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Introduction: Real time modulation of brainstem frequency-following responses

(FFRs) by online changes in cortical arousal state via the corticofugal (top-down)

pathway has been demonstrated previously in young adults and is more prominent in

the presence of background noise. FFRs during high cortical arousal states also have

a stronger relationship with speech perception. Aging is associated with increased

auditory brain responses, which might reflect degraded inhibitory processing within

the peripheral and ascending pathways, or changes in attentional control regulation

via descending auditory pathways. Here, we tested the hypothesis that online

corticofugal interplay is impacted by age-related hearing loss.

Methods: We measured EEG in older adults with normal-hearing (NH) and mild

to moderate hearing-loss (HL) while they performed speech identification tasks in

different noise backgrounds. We measured α power to index online cortical arousal

states during task engagement. Subsequently, we split brainstem speech-FFRs, on

a trial-by-trial basis, according to fluctuations in concomitant cortical α power into

low or high α FFRs to index cortical-brainstem modulation.

Results: We found cortical α power was smaller in the HL than the NH group. In

NH listeners, α-FFRs modulation for clear speech (i.e., without noise) also resembled

that previously observed in younger adults for speech in noise. Cortical-brainstem

modulation was further diminished in HL older adults in the clear condition and by

noise in NH older adults. Machine learning classification showed low α FFR frequency

spectra yielded higher accuracy for classifying listeners’ perceptual performance in

both NH and HL participants. Moreover, low α FFRs decreased with increased hearing

thresholds at 0.5–2 kHz for clear speech but noise generally reduced low α FFRs in

the HL group.

Discussion: Collectively, our study reveals cortical arousal state actively shapes

brainstem speech representations and provides a potential new mechanism for older

listeners’ difficulties perceiving speech in cocktail party-like listening situations in

the form of a miss-coordination between cortical and subcortical levels of auditory

processing.
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1. Introduction

Declines in auditory processing (Poth et al., 2001; Parthasarathy
et al., 2010; Kortlang et al., 2016; Lai and Bartlett, 2018) and
speech comprehension (Schneider et al., 2005; Peelle et al., 2010;
Anderson et al., 2012)—especially in the presence of background
noise (Dubno, 1984; Takahashi and Bacon, 1992; Souza et al., 2007;
Anderson et al., 2011; Song et al., 2011; Jin et al., 2014; Presacco
et al., 2016; Vermeire et al., 2016)—are ubiquitous during aging
and age-related hearing loss. Age-related declines in the sensory
(auditory) system (Parthasarathy and Bartlett, 2011, 2012; Fostick
et al., 2013; Parthasarathy et al., 2014, 2016; Lai and Bartlett, 2015,
2018; Lai et al., 2017) [e.g., age-related impairments in sound source
segregation (Alain et al., 1996; Alain and McDonald, 2007; Gallun
and Best, 2020)], changes in cognitive function (Park et al., 2003),
or a combination of both (Pichora-Fuller and Singh, 2006; Wingfield
et al., 2005; Wayne and Johnsrude, 2015) could lead to listening and
comprehension difficulties in elderly listeners.

Evidence suggests that speech-in-noise (SiN) problems could
be related to dysfunctional connections and changes in speech
processing between cortical and subcortical levels of the auditory
system that emerge with age and age-related hearing impairment. It is
well-established that SiN processing can be affected by many factors,
such as attention (Saiz-Alía et al., 2019; Price and Bidelman, 2021)
and arousal state (Mai et al., 2019; Saderi et al., 2021). Several studies
have shown neural correlates of these phenomena. For example,
findings from EEG studies on emotion suggest that power in the
cortical α band (8–12 Hz) is a useful indicator of arousal state
(Aftanas et al., 2002; Uusberg et al., 2013). Moreover, parieto-occipital
α power was shown to index cognitive processing, effortful listening
(Wöstmann et al., 2015; McMahon et al., 2016; Dimitrijevic et al.,
2017), the state of wakefulness (Pfurtscheller et al., 1996) and top-
down processing (Henry et al., 2017). Alpha oscillatory activity
has also been associated with adaptive, intentional, and top-down
suppression of task-irrelevant information (Rihs et al., 2007; Jensen
and Mazaheri, 2010; Händel et al., 2011; Klatt et al., 2020). Increased
α power has been proposed to index inhibitory processing across
sensory modalities (Klimesch et al., 2007; Weisz et al., 2007, 2011;
Strauß et al., 2014), while decreased α oscillations are thought to
facilitate sensory processing or neural firing (Haegens et al., 2011;
Klatt et al., 2020). There is, however, no consensus regarding the
mechanisms underlying α oscillations reported in these studies. In
most studies α is treated as a unitary measure rather than reflecting
different underlying processes. Meanwhile, evidence suggests that
cortical α oscillations changes with aging (Yordanova et al., 1998;
Böttger et al., 2002), such as a decrease in α frequency (Chiang
et al., 2011) and reduced spontaneous entrainment of resting-state
α oscillations (Gaál et al., 2010). Studying α power during SiN
perception in older adults may reveal the impacts of aging in
top-down attentional control that help facilitate the processing of
target vs. non-target sounds, thus providing insight concerning why
cocktail party-like situations are more difficult in older listeners
(Pichora-Fuller et al., 2017).

