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Background: A variety of quality control (QC) approaches are employed in 
resting-state functional magnetic resonance imaging (rs-fMRI) to determine data 
quality and ultimately inclusion or exclusion of a fMRI data set in group analysis. 
Reliability of rs-fMRI data can be improved by censoring or “scrubbing” volumes 
affected by motion. While censoring preserves the integrity of participant-level 
data, including excessively censored data sets in group analyses may add noise. 
Quantitative motion-related metrics are frequently reported in the literature; 
however, qualitative visual inspection can sometimes catch errors or other issues 
that may be missed by quantitative metrics alone. In this paper, we describe our 
methods for performing QC of rs-fMRI data using software-generated quantitative 
and qualitative output and trained visual inspection.

Results: The data provided for this QC paper had relatively low motion-censoring, 
thus quantitative QC resulted in no exclusions. Qualitative checks of the data 
resulted in limited exclusions due to potential incidental findings and failed pre-
processing scripts.

Conclusion: Visual inspection in addition to the review of quantitative QC metrics 
is an important component to ensure high quality and accuracy in rs-fMRI data 
analysis.
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Introduction

Quality control (QC) in functional magnetic resonance imaging (fMRI) data is a critical 
step in ensuring accurate interpretation of results and reliable and replicable findings. Data may 
be corrupted at acquisition due to hardware or software malfunctions, artifacts from metallic 
objects, spurious physiological signals (heart rate, respiration, etc.) or participant motion. 
Further, incidental findings of atypical anatomic formations, lesions, or other injury may 
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be grounds for data exclusion if those findings are related to inclusion 
and exclusion criteria for the study, or if they cause errors in certain 
processing steps. There is a clear need for consensus on QC approaches 
for fMRI data, and for a revisiting of reporting standards to improve 
cross-study interpretation and replicability (Esteban et  al., 2017). 
There are emerging approaches to crowd-source the QC of imaging 
data sets using a combination of expert curation and a gamified 
interface for identifying scans. In this paper, we describe our fMRI QC 
methods from data acquisition through individual preprocessing. Our 
methods rely on standard tools available through the analysis software 
we  use and also include visual inspection by trained reviewers at 
multiple stages of the process. While the field recognizes the value of 
quantitative metrics and automated processes for evaluating data 
quality, we believe there is added value in qualitative assessment that 
cannot be  captured by quantitative measures of displacement, 
censoring, or signal intensity or homogeneity. We apply these QC 
strategies to a publicly available data set and report out standardized 
outcomes identified in the Frontiers Research Topic, Demonstrating 
Quality Control (QC) Procedures in fMRI.

Across MRI imaging protocols, fMRI data are particularly 
sensitive to participant head motion. Strategies exist to minimize 
participant head motion at data acquisition, such as the use of foam 
padding around the head, a strap across the forehead, bite bars, or 
real-time feedback to the participant and prospective motion 
corrections (Thulborn, 1999; Lazar, 2008; Vanderwal et al., 2015). 
However, these often require specialized settings, sequences, or 
equipment and are not sufficient to eliminate all movement and some 
data will be lost to motion corruption.

One of the most observable effects of head motion on fMRI data 
is the increase or decrease in signal in the affected volumes. In the case 
of blood oxygen level dependent (BOLD) imaging, data are acquired 
in slices through the volume of the brain over the course of a few 
seconds. The slice to be imaged is excited with a radio-frequency (RF) 
pulse, and the echo is read out a few milliseconds later. If the excited 
slice has moved in space, the echo will not be accurately read, leading 
to reduced signal in that slice. Additionally, the next slice to 
be acquired may have been excited by the preceding pulse and may 
have residual signal. A second RF pulse in that slice would lead to 
increases in signal readout. For these reasons, the volumes 
surrounding a motion spike are often also unreliable, and these effects 
may last for several seconds (Power et al., 2014). Compounding this 
issue is that all voxels within a slice or volume are not likely to 
be impacted the same way, as motion is rarely limited to translation 
along a single axis. Because of this, the relationship between signal 
within a given voxel and motion parameters is not linear (Power et al., 
2015). Motion can decrease the fMRI signal temporal stability by 
causing signal alterations across volumes which eventually increase 
false outcomes (Satterthwaite et  al., 2013). Moreover, motion can 
potentially modulate connectivity-related measurements because it 
produces global signal changes resulting in spurious results (Rogers 
et al., 2007).

