement of the point patterns

compared to CSR. The shaded area around the solid lines shows the

boundaries of 95-percentile confidence interval.

K-function estimator K̂(r) shown in Equation (2) is

decomposed, the contributions from individual points are

referred to as local K-functions and can be formulated as

follows:

K̂(r, xi) =
W

n− 1

n
∑

j=1,j6=i

ν(dij 6 r)eij(r), for i = 1, . . . , n (4)

The estimator K̂(r) is simply the average of all the K̂(r, xi)s for

i = 1, . . . , n. The centered local L-functions are formulated as

L̂(r, xi) = (K̂(r, xi)/π)
1/2 − r. This notion of decomposition

is applicable for the inhomogeneous and anisotropic K- and L-

functions as well.

The points in an SPP may be of different types (multitype

point pattern). The additional information attached to each point

in point patterns is called a mark and can hold categorical

or continuous-valued, physical or statistical characteristics. The

points can carry additional attributes (forming marked point

patterns) or be linked to the space of interest (covariates). It

is often helpful to apply spatial smoothing to the marks of

a point pattern for visualization and various post-processing

purposes. The result of the kernel-smoothing (usually with

Gaussian kernel) at a location u is a spatially weighted average

of the marks attached to the points in the neighborhood

of u (Baddeley et al., 2015). This is also known as the

Nadaraya-Watson smoother (Nadaraya, 1964, 1989; Watson,

1964).

There are several partially similar, but differently interpreted

spatial statistical functions employed to describe the dependence

(K-function, L-function, pair correlation function) and the spacing

(nearest-neighbor function G, empty-space function F, and their

combination called the J-function) between points in an SPP

(Baddeley et al., 2015). Although we used local inhomogeneous

and anisotropic L-functions to describe the spatial arrangement

of unmyelinated axon point patterns in nerve cross-sections, our

method could be easily reimplemented utilizing pair correlation

function (PCF) in place of the L-functions. PCF, which is related to

K and L-functions, is of particular interest because it has previously

been used in the context of biological microscopy (Sengupta et al.,

2011, 2013; Veatch et al., 2012).

In addition intensity (or spatial density) and interaction,

regionality is another aspect of the spatial organization that

influences spatial descriptors and contributes to the concept of

spatial similarity (or location). Regionality is the most intuitively

understandable feature of spatial organization and denotes the

absolute position of structures of interest within an object or region

of interest (ROI). Regionality is not translation- and rotation-

invariant, whereas interaction and intensity are (if not anisotropic).

All of these characteristics are captured when spatial point patterns

are processed using the tools described in this report.
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FIGURE 6

(A) Inhomogeneous random spatial point patterns with no directional preference (Sample 1), horizontal (Sample 2), and vertical (Sample 3) directional

preferences. (B) Di�erences computed between the horizontal and vertical K-functions for the samples in (A).

2.3. Optimal transport framework and
Sinkhorn distance

The transport problem distributes a certain amount of mass

from a set of sources to a set of destinations at minimum cost. There

are two major factors in a transport problem: the cost function and

the transportation plan. The cost function defines a fixed, non-

negative effort required to transport unit mass from a source to a

destination. This cost may only depend on the distance between

the source and the destination or on other additional factors; in the

former case a Euclidean distance matrix between the sources and

the destinations is a reasonable representation of effort.

Once the cost of transportation is represented, the remaining

part of the problem involves transporting a non-negative amount

of mass between sources and destinations, as described by a

transportation plan. Various transportation plans result in different

total costs, and the optimal transport problem (OT) aims to

minimize this cost. The OT problem is balanced if the total

mass at the sources equals the total mass at the destinations, and

unbalanced otherwise (Peyré and Cuturi, 2019).

Let r and c be two d dimensional vectors representing the

amount ofmass at the d sources and the d destinations, respectively.

The number of sources and destinations could differ, but they

can be considered equal without loss of generality. Let U(r, c) be

the set of all non-negative d × d matrices with row and column

summing to r and c, respectively. Any matrix P ∈ U(r, c) describes

a transportation plan that transports the mass in r to c. Given a

d × d cost matrix M, the total cost of mapping r to c using the

transportation plan P is
∑

i,j PijMij. Thus the OT problem between

r and c given cost M can be formulated by Equation (5), where

DM(r, c) is the optimal transport distance:

DM(r, c) = min
P∈U(r,c)

∑

i,j

PijMij,

subject to
∑

j

Pij = ri,
∑

i

Pij = cj, Pij ≥ 0, ∀i, j ≤ d.

(5)

The masses in r and c could be normalized to sum to one, and then

both r and c can be interpreted as probability distributions.

ForDM(r, c) to be a metric, the cost matrixM has to be a metric

matrix (Avis, 1980; Brickell et al., 2008; Villani, 2009) satisfying the

conditions shown in Equation (6).

Non-negativity:Mij ≥ 0,

Identity:Mii = 0,

Symmetry:Mij = Mji,

Triangle inequality:Mij ≤ Mik +Mkj, ∀i, j, k ≤ d.

(6)

The OT is a convex optimization problem that can be solved

using various approaches (Ahuja et al., 1993; Orlin, 1993). For a

general cost matrix the computational cost scales as O[d3log(d)]

(Pele and Werman, 2009), which prevents scaling the solution

to large problem sizes. Earlier approximate solutions obtained

by putting constraints on the cost matrix could result in a loss

of applicability and performance (Grauman and Darrell, 2004).

A later approximation to the original OT problem using an

entropic regularization scheme was proposed by Cuturi (2013) to

reduce the computational complexity. The scheme employs the

Sinkhorn-Knopp matrix scaling algorithm (Sinkhorn and Knopp,

1967; Knight, 2008), and hence the name Sinkhorn distance for its

objective function.