In addition to cortical changes, age-related declines in speech
coding have been widely observed at subcortical levels of the auditory
system, both in terms of local processing within the brainstem but
also its functional signaling to and from the cortex (Bidelman et al.,
2019). In young adults, we recently observed that speech-evoked
brainstem frequency-following response (FFR) amplitude varied as

a function of α power (Lai et al., 2022). Low FFR amplitude coincided
with low α power whereas high FFR amplitude was associated with
high α states. Notably, low α FFRs correlated positively with response
times (RTs) for speech discrimination and more accurately decoded
the input speech stimuli revealed by neural classifiers. Extending
this approach to address questions of auditory aging, we analyzed
neuroelectric FFRs recorded during active speech perception in age-
matched older adults with normal (NH) or mild hearing loss (HL).
This allowed us to investigate the effects of age-related hearing loss
on cortical α state and its modulation of brainstem speech processing
in real time. We aimed to determine the nature of auditory cortical-
brainstem interplay in older adults, and more critically, whether such
online corticofugal engagement during SiN listening is altered due to
hearing loss, as suggested in prior work (Bidelman et al., 2019). Our
results reveal that brainstem speech-FFRs are dynamically modulated
by fluctuations in cortical α state in normal-hearing listeners but this
cortical-subcortical interplay declines in age-related hearing loss.

2. Materials and methods

2.1. Participants

Detailed information on participants, informed consent, and
demographics are reported in our original report detailing age-related
changes in the brainstem and cortical evoked potentials (Bidelman
et al., 2019). New analyses herein examine online changes in FFRs
as a function of the simultaneous cortical state. All participants had
no reported history of neurological or psychiatric illness. Participants
were aged between 52 and 75 (69 ± 5.8 years; 16/16 M/F). There
were divided into normal (NH) and hearing-impaired (HL) groups
based on their pure-tone audiometry hearing thresholds. We used
25 dB HL as the cutoff to define normal hearing per standard clinical
conventions (Gatlin and Dhar, 2021). NH listeners (n = 13) had
average thresholds (250–8,000 Hz) better than 25 dB HL across both
ears whereas HL listeners (n = 19) had average thresholds poorer
than 25 dB HL. The pure-tone averages (PTAs) (i.e., mean of 500,
1,000, 2,000 Hz) of NH listeners were ∼10 dB better than in HL
listeners (mean ± SD; NH: 15.3 ± 3.27 dB HL, HL: 26.4 ± 7.1 dB
HL; t2.71 = −5.95, p < 0.0001; NH range = 8.3–20.83 dB HL, HL
range = 15.8–45 dB HL). Both NH (t12 = 0.15, p = 0.89) and HL
(t18 =−2.02, p = 0.06) groups otherwise had symmetric PTA between
ears. Both NH and HL groups had elevated hearing thresholds at
very high frequencies (≥ 8,000 Hz), typical of age-related presbycusis
in older adults. Besides hearing, the two groups were matched in
age (NH: 66.2 ± 6.1 years, HL: 70.4 ± 4.9 years; t2.22 = −2.05,
p = 0.052) and sex balance (NH: 5/8 M/F; HL: 11/8; Fisher’s exact test,
p = 0.47). Age and hearing loss were not correlated (Pearson’s r = 0.29,
p = 0.10), suggesting these aging factors were largely independent in
our sample.

2.2. QuickSiN test

The Quick Speech-in-Noise (QuickSiN) test was measured
listeners’ speech reception thresholds in noise (Killion et al., 2004).
A list of six sentences with five keywords per sentence spoken by
a female talker in a background of four-talker babble noise was
heard by listeners during the test. Target sentences were presented at

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1075368
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1075368 January 28, 2023 Time: 14:41 # 3

Lai et al. 10.3389/fnins.2023.1075368

70 dB sound pressure level (SPL) (binaurally) at signal-to-noise ratios
(SNRs) decreasing from 25 dB (relatively easy) to 0 dB (somewhat
difficult) in 5 dB steps. The number of keywords correctly recalled
was logged, and a score was computed for each listener. The SNR-
loss score indexes the difference between a listener’s SNR-50 (i.e.,
the SNR required to identify 50% of the keywords correctly) and the
average SNR threshold for normal-hearing adults (i.e., 2 dB) (Killion
et al., 2004). A higher score reflects poorer SiN perception. Each
listener’s SNR-loss score was averaged from four lists of sentence
presentations. In this study, NH listeners’ scores ranged from −0.25
to 2.5 dB of SNR-loss (M = 1.1 dB, SD = 0.8 dB) while HL listeners’
scores were higher and more variable, ranging from −2.5 to 8.5 dB
of SNR-loss (M = 2 dB, SD = 2.5 dB) [see Figure 1D in Bidelman
et al. (2019)]. Indeed, although mean QuickSiN scores did not differ
between groups [t2.35 = −1.43, p = 0.16], HL listeners showed more
inter-subject variability compared to NH listeners [Equal variance
test (two-sample F-test): F18,12 = 8.81, p = 0.0004].