Certain populations may be especially prone to movement during 
fMRI scanning. Children, older people, people with back pain, or 
people with high impulsivity may not be able to hold still for an entire 
functional scan, which can last for several minutes (Fox and Greicius, 
2010; Couvy-Duchesne et  al., 2014; Kong et  al., 2014; Couvy-
Duchesne et al., 2016; Pardoe et al., 2016). Therefore, the development 
of new approaches and the optimization of current strategies to reduce 

motion-related artifacts in fMRI data sets are critical for imaging 
studies of these populations. Because resting state correlation relies on 
low frequency modulation within the signal, longer scans are 
recommended (up to ~10 min in some cases) (Birn et  al., 2013), 
potentially exacerbating the problem of participant movement. 
Participants may tolerate several shorter scans with breaks in between 
– collecting multiple resting state scans and concatenating across them 
improves the signal-to-noise ratio (Chen et al., 2010); however, no 
strategy completely eliminates the impacts of participant head motion 
(Power et al., 2014, 2015).

The statistical approach of including motion parameters as 
nuisance regressors in the analysis reduces the impact of motion and 
has been widely adopted as a standard processing step (Johnstone 
et al., 2006). It has been shown that removing, or censoring, only the 
volumes most affected by motion prior to statistical analysis improves 
reliability (Power et  al., 2012; Carp, 2013; Power et  al., 2013). 
Additional ‘scrubbing’ or removing physiological noise signals is also 
helpful for removing spurious correlations due to head motion (Siegel 
et al., 2014). However, censoring alone still has problems. One is how 
to choose the optimal censoring threshold, which may depend on the 
level of motion in a data set (Power et al., 2014). Once a threshold has 
been chosen, another concern is that correlation estimates from 
participants with reduced data sets after censoring may be noisy or 
have extreme values that may influence group statistics or reduce 
power. To address this, many studies also exclude entire participants 
or scans that exceed pre-specified censoring limits (Power et al., 2015). 
Excluding participants with greater than 10% censored is often used 
as a threshold, and less conservative censoring thresholds of 15–25% 
have been used with pediatric populations (Siegel et al., 2014). An 
entirely different approach from censoring is to use independent 
components analysis (ICA) to identify the signal associated with head 
motion (Griffanti et al., 2014; Siegel et al., 2014; Patriat et al., 2015, 
2016; Pruim et al., 2015). Since reliability is dependent on the length 
of usable data, some researchers exclude participants with usable 
resting state scan data less than ~5 min after censoring (Van Dijk et al., 
2012; Andellini et al., 2015).

Censoring or scrubbing solutions allow for removing motion 
corrupted data will preserving some data and avoiding excluding 
entire participant data sets. If motion corruption causes data to not 
be missing at random, excluding more data in one group than another 
can cause bias in estimation and result in loss in power or invalid 
testing procedures (Little and Rubin, 2002). Moreover, excluding 
acquired data introduces a waste of resources and excessive costs for 
research services and personnel time. Given the challenge of recruiting 
well-characterized participants from clinical populations, the 
commitment of participants, and the cost of data collection and 
analytic staff, there are financial and social burdens to unnecessarily 
excluding data.

While motion artifacts have been well-documented to lead to 
both type I and type II errors in downstream analyses, other issues can 
and do arise during functional data acquisition and analysis. These 
include incidental findings of anatomic variability in the images which 
could indicate a medical concern or a benign anatomic difference that 
is of little medical concern. These findings, however, could be reason 
for participant exclusion, for example there is an incidental finding 
that indicates a previous stroke and stroke is an exclusion criterion for 
the study. Also, these anatomic variabilities could lead to issues with 
misalignment or normalization into template space, therefore, visual 
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inspection of the results is warranted. In addition to anatomic 
variabilities and incidental findings, script failures are another source 
of error in rs-fMRI data analysis. Analysis of rs-fMRI data is 
performed as a series of steps, with each step taking the output from 
the previous step, performing another process, and then generating a 
new output image. Errors are possible at each step, and it is critical to 
determine that scripts are performing correctly so that the input–
output–input chain does not result in errors in the final output data 
set. These errors are sometimes difficult to find if one only examines 
quantitative QC metrics, but can be easy to assess visually, for example 
if the entire functional series of images have been flipped upside down 
during processing but are centered with the anatomic image, global 
metrics of homogeneity will not differ between a correctly aligned and 
incorrectly aligned image. If such processing errors are allowed into 
group analysis, the spatial location of anatomy will not match across 
all participants.

In this paper, we describe our processes for rs-fMRI QC, including 
review of quantitative and qualitative software-generated metrics and 
visual inspection at each processing step to ensure the most accurate 
data are carried forward in the analysis process. Further, we advocate 
for including as much data as possible to minimize bias and honor the 
participant time and research resources provided.