2.3.1. Sinkhorn distance
A straightforward way of thinking about a transportation

plan is by noticing that if a source contains more mass, it

should originate more, and if a destination requires more mass, it

should receive proportionally more. Such a transportation plan is

represented by rcT , and the optimal plan P should be somewhere

around the distribution rcT . Simply speaking, the idea of the

entropic regularization scheme by Cuturi (2013) is to choose P from

a smaller set near rcT , instead of the entire set U(r, c).

To capture these ideas, Cuturi (2013) imposes an additional

constraint of Kullback-Leibler (KL) divergence on the OT

formulation, as shown in Equation (7), and computes the Sinkhorn

distance D∗
M,α(r, c). This constraint introduces a set Uα(r, c) ⊂

U(r, c) from which an optimal transportation plan P is selected.

The KL divergence distance between P and rcT is set to be smaller
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than a predefined parameter α. In other words, P should belong to

a distribution near rcT .

D∗
M,α(r, c) = min

P∈Uα (r,c)

∑

i,j

PijMij,

subject to KL(P|rcT) ≤ α,
∑

j

Pij = ri,
∑

i

Pij = cj, ∀i, j ≤ d.

(7)

The entropy (h) of the transportation plan (P) and the mass

vectors (r and c) are given in Equation (8):

h(P) = −
∑

ij

Pij logPij,

h(r) = −
∑

i

ri log ri, h(c) = −
∑

j

cj log cj.
(8)

We proceed to express the KL divergence constraint in terms of

the entropy:

KL(P|rcT) =
∑

ij

Pij log
Pij

ricj

=
∑

ij

Pij log Pij −
∑

ij

Pij log ri −
∑

ij

Pij log cj

=
∑

ij

Pij log Pij −
∑

i

ri log ri −
∑

j

cj log cj

[∵
∑

j

Pij = ri,
∑

i

Pij = cj]

= −h(P)+ h(r)+ h(c) ≤ α.

(9)

Thus the new constraint states that the entropy of P should be

large enough to satisfy

h(P) ≥ h(r)+ h(c)− α,

which constrains P to be chosen from the Kullback-Leibler ball of

level α centered about rcT (see Figure 1 in Cuturi, 2013).

This interpretation makes the OT problem non-convex, and an

alternative formulation of Sinkhorn distance is required for ease of

optimization. For every pair (r, c), each α corresponds to a Lagrange

multiplier λ ∈ [0,∞) such that D∗
M,α(r, c) = DλM(r, c). The distance

DλM , shown in Equation (10), is called the dual-Sinkhorn divergence

by Cuturi (2013).

DλM(r, c) =
∑

i,j

PλijMij, where Pλ = argmin
P∈U(r,c)

∑

i,j

PijMij − λh(P),

subject to
∑

j

Pij = ri,
∑

i

Pij = cj, ∀i, j ≤ d.

(10)

By introducing two dual variables φ and ψ for each of the

two equality constraints of Equation (10), the Lagrangian of the

objective function can be written as Equation (11).

L(P,φ,ψ) =
∑

i,j

PijMij − λh(P)+
∑

i

φi(
∑

j

Pij − ri)

+
∑

j

ψj(
∑

i

Pij − cj). (11)

The derivative of the Lagrangian objective function with respect

to Pij, for any pair (i, j), can be set to zero to obtain an extremum;

the second derivative of the Lagrangian, ( λPij ), is positive since both

the numerator and the denominator are positive, and thus we have

obtained a minimizer of the Lagrangian.

∂L

∂Pij
= Mij + λ+ λ logPij + φi + ψj = 0.

H⇒ Pij = e−
φi
λ
− 1

2 .e−
Mij
λ .e−

ψj
λ
− 1

2

≡ uiKijvj [ui = e−
φi
λ
− 1

2 , vj = e−
ψj
λ
− 1

2 ,K = e−
M
λ ]

(12)

Given K, r, and c, the Sinkhorn-Knopp matrix scaling

algorithm converges to a solution Pλ of the following form:

∃u, v : Pλ = diag(u)Kdiag(v). (13)

Pλ should have the correct row and column sums, as shown in

Equation (10). We deduce the update rule for the Sinkhorn-Knopp

algorithms from those constraints in the following manner:

∑

j

Pλij = ri,
∑

i

Pλij = cj

H⇒
∑

j

uiKijvj = ri [Equation 12] H⇒
∑

i

uiKijvj = cj

[Equation 12]

H⇒ ui
∑

j

Kijvj = ri H⇒ vj
∑

i

uiKij = cj

H⇒ ui = ri/
∑

j

Kijvj H⇒ vj = cj/
∑

i

uiKij

Thus the update rule for the Sinkhorn-Knopp algorithm can be

written as Equation (14), where v can be initialized randomly.

u = r./(Kv),

v = c./(KTu).
(14)

Cuturi (2013) observes that the number of iterations in the

Sinkhorn-Knopp algorithm is bounded independent of d. Thus,

the cost of computing DλM is O(d2), which is an improvement

over O[d3log(d)]. Cuturi (2013) describes an approach to

compute the Sinkhorn distance D∗
M,α(r, c) through the dual-

Sinkhorn divergence DλM(r, c), and also reports that the dual-

Sinkhorn divergence does not perform worse than the classic

optimal transport distances. Therefore, we use the dual-Sinkhorn

divergence to measure the distance between the spatial statistics of

the point patterns in our experiments and refer to as the Sinkhorn

distance. We utilize the R packages T4transport (You, 2022)

and Barycenter (Klatt, 2018) for computing the dual-Sinkhorn

divergences, and spatstat (Baddeley et al., 2015) for spatial point

pattern analysis.