2.3. EEG stimuli and task

The stimuli and task are described fully in Bidelman et al.
(2019) and illustrated here in Figure 1A. Three naturally produced
English consonant-vowel phonemes (/ba/, /pa/, and /ta/), from the
standardized UCLA version of the Nonsense Syllable Test (Dubno
and Schaefer, 1992), were generated by a female talker. The duration
of each phoneme was 100 ms and the average root mean square
SPL of each phoneme matched. All three tokens had a common
voice fundamental frequency (mean F0 = 150 Hz), first and second
formants (F1 = 885, F2 = 1,389 Hz). The resulting stimulus-evoked
response (i.e., FFR) predominantly originates from the subcortex
(Brugge et al., 2009; Bidelman, 2018b) since the stimulus F0 is above
the phase-locking limit of the cortical neurons and “cortical FFRs”
(Coffey et al., 2016; Bidelman, 2018b; Bidelman and Momtaz, 2021).
Indeed, we have shown that these types of speech tokens with an
F0 = 150 Hz elicit robust midbrain FFRs with no evidence of a cortical
contribution [see Supplementary Figure 1 in Price and Bidelman
(2021)]. Speech tokens were delivered binaurally to listeners in either
clear (i.e., no noise) or noise-degraded conditions. A complete set
of stimuli presented in each condition contained 3,000 /ba/, 3,000
/pa/, and 210 /ta/ tokens (spread evenly over three blocks to allow
for breaks). The interstimulus interval between tokens was randomly
jittered within 95–155 ms (5 ms steps, uniform distribution). The
/ba/ and /pa/ tokens were presented more frequently than the /ta/
token in a pseudo-random manner such that at least two frequent
tokens intervened between infrequent tokens. The rare/ ta/ token was
denoted as the target in which listeners were required to respond by
pressing a button on the computer whenever they detected it. Both
reaction time (RT) and detection accuracy (%) were recorded. For the
noise-degraded condition, the same procedures as the clear condition
were repeated, but the tokens were presented in an identical speech
triplet mixed with eight talker noise babble (Killion et al., 2004) at
a SNR of 10 dB. Six blocks (3 clear and 3 noise) were collected
from each participant. Having the clear and noise conditions allowed
us to compare behavioral performance in different backgrounds
and evaluate the impact of noise on speech perception in NH vs.
HL listeners, respectively. The task ensured listeners were actively
engaged during speech perception and online EEG recording. Stimuli
were controlled by a MATLAB program (The Mathworks, Inc.,
Natick, MA, USA) routed to a TDT RP2 interface (Tucker-Davis

Technologies; Alachua, FL, USA) and delivered binaurally through
insert earphones (ER-3; Etymotic Research; Elk Grove Village, IL,
USA). The speech stimuli were presented at 75 dB SPL (noise at 65 dB
SPL) with alternating polarity.

2.4. EEG recording and preprocessing

During the target speech detection task, neuroelectric activity was
recorded from 32 channels at standard 10–20 electrode locations on
the scalp (Oostenveld and Praamstra, 2001). Electrode impedances
were ≤ 5 k�. EEGs were digitized at 20 kHz using SynAmps
RT amplifiers (Compumedics Neuroscan; Charlotte, NC, USA).
After EEG acquisition, the data were processed using the “mne”
package in Python 3.9.7. EEG data were re-referenced offline to the
mastoids (TP9/10) for sensor (channel-level) analyses. For source
analysis of brainstem FFRs, we used a common average reference
before source transformation (detailed below). Responses were then
filtered 100–1,000 Hz [finite impulse response (FIR) filters; hamming
window with 0.02 dB passband ripple, 53 dB stopband attenuation,
−6 dB cutoff frequency, filter length = 661 samples/ 0.132 s] to
isolate brainstem activity (Musacchia et al., 2008; Bidelman et al.,
2013).

2.5. Derivation of source FFRs and cortical
activities

The derivation of source FFR waveforms and isolation of cortical
activities are similar to the methods described in Lai et al. (2022)
for young adults. The 32-channel sensor data were transformed
into source space using a virtual source montage. The source
montage comprised of a single regional source (i.e., current flow
in x, y, z planes) positioned in the brainstem and midbrain (i.e.,
inferior colliculus) [details refer to Bidelman (2018b), Bidelman
and Momtaz (2021), Price and Bidelman (2021)]. Source current
waveforms (SWF) from the brainstem source were obtained using
the formula: SWF = L−1

× FFR, where L is the brainstem source
leadfield matrix (size 3 × 64) and FFR is the 32-ch sensor data
(64 × NSamples). This essentially applied a spatial filter to all
electrodes that calculated their weighted contribution to the scalp-
recorded FFRs to estimate source activity within the midbrain
in the x, y, and z directions (Scherg and Ebersole, 1994; Scherg
et al., 2002). This model explains ∼90% of the scalp-recorded
FFR (Bidelman et al., 2019; Price and Bidelman, 2021). Only the
z-oriented SWF was used for further analysis (x and y SWFs
were not analyzed) given the predominantly vertical orientation
of current flow in the auditory midbrain pathways relative to the
scalp [x- and y-orientations contribute little to the FFR (Bidelman,
2018b)].

We isolated cortical α band activity from the EEG and used it
as a running index of arousal state (high or low) during the target
speech detection task. EEG at the Pz and Oz channels were filtered at
8–12 Hz (FIR filters,−6 dB cutoff frequency at 7 Hz and 13.5 Hz, filter
length = 8,251 samples/1.65 s) and averaged (i.e., equivalent to POz)
to obtain cortical α-band activity at a posterior scalp region. Filtered α

activities were epoched with a time window of 195 ms (−50 to 145 ms
in which 0 ms corresponded to the onset of a /ba/ or /pa/ token)
to capture approximately 1–2 cycles of α band. This epoch window
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FIGURE 1

Target speech detection performance correlates with average response time collected during an active EEG task. (A) Prior to EEG recordings, all
participants’ pure-tone audiometry tested at 250–8,000 Hz were obtained and speech-in-noise perception was assessed with QuickSiN. Subsequently,
speech-EEGs to consonant-vowel phonemes (/ba/, /pa/, and /ta/) were recorded under clear or noisy (+10 dB SNR) backgrounds while participants
actively engaged in the target speech detection task. (B) Correct responses to target speech (i.e., /ta/) are predictive of reaction times in quite (clear) but
not noisy backgrounds. (C) When participants were divided into normal (NH) and hearing loss (HL) groups, the correlation of speech detection accuracy
and reaction time obtained in quiet backgrounds is significant only in the HL group. r = Spearman’s correlation; shaded area = 95% CI of the regression
line.