Materials and methods

We performed an analysis of previously published and publicly 
available human participants’ data provided as part of the 
Demonstrating QC Procedures in fMRI Research Topic (Biswal et al., 
2010; Di Martino et al., 2014; Markiewicz et al., 2021). Briefly, resting 
state fMRI (rs-fMRI) data were pulled from publicly available datasets 
(ABIDE, ABIDE-II, functional Connectome Project, Open Neuro) 
across seven imaging sites, with approximately 20 participants from 
each site. Imaging parameters are summarized in Table 1. For this 
Research Topic, the Project leaders renamed the data with new 
participant IDs and organized them into BIDS common directory 
format. Each participant had one anatomical image and one or two 
rs-fMRI sequences. Imaging parameters for the rs-fMRI sequences are 
reported in Table 1. No information on participant demographics or 
other characteristics was provided. For the remainder of the paper, 
we  will refer to this data set as the “QC data set.” All procedures 
involving human participants were performed in accordance with the 
ethical standards of the Declaration of Helsinki, and the study was 
approved by the Institutional Review Board where the data were 
collected. Informed consent was obtained from all participants.

Data processing

MRI data preprocessing and statistical analyses took place in 
Analysis of Functional Neuroimages (AFNI v22.1.10) (Cox, 1996) and 
implemented using afni_proc.py (Example 11b). Anatomical data 
were skull stripped and normalized to standard Montreal Neurological 
Institute (MNI) space using non-linear warping with AFNI command 
@SSwarper and these parameters were applied to the functional data 
for spatial normalization. The first two volumes of the functional scans 
were removed, and data were despiked. Volumes were slice time 
corrected and co-registered to the minimum outlier within the run. 

Volumes where more than 5% of the brain voxels were considered 
outliers and were removed from the analysis. In addition, volumes 
with motion greater than 0.2 mm within a volume were censored and 
removed from the analysis. Nuisance variables included motion 
parameters (3 translation, 3 rotation), average ventricle signal, and 
average white matter signal. Ventricle signals were estimated by 
combining an MNI ventricle mask with the participant’s cerebral 
spinal fluid mask derived from the anatomic images. Using multiple 
regression, a residual time series was calculated for each voxel. The 
residual time series was then smoothed with a 4 mm FWHM Gaussian 
kernel, resampled to a 2.5 × 2.5 × 2.5 mm grid, and transformed to 
MNI space.

Quality control process

Data quality was determined using a combination of quantitative 
metrics and qualitative assessment (Figure 1). Quantitative metrics 
included verification of final voxel resolution and outputs from AFNI’s 
APQC of average motion per TR, max motion displacement, and 
censor fraction. Quantitative metrics were recorded in our REDCap 
QC checklist (see supplement) for ease of summary and comparison 
across participants.

Qualitatively, data were viewed by trained staff who made 
inclusion/exclusion decisions. Training of staff included walking 
through each step of our REDCap QC checklist (see supplement) and 
implementing a double data check system where new staff and trained 
staff both check and verify the same datasets. Staff were considered 
trained after inclusion/exclusion decisions were consistent with those 
made by trained/established staff. This method is a step-by-step 
approach to reviewing data and documenting the results of each of 
these steps utilizing a standardized REDCap form. This approach is 
easy to train new raters – we have successfully trained people across 
all levels of education, from high school students to those with PhDs 
– and the double-data entry step facilitates inter-rater reliability 
assessment. Data entry into REDCap also allows summary data to 
be easily compiled across participants, and if the checklist is used 
across multiple studies, data can be easily compared across projects. 
The inclusion of image examples of poor quality data within our 
REDCap checklist should improve the replicability and inter-rater 
reliability as well.

Raw DICOM files were converted to NIFTI format prior to being 
shared publicly, however, when starting from raw DICOM files, our 
QC process begins with a verification of data completeness comparing 
file count, file size, and image acquisition parameters against study 
protocols. We downloaded the NIFTI files and scrolled through the 
brain slice by slice within AFNI in order to assess each modality for 
any acquisition issues, distortion of images, or incidental findings. @
SSwarper outputs were visually inspected for good alignment (clear 
match between the skull-stripped brain and the MNI base template 
space) and skull-stripping (little to no clipped/missing brain data) 
prior to being processed with the individual data set afni_proc.py 
script. We then followed AFNI’s standard processing guidelines to 
check the processed data using the afni.proc.py quality control output. 
REDCap QC included checking the APQC and recording of following: 
excessive motion, warping, and distortion of the original data, 
alignment issues between the epi to anatomy and anatomy to the MNI 
template, inspection of the statistics volumes for excessive noise within 
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TABLE 1 Resting state fMRI imaging parameters from the seven imaging sites.