3. Experiments and results

We represent the unmyelinated axonal arrangements in

the vagus and pelvic nerve cross-sections as spatial point
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patterns. We intend to quantify (using the Sinkhorn distance)

similarities between the point patterns in terms of the following

spatial features:

1. spatial intensity,

2. local inhomogeneous L-function,

3. local inhomogeneous anisotropic L-function with

(a) horizontal and

(b) vertical sectors.

For the horizontal and vertical cases, we choose sectors forming

15◦ segment around the horizontal (0◦) and vertical (90◦) axes,

respectively. We attach the above-mentioned spatial features to the

point patterns as marks (described in Section 2.2). We compute the

Sinkhorn distance between every pair of point patterns, for the four

spatial features, in two different manners:

1. using the spatial point patterns directly (in Section 3.4) and

2. using the map of the spatial features constructed by kernel-

smoothing (in Section 3.5).

The Sinkhorn distance between every pair of nerve cross-

sections is then used to construct a symmetric Sinkhorn

distance matrix and visualized in an embedded space via

multi-dimensional scaling. In the following three subsections,

we describe a few preprocessing and parameter selection tasks

required for configuring the spatial features, before going into the

experimental details.

3.1. Interaction distance configuration

A critical issue regarding the computation of local

inhomogeneous L-functions is determining the interaction

distance (r), described in Section 2.2. The point patterns

constructed from the nerve cross-sections differ in size, as do

their interaction ranges. The preferred choice for the interaction

distance is the one that can reasonably separate the spatial features

of interest present in the point patterns. We compute a range

of interactions that are common for all the point patterns and

configure the interaction distance using two approaches: (a) based

on the standard deviations of the inhomogeneous L-function of

all the point patterns and (b) based on the F-ratio (analysis of

variance) of the inhomogeneous L-function of the point patterns

grouped as vagus vs. pelvic, within the expected range. Other

strategies for choosing r or a linear combination of multiple r

values are also possible (See Section 3.4.1).

3.2. Translation and rotation normalization

The optimal transport distance is not invariant under

translations and rotations (Wang et al., 2013). This is critical in the

case of analyzing the point patterns because spatial inhomogeneity

and anisotropy depend largely on the placement and orientation

of the point patterns. To provide translation invariance, we scale

the point patterns maintaining proportionality, align the center of

mass to the origin, and apply the necessary 0-padding around the

biological structures.

Ensuring rotation invariance is non-trivial. In an ideal setting,

the information regarding the orientation of the biological

structures would be available directly to the analyst. Unfortunately,

the experimental and instrumental setting may not always allow the

orientation of the samples to be maintained during the specimen

preparation and the imaging process. Therefore, we implemented a

post-hoc minimization process as a workaround. While computing

the Sinkhorn distance between the spatial intensities of a pair of

point patterns, we keep the orientation of one of them unchanged

and rotate the other one about the origin by multiple θ values

(θ = 45◦ in our experiments). We compute the Sinkhorn distance

for all possible values of θ and keep the orientation that provides the

smallest Sinkhorn distance result.We use this identified orientation

for the computation of other spatial features. This method provides

a reproducible procedure in the absence of known anatomical

orientation data.

3.3. The entropic regularization parameter

We refer to the coefficient of the entropy of the transportation

plan h(P) in the dual-Sinkhorn divergence formulation shown

in Equation (10), λ, as the entropic regularization parameter. As

λ → 0, Sinkhorn distance approaches the optimal transport

distance (Wasserstein distance, provided that the cost is Euclidean

distance). As λ increases, the computation results in different

approximations of the optimal transport distance, i.e., the

Sinkhorn distances. Tuning the appropriate entropic regularization

parameter is an important task. We can consider two scenarios: (a)

selecting an entropic regularization parameter that provides better

separation between analyzed instances and (b) selecting an entropic

regularization parameter that makes the Sinkhorn distance a more

accurate approximation of the exact optimal transport distance.

Thus, parameter tuning is a trade-off between favoring the utility

of the method (and lower computational cost) and the accuracy of

the approximation.

Smaller values of the λ parameter produce Sinkhorn distances

that more closely approximate Wasserstein distances (Cuturi,

2013). Therefore, if computational resources are not limited,

smaller λ values are preferable to larger values. To estimate the

computational cost, we tried λ = 0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0,

but we settled on λ = 0.01.

3.4. Sinkhorn distance between spatial
point patterns

In this section, we compute Sinkhorn distance between the

spatial point patterns (directly) of the nerve cross-sections, for

the four spatial features mentioned earlier. Let S1 and S2 be two

spatial point patterns, with n1 and n2 number of points respectively.

Considering an optimal transport problem between S1 and S2,

we assume that each point in S1 contains 1
n1

amount of mass

(r), therefore the total mass = 1
n1

× n1 = 1. Similarly, each

point in S2 requires 1
n2

amount of mass (c), so the total mass

= 1
n2

× n2 = 1. Thus the problem is to transport the mass from
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S1 to S2 (balanced). The inputs for the computations are the spatial

locations of the points in S1 and S2. Therefore, we can compute

the Euclidean distance matrix between them to be the cost matrix

M, of dimension n1 × n2. Here, the cost matrix M captures the

spatial intensity of the point patterns. Further, we compute the

transportation plan P, of dimension n1 × n2, using the formulation

described in Section 2.3.1 and obtain the Sinkhorn distance, which

provides a measure of similarity of the spatial intensity between S1
and S2.