encapsulated the entirety of the evoked FFR within the immediate
trial with no spillover from the preceding or subsequent trial(s).
Infrequent /ta/ tokens were excluded from the analysis due to their
limited number. The root mean square (RMS) amplitude of single
trial α activity was computed to quantify cortical arousal level over
the duration of the target speech detection task. We then normalized
RMS values to each run’s median of RMS values, respectively. Next,
the trial-wise normalized α RMS distribution was visualized using a
histogram. We categorized trials of each participant per condition
falling within the 0–35th percentile as “low α” power and those falling
within the 65–100th percentile as “high α” power. This categorization
was used because it provided ∼2,100 trials for each low or high α

power in each participant per condition, which is reasonable to obtain
an average FFR with a robust SNR (i.e., ≥ 3 dB SNR) (Bidelman,
2018a). More detailed information on this methodology can be found
in Lai et al. (2022) (see their Figure 2). We similarly measured cortical
activity in another frequency band (e.g., β band; 18–22 Hz) from the
same location (i.e., POz β) and α band from a different electrode
site (i.e., Fz α). These control analyses allowed us to ensure that the
observed changes in speech-evoked FFRs were specifically associated
with cortical arousal level (indexed by α power) rather than general
fluctuations in the EEG, per se.

2.6. Analysis of brainstem FFRs

We categorized source FFRs based on whether α amplitude in
the same epoch was either high or low power, thus deriving FFRs
according to the trial-by-trial cortical state. Source FFR waveforms
(from the z-orientated dipole) were averaged for each α category
and noise condition per participant. Subsequently, we analyzed the
steady-state portion (10–100 ms) of FFR waveforms using the FFT
(Blackman window; 11.1 Hz frequency resolution) to capture the
spectral composition of the response. F0 amplitude was measured

as the peak spectral maximum within an 11 Hz bin centered around
150 Hz (i.e., F0 of the stimuli). To compare FFR F0 amplitudes during
low vs. high α power, a normalized (within-subject) F0 ratio was
calculated as follows:

F0 ratio =
F0amphighα

F0amplowα

(1)

where F0 ratios > 1 indicate stronger brainstem FFRs during states of
high cortical α power and F0 ratios < 1 indicate stronger FFRs during
states of low cortical α power (Lai et al., 2022).

2.7. Statistical analysis

We used mixed-model ANOVAs to compare brainstem F0
ratios among the clear vs. noise condition, and NH vs. HL
group. Multiple pairwise comparisons (Mann-Whitney U test with
Bonferonni corrections) between the NH and HL groups were
performed using the “pingouin” package in Python. One sample
t-tests (“scipy” package in Python) were also used to evaluate
whether FFR F0 ratios were differed significantly from 1 (and
thereby indicated the significance of α modulation). Wilcoxon
signed-rank test was used when comparing raw F0 amplitudes
at low vs. high α power within participants for each SNR
condition and hearing group. To compare differences in α RMS
values of all participants across (clear vs. noise) conditions, a
non-parametric test was required because α RMS values were
not normally distributed. We performed posthocConover’s test
(“scikit_posthocs” package in Python), which is a non-parametric
pairwise test, with Bonferroni adjustment. To assess differences
in raw F0 amplitudes (log-transformed) across factors for NH
and HL groups, we first performed a 2 × 2 × 2 (SNR × α

power × hearing group) mixed model (participants = random
factor) ANOVA (“lme4” package in Rstudio). Following a significant
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FIGURE 2

Normal hearing (NH) participants have a higher parieto-occipital α power and their brainstem speech processing is more strongly modulated by α band
in clear backgrounds. (A) Average α waveform of low- and high-power trials plotted from a representative NH participant. (B) Frequency spectra of the
steady state (10–100 ms) portion of low and high α brainstem FFRs from the same participant panel (A). Note the distinct response at ∼150 Hz,
corresponding to the voice pitch. (C) Root-mean-square (RMS) values of both low and high α of the NH group were significantly higher than the HL
group. #p < 0.01 (Conover’s test, non-parametric pairwise test, with Bonferroni adjustment). (D) FFR F0 ratios during low and high α trials. FFR F0 ratios
were higher in the NH vs. HL group (Mann-Whitney U test) in the clear condition. Bars marked (< 0.05) are significantly larger than 1 (1-sample t-test)
indicating enhancement of the FFR with changes in cortical α. (E) Grand average FFR F0 amplitudes as a function of SNR (clear vs. noise), α power (low
vs. high), and group (NH vs. HL). Error bars = ± s.e.m., ∗p < 0.05 (Wilcoxon signed-rank test).

interaction, we ran separate 2 × 2 (α power × SNR) ANOVAs
with random effects (subjects were considered randomly selected
from a larger population) for the NH and HL groups, respectively.
Initial diagnostics were performed using residual and Q-Q plots to
assess the heteroscedasticity and normality of data. F0 amplitudes
were log-transformed to improve normality and homogeneity of
variance assumptions. Effect sizes are reported as ηp

2. To check if
low or high α FFR F0 amplitudes were associated with behavioral
performance (i.e., QuickSiN, PTA, percent correct, and RTs) by
pooling all NH and HL participants, we performed Spearman’s
correlations (“scipy” package in Python) to test their pairwise
correlations of brain and behavior measures. Spearman’s correlation
was used because these measures were found to be not normally
distributed (p < 0.05) from the test of normality using the Shapiro-
Wilk test.