Site Scanner Field 
strength

Orientation In-plane resolution Spacing 
between Slices

Repetition time 
(TR)

Echo time 
(TE)

Number 
of Slices

Number 
of 
volumes

Parallel 
reduction 
(Yes/No)

1 Phillips 

Achieva

3T Axial 2.67 mm × 2.67 mm 3.0 mm 2,500 ms 30 ms 47 156 Yes

2 Phillips 

Achieva

3T Axial 3.0 mm × 3.0 mm 3.84 mm 2,000 ms 28 ms 38 150 Yes

3 Phillips 

Achieva DS

3T Axial 2.56 mm × 2.56 mm 3.1 mm 2,500 ms 30 ms 45 162 Yes

4 Unknown 3T Unknown 2.67 mm × 2.67 mm 3.0 mm 2,500 ms Unknown 47 123 Unknown

5 Phillips 

Achieva OR 

Siemens 

TrioTim OR 

Siemens 

Prisma_fit

3T Axial 1.88 mm × 1.88 mm/3.0 mm × 3.0 mm/3.0 mm × 

3.0 mm

4.0 mm/4.0 mm/4.0 mm 2,000 ms/2000 ms/2,000 ms 34 ms/30 ms/ 

25 ms

Varied 

34–39

144/144/144 Unknown

6 Siemens 

MAGNETOM 

Trio

3T Unknown 4.0 mm × 4.0 mm 4.0 mm 2,500 ms 27 ms 32 varied 130–

724

Unknown

7 Siemens Verio 3T Unknown 3.0 mm × 3.0 mm 3.51 mm 2,500 ms 30 ms 39 198 Unknown
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and outside of the brain, excessive motion, low degrees of freedom, 
warnings, and a brief summary of the @ss_review_basic. Motion and 
warnings regarding the severity of the overall censor fraction were 
recorded at three thresholds based on AFNI warning levels (excluding 

severe censoring >50%, excluding medium censoring >20%, excluding 
mild censoring >10%).

In addition to the steps described above, which follow 
standard processing guidelines from AFNI, if excessive motion 

FIGURE 1

Data checking steps include qualitative and quantitative evaluation of the imaging data to determine inclusion in group level analysis.
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was present (>20% censoring), we further checked the epi using 
@epi_review to visually inspect each run. If major alignment or 
warping issues were present, we used the @ss_review_driver to 
visualize the data and troubleshoot challenges in the 
pre-processing steps. This additional visual inspection process 
may help identify when a script failed and provide visualization 
of slices that may not be  shown in the APQC file. Data were 
considered usable if there were no incidental findings, if the 
functional images were clear with little to no warping or blurring, 
and if the functional images were well aligned with both the 
anatomic images and the template. Data were excluded if the 
preprocessing scripts did not successfully complete after 
three attempts.

Results

Of the 129 available data sets, six data sets were excluded due to (A) 
Script did not complete successfully (n = 2), (B) Distortion in the 
functional image (n = 1), or (C) Incidental findings (n = 3; Table 2). No 
data sets were excluded due to motion, leaving 123 data sets to be included 
for subsequent analysis (Figure 2). The QC data set contained relatively 
low levels of motion in terms of quantitative metrics: total censor fraction 
(Mean = 11%, SD = 17%) and max displacement (Mean = 1.25 mm, 
SD = 0.77 mm). Despite a relatively low censor fraction and max 
displacement, 30.9% of the data sets had mild censoring or greater 
(>10%), 14.6% had medium censoring or greater (>20%), and 6.5% of the 
data sets had severe censoring greater than 50% (Table 3).

FIGURE 2

Resting state fMRI data processing and QC workflow.

TABLE 2 Excluded resting state data sets.

ID Exclude QC criteria failed (rationale) Notes/Examples

315 X C (incidental finding, black hole in epi file)

405 X C (incidental finding, black hole in epi file)

409 X B (distortion in the epi file)

518 X A (brain was flipped, script failed 3+ times)
During the volume registration step the functional data flipped and problem could not 

be resolved

519 X A (brain was flipped, script failed 3+ times)
During the volume registration step the functional data flipped and problem could not 

be resolved

716 X
C (incidental finding, atrophy and lesions in epi 

file)
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Discussion

The QC approach described above avoids the use of thresholds 
for excluding participants and favors inclusion of as many data sets 
as possible and emphasizes qualitative approaches to QC. A variety 

of QC approaches can be  used to determine data quality and 
ultimately inclusion or exclusion of a fMRI data set in group 
analysis, and there are no standards for reporting qualitative 
approaches. Image artifacts, incidental anatomic findings, and 
alignment failures that may cause mislocalization of functional data 

TABLE 3 Resting state data sets exceeding quantitative QC criteria for motion by severity level.