In the cases of the three other spatial features, the cost matrix

(M) remains the same (the spatial location of the points are

unchanged), but the amount of mass produced (r) or required

(c) at each point changes. The local inhomogeneous L-function

attaches a numerical value to each point in a point pattern that

captures its local spatial interaction within a certain interaction

distance. Instead of a uniform mass amount, we may assume

that each point in S1 and S2 is assigned an amount of mass that

equals its local inhomogeneous L-function value. We normalize

the values assigned to each point pattern to sum to one. Then

we can compute the transportation plan P in the same manner

as described above. The resultant Sinkhorn distance gives us a

measure of similarity of the local spatial interaction between S1 and

S2. The Sinkhorn distances for the anisotropic spatial features, the

local inhomogeneous anisotropic L-function with horizontal and

vertical sectors, are also computed similarly.

We have 29 nerve cross-sections in the dataset and once

we compute the Sinkhorn distance between every pair, we can

construct Sinkhorn distance matrices of dimension 29 × 29, for

each of the four spatial features. We use multi-dimensional scaling

to embed the Sinkhorn distance matrices in 2-D to illustrate

the computed Sinkhorn distance between the spatial features and

interpret the notion of similarity (or dissimilarity) between the

nerve cross-sections. We denote the new embedded 2-D space as

the Sinkhorn space.

The application of the optimal transport (OT) solution to

define the similarity of spatial point patterns is dependent

on all of the spatial organization characteristics described in

Section 2.2. Intensity differences are conveyed by the number

of points at a given location relative to other sites where

mass for transportation is present. As point weights in OT, the

values of the local (inhomogeneous and anisotropic) L-functions

represent information about point-point interactions. Lastly, the

movement of mass from one area in ROI to another directly

captures the sense of regionality. Although it is possible to

simulate pattern arrangements that emphasize only one aspect of

spatial organization while diminishing the influence of the others,

this will not lead to the development of an intuitive sense of

computed distance in a real-world setting. As with numerous other

mathematical concepts (and distance in particular), the interplay

between the various aspects of spatial organization manifested in

biological samples defies simple models.

The architecture of the unmyelinated axons in the vagus and

pelvic nerve cross-sections are examples of spatial complexity

arising from the combination of multiple aspects of organization.

Therefore, it might be difficult to develop an intuitive sense

of the Sinkhorn distance between the axonal organization of

these structures and their placement in the Sinkhorn space.

Before discussing biological point patterns, we present a number

of simulated point patterns to illustrate only a few particular

scenarios emerging as realizations of pre-defined spatial point-

pattern processes (they do not represent the entire landscape of

possible phenotypic manifestations).

3.4.1. Sinkhorn distance for simulated point
patterns

Figures 7A–C show 18 simulated spatial point patterns

with different spatial interactions—inhibition, randomness, and

clustering. These point patterns were formed by inhomogeneous

point processes, namely the hardcore process, the Poisson process,

and the Matern cluster process (Baddeley et al., 2015). For the

simulation, we used a hardcore process with 400 points per unit

area and a hardcore distance of 0.04 (the points are not allowed

to be within 0.04 unit of distance from each other, ensuring

inhibition). We used a Poisson process with inhomogeneous

intensity function ρr(x, y), shown in Equation (15), and a Matern

cluster process with inhomogeneous intensity function ρc(x, y) for

the cluster centers, shown in Equation (16), with cluster radius

0.10 and 25 points per cluster. The intensity functions ρr(x, y)

and ρc(x, y) introduce some anisotropy in the corresponding point

patterns. The embedding of the local inhomogeneous L-function

of the simulated point patterns in the Sinkhorn space is depicted

in Figure 7D, where point patterns with similar spatial interaction

are mapped close to each other and a clear separation can be seen

between samples with different spatial interaction.

ρr(x, y) = 100× exp(−5x) (15)

ρc(x, y) = 10× exp(2|x| − 1) (16)

Similar simulations can be used for any type of spatial point

pattern, providing an explainable, semi-mechanistic rationale for

the emergence of the patterns and an interpretable representation

of their properties and reasons for separation.

Figure 8A depicts a set of spatial point patterns with

different interactions and regionality. The points are concentrated

in the upper right (examples 1, 2, 5, 6, 9, 10, 13, and

14) and the lower left (examples 3, 4, 7, 8, 11, 12, 15,

and 16) corners to demonstrate difference in regionality. The

points are organized randomly in the odd-numbered examples,

and clustered in the even-numbered examples, within their

corresponding regions. Figures 8B–D illustrate the notion of

similarity capturing interaction and regionality as the two key

aspects of spatial organization.

When averaged for all the points, the second-order spatial

statistics, such as the inhomogeneous L-functions, describe the

overall spatial interaction of a point pattern (as shown in

Figures 4B, 5) but lose the ability to capture the notion of

regionality. Therefore, by computing pairwise Euclidean distances

between the simulated examples’ inhomogenous L-functions and

embedding the results in the Euclidean space, we communicate

only the distance between point-pattern interactions while

excluding the regionality contribution entirely. See Figure 8B,

where the random patterns are primarily present on the

right side of the plot, whereas the clustered patterns lie on

the left.
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FIGURE 7

An illustration of spatial point patterns with di�erent inhomogeneous spatial interactions. (A) Spatial inhibition. (B) Spatial randomness. (C) Spatial

clustering. The intensity functions of the random and clustered patterns introduce some anisotropy. (D) An embedding of the point patterns in the

Sinkhorn space. The inhibited, random, and clustered point patterns are shown in green, blue, and orange, respectively.