2.8. Classification of performance level
from FFR frequency spectra via machine
learning

All participants’ performance in the clear condition was
categorized into three levels (poor, average, and good) based
on their percent correct of /ta/ detections. Participants with
poor performance had percent correct scores ≤ 30th-percentile
while good-performance participants had scores ≥ 70th-percentile.
Subsequently, we classified poor- and good-performing participants
using frequency spectra of their low or high α FFRs and a support
vector machine (SVM) classifier (kernel = radius basis function,
C = 1,000, gamma = scale) in the “scikit-learn” package in python.
Due to the limitation in sample size (32 total observations), we
were only able to perform a two-group rather than three-group
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machine learning (ML) classification. There were ten participants in
each poor- or good-performance category, which provided a total of
twenty participants’ frequency spectra to be used as data input for
SVM. Frequency spectra were obtained from the FFT of average FFR
waveforms (10 to 100 ms steady state portion) across ∼2,100 trials
of low or high α FFRs per participant. The absolute amplitudes of
frequency spectra, which consisted of 226 amplitude-by-frequency
points, were the input features; performance level (i.e., poor vs.
good) served as the ground truth class labels. The ML classification
procedures on FFRs were similar to those described by Xie et al.
(2019) and Lai et al. (2022). During one iteration of training and
testing, a four-fold cross-validation approach was used to train and
evaluate the performance of the SVM classifier to obtain a mean
classification accuracy [Figure 1 of Xie et al. (2019)]. In this process, a
4-fold stratification was performed to randomly and equally divide
participants into 4 subgroups with 5 unique participants (almost
similar number of poor- and good-performing participants) in each
subgroup. Three of the 4 subgroups were selected as the training
data while the remaining subgroup was used as the hold-out testing
data. To mitigate the problem of imbalanced participant numbers in
the two classes of the training set, we randomly over-sampled the
minority class using the “imblearn” package in python. These steps
were repeated within each iteration so that each subgroup was held-
out as the test data whereas the other three subgroups were used to
train the SVM classifier. Mean classification accuracy of poor- vs.
good-performance was calculated across cross-validated iterations.
We performed a total of N = 5,000 iterations to examine group
classification for low vs. high α power FFRs.

To evaluate if the classifier accuracy (mean of N = 5,000
iterations) was statistically significant, we randomly shuffled the
226 data points of frequency spectra in each participant, and the
same training and testing procedures described above were repeated
to derive a null distribution of classification accuracies. We then
calculated the p-value to determine the statistical significance of
"true" classifier performance using the formula described in Phipson
and Smyth (2010): p = (a + 1)/(n + 1), where a is the number
of classification accuracies from the null distribution that exceeds
the median of the actual distribution of classification accuracies
and n is the total number of classification accuracies from the null
distribution.

2.9. Fitting linear regression models with
brain and behavior measures

To compare the changes in low α FFR F0 amplitudes as behavior
performance changed in the NH and HL groups, we fitted linear
regression models for pooled SNR, clear and noise conditions,
respectively, by using behavior performance and the group as main
factors, their interaction factor, and without or with age as a covariate.

Y = β0 + β1 · X + β2 · group + β3 · X · group (2)

Y = β0 + β1 · X + β2 · group + β3 · X · group+ β4 · age (3)

Y represents FFR F0 amplitudes during low α power, X is one of
the behavior measures (QuickSiN, PTA, percent correct, or RTs),
and the group is the dummy variable for NH (group = 0) and HL

(group = 1). Meanwhile, β0 is a constant and β1, β2, β3 or β4 is the
coefficient or slope for the respective variable. Age was added as a
covariate in Eq. (3) to confirm that the observed effects were not
driven by participants’ age, per se. After fitting regression models, we
checked assumptions for the normality of residuals, homoscedasticity
of residuals and linearity of the models. For residual normality,
we tested if model residuals were normally distributed using the
Shapiro-Wilk test and visualized the Q-Q plots of the residuals. For
residual homoscedasticity, we used Breusch-Pagan and Goldfeld-
Quandt tests. For model linearity, we visualized residual distributions
by plotting residuals vs. predicted values. Result interpretation was
then carried out after confirming the above three assumptions.

The fitted linear regression models allowed us to study if the
slopes (i.e., the change of FFR amplitudes) of the NH group were
significant as well as if the slopes of the HL group were significantly
different from the NH group. In the NH group, i.e., group = 0, Eq. (2)
can be written as Y = β0 + β1·X and β1 is the slope for the NH group.
In contrast, in the HL group, i.e., group = 1, Eq. (2) can be written as
Y = β0 + β1·X + β2 + β3·X = (β0 + β2) + (β1 + β3)X, where (β1 + β3)
is the slope for the HL group and β3 represents the difference in slope
between the HL and NH group.

3. Results

3.1. Behavior performance of target
speech detection

Behavioral responses during the EEG task (percent correct /ta/
detections vs. RTs) showed a negative correlation for the clear but
not noise condition (Spearman’s r = −0.45, p = 0.01, Figure 1B);
participants with slower response speeds showed poorer speech
detection accuracies. This is consistent with previous findings
showing negative associations between hit responses and RTs in
younger listeners (e.g., Lai et al., 2022). When separated into the
NH and HL groups, we found a negative relationship between
behavioral hit responses and decision speeds but only in the HL group
(Figure 1C).

3.2. Cortical α band and brainstem
speech-FFRs

Differences in cortical α-band amplitudes during low vs. high α

states were prominent at the single participant (Figure 2A) as well
as group level (Figure 2C). Spectral differences in the corresponding
brainstem FFR for these same low vs. high cortical trials were also
notable (Figure 2B). Cortical α (both low and high levels) was
overall higher in the NH listeners (p < 0.01, non-parametric post hoc
Conover’s test with Bonferroni adjustment) but both groups showed
clear separability of “low” vs. “high” α states during the speech
detection task.

In response to clear speech (Figure 2D), brainstem F0 ratios
(indexing cortical α-related FFR enhancement) in the NH group were
significantly higher than 1 (t12 = 2.64, p = 0.02, 1-sample t-test) and
higher than the F0 ratios in the HL group (U = 192, p = 0.01, Mann-
Whitney U test). In response to the noise-degraded speech, this
cortical-FFR enhancement was observed in the HL group (t18 = 2.67,
p = 0.02, 1-sample t-test), probably due to compensation reasons, but
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it was not significantly different from the FFR enhancement observed
in the NH group. Repeating the same analysis for both controls (POz
β and Fz α) revealed no difference (p = 0.19 and 0.053) in F0 ratios for
the NH vs. HL group (Supplementary Figure 1), indicating cortical
modulation of the FFR was restricted to POz α.

A 3-way mixed-model ANOVA performed on log F0 amplitudes
revealed a significant SNR × α power × group interaction
(F1,96 = 9.5, p = 0.003, ηp

2 = 0.09) (Figure 2E). To make sense of this
complex interaction, we performed separate 2-way (SNR x α power)
mixed-model ANOVAs by hearing group. The SNR × α power
interaction was significant in both the NH (F1,39 = 5.17, p = 0.03,
ηp

2 = 0.12) as well as the HL group (F1,57 = 4.11, p = 0.05, ηp
2 = 0.07).

Though the comparison of effect sizes suggests this interaction was
stronger in NH listeners, the interaction was distinct in direction
compared to the HL group. In the NH group, FFR F0 amplitudes were
significantly higher (W = 17, p = 0.048, Wilcoxon signed-rank test)
during high α power for clear speech. This pattern was dampened
and reversed in the HL group.

3.3. Brain-behavior relations in both the
NH and HL groups

We next assessed associations between low or high α FFR F0
amplitudes and behavioral performance (QuickSiN, PTA, percent
correct, and RTs) by performing Spearman’s correlation analyses.
The positive association between F0 amplitudes and percent correct
scores was significant at low but not high α power (Spearman’s
r = 0.3, p = 0.02, Figure 3A), while the associations between F0
amplitudes (either during low or high α power) and other behavior
measures were not significant (all p-values > 0.05). To further assess
if FFRs during low or high α power in either clear or noise condition
were more predictive of behavioral responses, we performed ML
classification of percent correct scores (i.e., perceptual performance
level) into poor (≤ 30th of overall percent correct scores) or good
(≥ 70th of overall percent correct scores) using participants’ FFR
frequency spectra as input for the SVM classifiers. In the clear
condition (Figure 3B), the classifier had a higher accuracy median
(58%) in decoding participants’ perceptual performance level using
low α FFRs compared to the accuracy median (32%) when using high
α FFRs. In contrast, in the noise condition (Figure 3C), classification
accuracies did not differ between low or high α FFRs nor where
they above the null distribution. These results provide evidence that
adding background noise disrupted the relationship of low α FFRs
with behavioral measures potentially as a result of compromising the
SNR of the neural responses.

3.4. Comparison of brain-behavior
relations in the NH and HL groups

The aforementioned analyses showed that during high arousal
states (i.e., with low α power), FFRs have a stronger relationship
with behavior compared to low arousal states, especially in the clear
condition, when pooling the NH and HL groups. Hence, we studied
the changes in low α FFR amplitudes with behavioral performance
(QuickSiN, PTA, percent correct, and RTs) systematically by fitting
linear regression models [Eq. (2, 3)]. We observed significant
coefficients or slopes (β) when PTA was used as X in Eq. (2). For
both the clear and noise-degraded speech, we found a significant

negative slope between low α F0 amplitudes and PTAs in the NH
group (β1 = −4.82 × 10−9, p = 0.01, Figure 4A) but the slope of
the HL group was not significantly different from the NH group
(β3 = 3.77× 10−9, p = 0.055). This indicates that even with clinically
“normal” hearing, participants with slightly poorer thresholds have
smaller FFRs during low α states. When separating the data by SNR,
we observed similar trends of low α FFR amplitudes decreased with
increased PTA in the NH and HL groups for clear speech (Figure 4B)
though the slopes were not significant (β1 =−3.11× 10−9, p = 0.179;
β3 = 7.7× 10−10, p = 0.319). For noisy speech (Figure 4C), we found
that low α FFR amplitudes decreased significantly with increased
PTA in the NH group (β1 = −6.53 × 10−9, p = 0.01) and the slope
of the HL group was also significantly different (β3 = 6.77 × 10−9,
p = 0.02) from the NH group. The fitted regression lines in Figure 4C
showed that low α FFR amplitudes were generally diminished by
noise in the HL group. Repeating the same analysis with age as
covariate in Eq. (3) provided similar results. For both the clear and
noise-degraded speech, β1 was significant (−4.58 × 10−9, p = 0.014)
but not β3 (3.45 × 10−9, p = 0.082). For clear speech, none was
significant (β1 = −2.83 × 10−9, p = 0.224; β3 = 3.91 × 10−10,
p = 0.874). For noisy speech, both β1 (−6.34× 10−9, p = 0.019) and β3
(6.52× 10−9, p = 0.024) were significant. This helps rule out age as a
confounding factor and suggests that hearing loss drove the observed
group differences.

4. Discussion

Previous neuroimaging work reveals weaker functional
connectivity between the brainstem and cortex in older listeners with
mild hearing loss compared to older adults with normal hearing for
their age, and this interplay robustly predicts their SiN perceptual
performance (Bidelman et al., 2019). Adding to these findings, we
show the existence of active and dynamic modulation of brainstem
speech processing in NH older listeners, which was dependent on
online changes in listeners’ cortical state. This active and dynamic
cortical-brainstem modulation, however, is diminished when
processing speech in noise and in older adults with HL. Compared
to NH listeners, HL listeners showed weaker parieto-occipital α

power but those with minimal hearing loss (i.e., smaller PTA)
had unusually large FFRs during low α states (gray dashed box in
Figure 4B). Although FFRs were smaller during low α power, they
were predictive of perceptual speech measures (Figure 3A) when
pooling NH and HL participants and especially for clear speech
(Figure 3B). Collectively, our findings suggest that (i) increased F0
ratios were disrupted by noise in the NH group and diminished in
the HL group for clear speech; (ii) FFRs during low α power (i.e., high
cortical arousal states) have smaller F0 amplitudes but their spectra
are more predictive of behavioral performance, (iii) decreased low α

FFRs with increased PTA in both NH and HL participants, and (iv)
increased low α FFRs in older adults with mild hearing loss for clear
speech suggesting an increase in central gain.