Figure 8C illustrates another valid concept of similarity

but constructed with a different emphasis. In this example,

the local inhomogeneous L-functions were computed with

a very large interaction distance. Therefore, the effect of

regionality dominates. The resulting Sinkhorn embedding

shows patterns with points concentrated on one side of

ROI separating from the patterns in which points were

concentrated on the other side of ROIs. Changing the interaction

distance r at which the local L-functions are computed

provides flexibility on how much influence of regionality is

incorporated into the statistics and, correspondingly, to which

extent the notion of similarity is shaped by regionality vs.

point-point interactions.

Alternatively, one can employ singular value decomposition

to compress all the information regarding interactions at various

r values. In this case, the Sikhorn distance would operate on

the linear combination of r distances that convey the largest

variance. This case is illustrated in Figure 8D, where both aspects

of the spatial organization are employed to compute point-

pattern similarity. Consequently, the visualized distances between

point patterns are influenced by the interaction and the regional

organization. The degree to which different aspects of spatial

architecture and interaction distance should shape the metric is a

choice that must be made based on domain knowledge regarding

the anatomy and significance of varying levels of structural

organization. Finally, it is worth mentioning that the Sinkhorn

distance between two point patterns with similar interaction

but different regionality might be approximately equal to the

Sinkhorn distance between two point patterns with vastly different

interaction characteristics but similar regionality.

3.4.2. Sinkhorn distance for biological point
patterns

Now that we have an idea of how different aspects of the

spatial organization can be captured with Sinkhorn distance and

visualized in the Sinkhorn space, we describe the experimental

results of the biological point patterns. Figure 9B shows an

embedding of the spatial intensity of the spatial point patterns

(used directly) of the nerve cross-sections in the Sinkhorn space

for entropic regularization parameter λ = 0.01. The vagus and

the pelvic samples are shown in cyan and orange, respectively,

and labeled with the Image ID listed in Table 1. Figure 9H

shows Image 13 (vagus), which is positioned far from the other

samples in the Sinkhorn space. It is the largest sample in our

dataset regarding image size and the number of segmented

unmyelinated axons. It is also the only sample from a left

cervical trunk. Figures 9A, C display Image 12 and Image 3 (both

vagus) respectively. They are collected from the right cervical

trunks. Figure 9I shows Image 7 (vagus) from abdominal vagus

posterior trunk. Considering the spatial intensity, these four vagus

samples are embedded far apart and are visually different. The
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FIGURE 8

An illustration of spatial point patterns with di�erent interactions and regionality. (A) Simulated examples of spatial point patterns: concentrated in the

upper right (1, 2, 5, 6, 9, 10, 13, 14) and the lower left (3, 4, 7, 8, 11, 12, 15, 16) corners demonstrate regionality. The points are organized randomly in

the odd-numbered examples and clustered in the even-numbered instances. (B) Euclidean distance between the inhomogeneous L-functions of the

simulated models. (C) Sinkhorn distance between the local inhomogeneous L-functions of the simulated examples at a large interaction distance (r =

0.679). (D) Sinkhorn distance between the first principal component (PC) of local inhomogeneous L-functions of the simulated examples over a set

of interaction distances. The point patterns of di�erent interactions and regionality are shown in di�erent colors.

rest of the samples are positioned in proximity, yet we can

see a rightward tendency in the vagus samples than the pelvic

ones. Figures 9D, E show Image 1 and Image 16 (both vagus),

respectively. They look spatially different from the vagus samples

discussed so far and are embedded at the leftmost part of the

Sinkhorn space, far from those samples. However, they have a

similar spatial organization as Image 28 and Image 22 (both

pelvic) shown in Figures 9F, G and are embedded closer in the

Sinkhorn space.

Although one can intuitively understand the global differences

in spatial intensity of the point patterns by looking at the images

of segmented unmyelinated axons in the nerve cross-sections,

our approach can quantify and visualize the differences with the

Sinkhorn distance between every pair of samples, resulting in a
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map of patterns. For instance, in Figure 9B, the Sinkhorn distances

between the spatial intensity of Image 1, and Image 3 and Image

12 are 0.257 and 0.254, respectively, whereas the distance between

Image 3 and Image 12 is 0.107. Again, Image 16 and Image 28 have

respectively distances 0.054 and 0.048 from Image 1.

Interpreting spatial statistics, such as local inhomogeneous

and anisotropic L-functions, can be more challenging than

understanding raw spatial intensity. Figures 10C–E show three

embeddings of the spatial features in the Sinkhorn space

for λ = 0.01: the local inhomogeneous L-function, the local

inhomogeneous L-function with horizontal sector and vertical

sector, respectively. With a few exceptions, the overall landscape in

the embeddings is similar to the one for the spatial intensity shown

in Figure 9B. Figure 10A showing the segmented unmyelinated

axons for Image 18 (vagus) contains several elongated axons.

The elongated axons make the spatial arrangement of centroids

in the corresponding point pattern (see Figure 10B) quite sparse

and direction-oriented (anisotropic) in certain regions. The

different positioning of Image 18 in the embeddings can reflect

these characteristics.