4.1. Effects of age on cortical α power and
cortical modulation of brainstem speech
processing

Cortical α indexes states of wakefulness and arousal (Pfurtscheller
et al., 1996; Aftanas et al., 2002; Uusberg et al., 2013). Still, there is also
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FIGURE 3

Low α frequency-following responses (FFRs) better predict behavioral performance than high α FFRs during clear speech perception when pooling
across background conditions. (A) Low α FFRs correlated positively with percent correct of speech target detection. r = Spearman’s correlation. Shaded
area = 95% CI of the regression line. (B) For clear speech, support vector machine (SVM) classifier accuracy was significantly better using low α (but not
high α) FFR frequency spectra to classify participants perceptual performance level (i.e., poor vs. good) compared to the null classification accuracies.
(C) For noise-degraded speech, classification accuracies were similar when using low or high α FFR spectra and did not differ from the null classification
accuracies. Upper/lower ticks = max/min; center tick = medians. ∗p < 0.01.

FIGURE 4

Hearing loss is associated with smaller speech-frequency-following responses (FFR) amplitude under low cortical α (i.e., high arousal) states. (A) When
pooling SNRs, the decrease (slope) of low α FFR F0 amplitudes as a function of pure-tone averages (PTA) in the NH group was significant
(β1 = –4.82 × 10−9, p = 0.01) and the slope of the HL group was not significantly different from the normal-hearing (NH) group. (B) For clear speech,
similar trends of low α FFR amplitudes decreased with increased PTA were observed in the NH and HL groups though the slopes were not significant. The
gray dashed box marks the overlapping PTA region for both groups. (C) For noise-degraded speech, the slope of low α FFR amplitudes decreased with
increased PTA was significant (β1 = –6.53 × 10−9, p = 0.01) in the NH group and the slope of the HL group was significantly different (β3 = 6.77 × 10−9,
p = 0.02) from the NH group. The fitted regression lines showed that low α FFR amplitudes were generally diminished by noise in the HL group. Shaded
area = 95% CI of the regression line.
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evidence showing that α power may vary or index mind wandering
during cognitive tasks (Compton et al., 2019; Maillet et al., 2020).
Calculating the span length of low or high α trials for each listener
showed averages of ∼ 1.7 trials in both hearing groups, equating
to several hundred milliseconds during our task. The relative speed
of these fluctuations suggests that the α-modulations observed here
are unlikely related to mind wandering per se, which presumably
develops over longer time courses [tens of seconds (Pelagatti et al.,
2020)]. Instead, we infer low α power tracks a high arousal state
while high α power reflects task focus but in a state of wakeful
relaxation. Induced α activity is crucial for SiN perception as it might
suppresses irrelevant information like noise to aid target speech
processing (Strauß et al., 2014). In our previous study conducted
on younger listeners (18–35 years) using similar EEG tasks, we
observed larger α power to noise-degraded compared to a clear
speech during the active engagement [see Figure 2F in Lai et al.
(2022)]. However, here in both NH and HL older adults, we do not
find this same noise-related α effect. In general, α power was larger
in NH than in HL older listeners (Figure 2C). We also observed that
high α RMS values in young NH listeners (Figure 2F in Lai et al.,
2022) had a larger range (0.1–0.9 µV) than NH older adults (0.1–
0.28 µV). This observation advocates a reduction of α power with
aging which has also been shown in other studies (Babiloni et al.,
2006; Purdon et al., 2015). Decreased α activity is also related to
declines in cognitive functions with increasing age (Klimesch, 1997,
1999).

More critically, we demonstrate the presence of dynamic and
online modulation of brainstem speech encoding by fluctuations in
cortical α state in older NH adults. When comparing the observations
across ages at similar acoustic backgrounds, they are fundamentally
different from those observed in younger, normal-hearing listeners
(cf. Lai et al., 2022). In younger listeners, lower cortical α states
positively correlate with smaller FFRs during SiN perception (Lai
et al., 2022). Furthermore, low-α-indexed FFRs recorded in noisy
backgrounds are predictive of behavioral RTs for rapid speech
detection and have higher accuracies in token classification (Lai
et al., 2022). Here, unlike younger listeners which require more
difficult perceptual tasks (i.e., SiN perception) to tax the system
and reveal effects of cortical arousal state on brainstem FFRs, we
observed cortical modulation of FFRs in NH older adults during the
perception of clear speech (Figures 2D, E). Moreover, low-α-indexed
FFRs associated more with behavior [speech detection (Figure 3) and
PTAs (Figure 4)] than high-α-indexed FFRs. Contrastively, in noise,
low α and high α FFR amplitudes were not classifiable in terms of
perceptual performance level. Taken together, the pattern of cortical-
brainstem interactions in speech processing we found here in older
NH listeners under clear backgrounds appears similar to what is
found in younger listeners under challenging listening environments
(cf. Lai et al., 2022). This indicates that aging might alter cross-talk
between functional levels of the auditory system under challenging
listening conditions as a means of compensatory processing. Similar
maladaptive plasticity has been previously observed at higher cortical
levels where frontal brain regions are more strongly engaged to
aid auditory-sensory coding in the superior temporal gyrus (Price
et al., 2019). This further suggests the presence of age-related deficits
in top-down modulation of brainstem speech processing by the
cortex and provides an explanation for why older listeners find
it more exhausting to participate in cocktail party-like listening
situations compared to younger listeners (Pichora-Fuller et al.,
2017).