3.5. Sinkhorn distance between maps of
spatial features

Here, we compute the Sinkhorn distance between every pair

of point patterns using the map of the spatial features constructed

by kernel-smoothing. When we consider spatial point patterns

directly (as in Section 3.4), the mass (corresponding to the spatial

FIGURE 9

(A, C–I) A set of images of the segmented unmyelinated axons in the nerve cross-sections, labeled with the Image ID. (B) An embedding of the

spatial intensity of the spatial point patterns in the Sinkhorn space for entropic regularization parameter λ = 0.01. The vagus and the pelvic samples

are shown in cyan and orange [circles for female (F) and triangles for male (M)], respectively, and labeled with the Image ID listed in Table 1.
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intensity or any other spatial feature attached as marks) to be

transported is concentrated at the exact location of a point. As

we apply kernel-smoothing to the point pattern, the concentrated

mass at any point diffuses into its neighborhood. This step can

help capture the notion of regionality in the kernel-smoothed

maps while computing Sinkhorn distances. Notably, the kernel-

smoothing reduces the influence of the differing number of

points in the compared point patterns on the resulting Sinkhorn

distances. The transportation-based metrics are well-suited for

quantifying differences between bitmaps in which pixel values

can be interpreted as transportable mass without strict geometric

constraints (Rubner et al., 2000; Grauman and Darrell, 2004; Haker

et al., 2004; Chefd’Hotel and Bousquet, 2007; Wang et al., 2011,

2013).

The kernel-smoothed spatial intensities, as well as marks

attached to a point pattern, can be depicted as bitmaps,

where the pixel values represent kernel-smoothed intensity

values or other quantities derived from the marks (e.g., local

inhomogeneous and anisotropic K- and L-functions). The

kernel-smoothed spatial features of Images 3 (vagus) and

29 (pelvic) listed in Table 1 are shown in Figure 11. The

bitmaps for the local inhomogeneous L-function, demonstrated

in Figures 11B, F, have higher values of the spatial feature

compared to their anisotropic counterparts shown in Figures 11C,

D, G, H and slight shifts in values at certain locations are

observed between the bitmaps of the horizontal and vertical

sectors. Quantifying similarities between the kernel-smoothed

bitmaps can be performed using Sinkhorn distance just like

quantifying similarities between the spatial features of the original

point patterns.

Let I1 and I2 be the centered (0-padded as necessary) kernel-

smoothed maps of the spatial intensity of the point patterns

S1 and S2, respectively. The pixel values in I1 and I2 are

normalized to sum to one, and the value at each pixel is

considered the amount of mass contained (r) or required (c) at

that pixel. The location of the pixels is not known beforehand,

so we construct a unique grid [0, 1]2 over which the pixel

locations of I1 and I2 are defined. The cost matrix M is the

Euclidean distance matrix computed from the [0, 1]2 grid. The

transportation plan P and the Sinkhorn distance between I1 and I2
are computed in the previously described manner. The Sinkhorn

distances between the maps representing the other three spatial

features are also calculated in the same fashion. Constructing

the Sinkhorn distance matrix and visualizing embeddings in the

FIGURE 10

(A, B) The segmented unmyelinated axons and the spatial point pattern of Image 18 (vagus) listed in Table 1. (C–E) The embeddings of the local

inhomogeneous and anisotropic L-functions (no sector, horizontal sector, and vertical sector) of the spatial point patterns in the Sinkhorn space for

entropic regularization parameter λ = 0.01. The vagus and the pelvic samples are shown in cyan and orange [circles for female (F) and triangles for

male (M)], respectively, and labeled with the Image ID listed in Table 1.
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FIGURE 11

Visualizing the kernel-smoothed spatial features of Image 3 (vagus) and Image 29 (pelvic) listed in Table 1. (A, E) Spatial intensity. (B, F) Local

inhomogeneous L-function. (C, G) Local inhomogeneous L-function with the horizontal sector. (D, H) Local inhomogeneous L-function with the

vertical sector. The scale bars show the range of values for each spatial feature separately (column-wise). The kernel-smoothed bitmaps were

downsampled for reasonable runtime and memory requirements.

Sinkhorn space are also done in the same way as described in

Section 3.4.

Figure 12A shows an embedding of the kernel-smoothed maps

of the spatial intensity of the point patterns in the Sinkhorn space

of λ = 0.01. The vagus and the pelvic samples are shown in cyan

and orange, respectively, and labeled with the Image ID listed

in Table 1. The vagus samples 3, 7, 12, and 13 are embedded

at a distance from the rest of the samples, and this trend was

also observed in Figure 9B, when we processed the point patterns

directly. However, vagus samples 6 and 15, and pelvic samples

19 and 26 (see Figures 12E–H), which were positioned close to

the rest of the samples in Figure 9B, are located far apart in the

right-most region of the embedding in Figure 12A. Therefore, some

characteristics of the spatial intensities that were not captured

during the processing of the raw point patterns became apparent

when spatial feature maps were employed. The embeddings of

kernel-smoothed local inhomogeneous and anisotropic L-function

are illustrated in Figures 12B–D, portraying a similar trend overall,

where the perceptually comparable vagus and pelvic samples are

positioned in proximity, the rest are far apart, and the vagus

samples are more spread out.

3.6. Insights regarding the spatial
architecture

We computed the Sinkhorn distances between every pair of

nerve cross-sections for the four spatial features using spatial point

patterns directly (data shown in Section 3.4) and kernel-smoothed

bitmaps representation of the spatial features (data shown in

Section 3.5). The resulting Sinkhorn embeddings are displayed in

Figures 9, 10, 12. The created Sinkhorn space allows us to observe

the similarities (or dissimilarities) of spatial intensities and second-

order spatial properties.

The secondary statistical analysis performed on the embedded

patterns generated by kernel-smoothing to mitigate the effects

of the unequal number of axons revealed that the difference

in spatial architecture between the vagus and pelvic nerves is

relatively small (Mahalanobis distance 1 = 0.91). However, the

sample size is insufficient to determine whether this observed

difference reflects biological reality or results from random chance.