4.2. Effects of hearing loss on cortical α

power and cortical modulation of
brainstem speech processing

Compared to the NH group, we observed decreases in parieto-
occipital α power in the HL group in both SNR conditions
(Figure 2C). Acoustic signal detection especially in complex settings
is found to increase working memory load (Shinn-Cunningham and
Best, 2008) leading to enhanced power of α oscillations (Jensen et al.,
2002). However, the neural mechanisms of working memory are
affected by auditory degradation or hearing loss. Lower α power
is reported in listeners with moderate hearing-loss across the age
spectrum because they reach a ceiling level where no additional
working memory resources can be recruited leading to decreased α

power (Petersen et al., 2015). Moreover, PTA correlates negatively
with pre-stimulus α power in older listeners (Alhanbali et al., 2021).
These findings are partly concordant with our data since we found
lower α power (during stimuli) in older listeners with mild to
moderate hearing loss. Furthermore, in the HL group, we found no
cortical-related enhancements of FFRs (i.e., F0 ratio ≈1) for clear
speech, and responses were not different from the NH group in the
noise condition though F0 ratio was > 1 (Figure 2D). The interaction
effect of SNR × α power was also distinct in direction between
hearing groups. This finding implies that modulation of brainstem
speech processing by cortical α state is altered in older listeners
with mild hearing loss for both clear and noise-degraded speech
processing.

In addition to parieto-occipital α power, trends of low-α-indexed
FFRs to clear speech decreased with increased PTAs were observed
in NH and HL listeners (Figure 4B) and the slope of decrease was
significant for noise-degraded speech in NH listeners (Figure 4C).
The reduction in low α FFRs with poorer PTAs is probably related to
the decrease in peripheral hearing ability. However, when comparing
across groups at a comparable hearing loss (PTA = 15–22 dB HL), we
found enhanced FFR amplitudes in HL listeners (gray dashed box in
Figure 4B). Speculatively, this could indicate an increase in central
gain, probably related to high-frequency (> 4 kHz) hearing loss in
the HL group [our NH listeners had normal audiometric thresholds
up to 4 kHz, see Figure 1A in Bidelman et al. (2019)]. The average
4 kHz threshold of the NH group was ∼20 dB HL but it was ∼40 dB
HL in the HL group. Similar central gain compensation secondary to
peripheral hearing loss has been observed previously in both animal
and human neuroimaging studies (Bidelman et al., 2014; Chambers
et al., 2016). These phenomena were completely collapsed by noise in
the HL group where low α FFRs were relatively smaller in most HL
listeners (Figure 4C).

4.3. Association of brainstem speech
processing during high arousal states with
behaviors

Cortical α oscillations are used as a neural proxy of arousal
(Pivik and Harman, 1995; Lai et al., 2022) and they were reported
to play a significant role in functionally inhibiting the processing of
task-irrelevant information (Jensen and Mazaheri, 2010; Foxe and
Snyder, 2011). In our speech detection task, /ba/ and /pa/ tokens were
the task-relevant distractors while /ta/ was the task-relevant target.
Similar to the methods in Lai et al. (2022), we measured FFRs evoked
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by /ba/ and /pa/ as there were insufficient counts (i.e., 210) of /ta/
token in each condition to provide reasonable FFRs. During low or
decreased α power (i.e., high arousal state), NH listeners may have
attended more to the target (/ta/) but less to the distractors (/ba/ and
/pa/). Thus, FFRs to /ta/ were expected to increase while FFRs to /ba/
and /pa/ decrease. Whereas during high α power (i.e., low arousal
state), responses to /ba/ and /pa/ were likely not inhibited because
they were not task-irrelevant noise. Decreased α power was reported
to associate with increased neural firing to attended stimuli (Haegens
et al., 2011) and improved behavioral performance (Kelly et al., 2009;
Gould et al., 2011; Haegens et al., 2011).

In younger listeners and under noisy backgrounds, we previously
showed that neural decoding applied to low α FFRs offered higher
accuracies in token classification as compared to high α FFRs [see
Figure 5 in Lai et al. (2022)]. In this study, under no background
noise, we observed that frequency spectra of low α FFR had better
classification accuracies for perceptual performance level than high α

FFR. These observations suggest that frequency spectra of low α FFRs
were more robust in carrying information about the acoustic speech
stimuli although their F0 amplitudes were smaller. For example, a
better coding of harmonics or formants in the spectra renders the
FFRs to be more representative of the acoustic speech waveforms
and thus more predictive of perceptual performance. On the other
hand, high α FFRs had larger F0 amplitudes, but the whole spectra
of FFRs were noisier and contained less information about the
acoustic speech. Taken together, better speech token discrimination
is consistently observed in FFRs during high arousal states in both
younger and older adults. Furthermore, low α FFRs were also
observed to be decreased as PTA increased, especially in the NH
group for noise-degraded speech. These observations suggested that
brainstem FFRs during high arousal states have a strong association
with behavior perception.

5. Conclusion

Collectively, our study reveals age-related hearing loss not
only reduces cortical α power but differentially alters its dynamic
relationship with subcortical speech processing. This cortical-
brainstem modulation is especially prominent in the presence of
noise and in listeners with age-related hearing loss. While brainstem
speech processing is actively modulated by cortical arousal state
in normal-hearing older adults for clear speech, this modulation
is disrupted by the addition of background talker babble and
diminished by hearing loss even in clear backgrounds. Speech-FFRs
during low α states also offer a higher fidelity representation of
the acoustic speech signature and are more predictive of perceptual
performance than FFRs yoked to states of high cortical α. Enhanced
FFRs in older adults with near-normal hearing (i.e., very mild hearing
loss) suggest the presence of increased central gain compensation for
reduced auditory input (Bidelman et al., 2014; Chambers et al., 2016).
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