With npelvic = 11 and nvagus = 18, the achieved power (1-

β) is only 0.6. In order to confirm the spatial architectural

difference between vagus and pelvic nerve cross-sections, the

required data set size should be at least n = 26 per class for

1-β = 0.8 and α = 0.05 in 2-D embedding, according to the

collected preliminary results. In other words, any future research

on the potential architectural difference between peripheral nerves’

axonal organization (or modulation of a such organization due to

pathology or treatment) must use these preliminary effect sizes

as a reasonable basis for necessary power analysis needed for

experimental design.

On the other hand, there is a substantial difference between

the nerve cross-sections of males and females (1=1.246,

Hotelling T2 test p-value = 0.013). However, this effect

must be confirmed and replicated with an unconfounded

sample set in which the correlation between sex and

cross-section origin (pelvic vs. vagus) is absent. The result

reported here is based on the assumption that there is

indeed no statistically significant difference between pelvic

and vagus.
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FIGURE 12

(A–D) The embeddings of the kernel-smoothed spatial intensity and the local inhomogeneous and anisotropic L-functions (no sector, horizontal

sector, and vertical sector) of the spatial point patterns in the Sinkhorn space for entropic regularization parameter λ = 0.01. The vagus and the pelvic

samples are shown in cyan and orange [circles for female (F) and triangles for male (M)], respectively, and labeled with the Image ID listed in Table 1.

(E–H) The segmented unmyelinated axons of Image 15 and 6 (vagus) and Image 19 and 26 (pelvic) listed in Table 1.

Regarding intraclass variability, vagus samples exhibit a

significantly greater diversity of spatial architecture than pelvic

samples when the raw spatial patterns are directly compared

(Figure 9B). However, this difference disappears when the kernel-

smoothed spatial patterns are compared, indicating that it was

driven mainly by the difference in the number of axons rather than

the spatial architecture (Figures 12, 13).

The vagus samples in our dataset are collected from the

abdominal and cervical regions (see Table 1). Thus, looking into

the degree of variability of the Sinkhorn distance within the sub-

categories of the vagus samples and between the pelvic samples

is helpful. Figure 14 illustrates the range of Sinkhorn distance

between the spatial intensity of every pair of nerve cross-sections

(for both types of analysis), categorized as the following:

1. within vagus samples

(a) intra-classmeasurements (i) (abdominal vagus vs. abdominal

vagus)

(b) intra-class measurements (ii) (cervical vagus vs. cervical

vagus)

(c) inter-class measurements (abdominal vagus vs. cervical

vagus)
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FIGURE 13

Boxplots displaying the ranges of Sinkhorn distance between the spatial intensity of the nerve cross-sections. Pelv: pelvic; Vag: vagus. (A) Analysis of

the spatial point patterns directly. (B) Analysis of the kernel-smoothed maps of the spatial features. The points show the individual Sinkhorn distances,

revealing the hidden distribution.

2. between pelvic and vagus samples

(a) inter-class measurements (i) (pelvic vs. abdominal vagus)

(b) inter-class measurements (iii) (pelvic vs. cervical vagus)

In Figure 14, we see the ranges of the Sinkhorn distances

for the abovementioned sub-categories. The degree of variability

is more prominent in the analysis of the raw spatial point

patterns (Figures 14A, B) compared to the analysis of the kernel-

smoothed bitmaps representing spatial features (Figures 14C, D).

This observation applies not just to spatial intensity but also

statistical second-order spatial statistics. Figure 14 shows that

variability within the abdominal vagus samples is substantially

lower than the spatial variability within the cervical vagus cross-

sections (p-value < 0.001). However, this notion has not been

confirmed when looking at Figure 14C, which is based on

pre-processing that eliminates the effect of axons’ number. As

before, this is most likely due to the low statistical power of

the available sample size. The number of abdominal (55) and

cervical (21) pairwise measurements is too small to confidently

demonstrate the observed standardized effect size of 1 = 0.59.

The required number of measurements for such effect size

should be at least 45 per class to achieve 1 = β−0.8 with α =

0.05.

The much smaller standardized difference (1 = 0.3) between

two sites of vagus nerves sampling and pelvic nerves shown

in Figure 14D can be confidently demonstrated due to the

considerably larger number of available data points (121 pelvic vs.

abd. vagus and 77 pelvic vs. cervical vagus pairwise measurements).

Therefore, we can state that the dissimilarity between pelvic and

abdominal vagus spatial architectures is much smaller than between

pelvic and cervical vagus nerves (p-value = 0.0352). In other words,

abdominal vagus samples resemble pelvic cross-sections to a higher

degree than cervical vagus cross-sections.

4. Discussion

While many modern feature learning methods can directly

classify biological images based on structural differences, the critical

issue is the ability to quantify the specific architectural aspects

of biological structures in order to relate them to a function or

pathology. Neuroanatomy is one of the fields in which black-box

image classifiers are undesirable, as the objective of the research is

to link the image attributes to actual anatomical and physiological

knowledge regarding cell and tissue organization, as opposed to

simply sorting the images into predetermined categories. The

approach presented here adds another module to our multi-

step sample and data processing pipeline, which also includes

the data acquisition and image segmentation modules described

previously (Havton et al., 2021; Plebani et al., 2022).

We pursued the representation of the segmented unmyelinated

axons in the TEM images of the peripheral nerve cross-sections as

spatial point patterns not only to gain a better understanding of

their neuroanatomy but also to express the observed differences

in a quantitative manner, which would enable a variety of

automated analysis tasks in the future, including automated

image queries, image database retrieval, and biological image

comparisons. While visual inspection of segmented images and

their associated point patterns might provide some basic intuition

regarding the spatial intensity, it is impossible to rely on the

investigator’s visual perception and judgments when examining

more complex pattern characteristics such as local heterogeneous

and anisotropic spatial features. Although global bulk measures

of second-order spatial statistics, such as the K- and L-functions,

help to represent and explore spatial interactions (randomness,

inhibition, or clustering), they fail to capture local variations within

biological structures. On the other hand, the local form of these

spatial statistics functions generates yet another complex spatial
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FIGURE 14

Boxplots displaying the ranges of Sinkhorn distance between the spatial intensity of the sub-categories of the nerve cross-sections. Abd: abdominal

vagus; Cerv: cervical vagus, and pelvic. (A, B) Analysis of the spatial point patterns directly. (C, D) Analysis of the kernel-smoothed maps of the spatial

features. The points show the individual Sinkhorn distances, revealing the hidden distribution.

pattern, leaving scientists with an equally tricky quantification

problem. In this context, our analytical approach that captures

differences between arrangements of any spatial distributions

to form a visualizable embedding that enables straightforward

comparison between complex structures provides a simple-to-use

tool for neuroanatomists and computational neuroscientists.

There are at least three notable limitations associated with

the demonstrated methods and their specific implementation.

As previously stated, the claimed differences are relatively small

and, despite being statistically significant, may be biologically

unimportant. There is no reason to anticipate that the spatial

arrangement would be dramatically altered in samples that do

not represent a recognized disease. We realize that the value of

the method would be more clearly demonstrated if the detected

differences were associated with a specific biological mechanistic

model, especially one associated with a disease or an abnormality.

Although we lack such examples, we hope that researchers working

on projects involving anatomical pathologies will be able to easily

reproduce our methodology for quantifying observable differences

in a biomedical context.

The second concern stems from the first: because there

are no established alternative methods to quantify the spatial

organization of axons, there is no way to validate the results

by relating them to known physiology. This would indeed be a

valuable exercise if the relevant nerves’ physiology was already

defined with sufficient precision. Unfortunately, this is not the

case, so in the absence of sufficient data of this type, we have

considered a number of well-established anatomical characteristics

of these nerves that are consistent with our new study. For

instance, our research aimed to distinguish between the cervical

and abdominal vagus, and it revealed that the abdominal vagus

and pelvic nerve share some similarities. This correlates with

the higher prevalence of myelinated axons in the cervical vagus

(Hulsebosch and Coggeshall, 1982; Prechtl and Powley, 1990),

but it does not necessarily imply that the overall patterning

of myelinated axons within each nerve type will be distinct.

Physiological evidence of the type required to validate the current

findings regarding sex differences in the vagus is also lacking.

As many of the motor and sensory pathways supply sexually

dimorphic targets, a sex difference may be anticipated for the pelvic
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nerve. However, in the present study, only samples from male rats

were available.

The third concern relates to the orientation of biological

structures. The anatomical rotational positions (orientations) of

the analyzed fascicles were unknown (they were not recorded

during sample processing), and we employed the post-hoc method

described in Section 3.2 to identify the preferable orientation

of the specimens. Although this method finds the rotations

representing the smallest discrepancy between specimens, there

is no guarantee that the identified orientations are biologically

relevant. Sample alignment and orientation labeling is a broader

problem in microscopy, not only affecting our analysis but also

other techniques, such as multimodal imaging.

Despite these limitations, the presentedmethod is an important

contribution to the microscopy analytical toolbox. Notably, the

availability of analytical tools is essential for the collection and

evaluation of a large, comprehensive set of neuroanatomy and

neuropathology data. As a result, the current scarcity of labeled

and segmented images is attributable in part to the absence of an

established analytic framework, casting doubt on the systematic

value of acquiring comprehensive peripheral nerve data. We

certainly hope that the conception and presentation of our

method will inspire neuroanatomists to collect more data on

peripheral nerves, resulting in broader quantitative anatomical

studies. Importantly, our approach is simple to reproduce

because it employs existing libraries for a popular statistical

prototyping language.

Although we focused here on unmyelinated axons, the

computational pipeline is applicable to multi-type point

patterns and spatial research outside of neuroscience. This

work demonstrates that the spatial architecture of unmyelinated

axons in peripheral nerve cross-sections is neither uniform nor

random but forms complex and rich arrangements. In order to

simulate such a complicated spatial form, hybrid point processes

are required. In the future, we plan to focus on spatial modeling

and further classification of peripheral nerve cross-sections. The

similarity (or dissimilarity) measure we established in this study

will be the foundation for these modeling tasks.

5. Conclusions

In this report, we examined one of the key research

problems in neuroanatomy, the fundamental description,

measurement, and quantification of the spatial arrangement

of axons in peripheral nerves such as the vagus and pelvic

nerves (Hulsebosch and Coggeshall, 1982; Prechtl and Powley,

1990). This topic is significant not only from the basic

neuroanatomical standpoint, but also due to the growing

importance of peripheral nerve electrostimulation approaches,

which rely on a precise understanding of the peripheral

nerve architecture during the modeling and development

phases (Pelot et al., 2020; Eiber et al., 2021). We believe that

quantitative analysis, comparisons, and visualization of spatial

arrangement can provide valuable insight to neuroanatomists,

computational neuroscientists, and engineers working in the

field of electrostimulation. We also believe that the presented

method can be easily adapted to other biological fields, including

spatial proteomics and genomics (Ji et al., 2020; Hickey et al.,

2022).
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Wang, W., Ozolek, J. A., Slepčev, D., Lee, A. B., Chen, C., and Rohde,
G. K. (2011). An optimal transportation approach for nuclear structure-based
pathology. IEEE Trans. Med. Imaging 30, 621–631. doi: 10.1109/TMI.2010.208
9693
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