ID Mild censoring (>10%) Medium censoring (>20%) Severe censoring (>50%)

101 X X

102 X

104 X X

105 X

106 X X

107 X X

109 X

111 X

112 X

114 X

208 X

214 X

307 X X X

309 X X

314 X X

316 X X X

402 X

408 X

422 X

502 X

504 X

506 X

507 X X X

508 X

509 X

511 X X

512 X X

601 X

620 X X

701 X X

703 X X X

705 X X

706 X X X

708 X X X

710 X

712 X X X

713 X X

714 X X X

715 X X

Totals 39 21 8
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in anatomic space are our primary reasons for excluding data. These 
features may be  missed if only quantitative metrics are used to 
evaluate data quality. Global metrics such as homogeneity and 
censoring are unlikely to vary if an image is flipped upside down or 
if there is an area of localized hypointensity on the BOLD images 
indicating a potential incidental finding.

Regarding motion, rather than removing entire data sets from 
group analysis based on excessive censoring as is commonly done, 
we  advocate for relying on within participant censoring and 
scrubbing methods to clean motion-related artifacts. There is a 
non-inclusion aspect as well as real dollar cost when excluding data. 
Often funded by grants, research money is spent recruiting 
participants, acquiring data, and paying staff to analyze those data. 
In addition, participants have volunteered their time into studies. 
Hence, we as researchers have a social and financial obligation to 
use the data we have collected to the fullest extent and to get the 
greatest power out of them that we can. This dataset had relatively 
little motion; however, nearly 15% would have been excluded had 
we  used a threshold approach at medium (>20%) censoring. 
We have successfully used this inclusive approach in several studies 
where motion was a greater concern, including studies in a pediatric 
population (Lepping et al., 2015, 2019).

Some aspects of motion are more challenging to compensate. 
Minimizing participant motion at data acquisition is ideal; however, 
this is not realistic in all situations. Several publications offer 
methods for prospective motion correction for echo-planar imaging 
(EPI) (Muraskin et al., 2013; Herbst et al., 2015; Maziero et al., 
2020). This is achieved by using an in-scanner camera for head 
tracking to measure head motion in real time and prospectively 
adjusting the acquisition positioning accordingly. Other useful 
methods have been developed for fMRI to adjust acquisition 
positioning during scanning by measuring and correcting for head 
motion in real time and prospectively for EPI sequences and with 
further improvement when combined with retrospective motion 
correction methods (Lee et al., 1998; Thesen et al., 2000; Beall and 
Lowe, 2014; Lanka and Deshpande, 2019). While not perfect, some 
of these prospective methods have been successfully used in 
resting-state functional connectivity analyses (Lanka and 
Deshpande, 2019), however, these methods are not available for all 
researchers, and additional sequence and statistical considerations 
are still needed.

Many of the imaging analysis software packages have added QC 
tools that have made it easier to assess data quality and report standard 
quality metrics across packages. AFNI’s APQC html output solidified 
many of the quality assessment steps we were doing already, including 
many of the qualitative visual inspection steps. Additional 
functionality, if provided in the software packages, would further 
improve the QC process. First, the APQC html file does not currently 
support saving the data checking within the file itself. Because of this, 
we have used a separate tool, our REDCap checklist to house the 
assessments. Second, we have incorporated examples of poor quality 
data within our REDCap checklist. If that were included in the 
software output, raters could easily see what the data should not look 
like, and training for qualitative assessment would be more consistent. 
Next, other tools within AFNI create QC output files that indicate 
whether alignment or other downstream steps are likely to fail. Adding 
that to the APQC process would be useful. Finally, we use the REDCap 
checklist and project database to export summary QC data for an 

entire project. It would be  helpful to have a group summary QC 
output directly from the analysis software.

Conclusion

While quantitative QC metrics including motion are important data 
to consider when assessing fMRI data quality, some data quality issues 
may be missed if only quantitative assessments are conducted. Our use 
of visual inspection throughout the data analysis process ensures that 
anatomic incidental findings, image artifacts, and processing errors are 
removed prior to group analysis. Our REDCap checklist can be used to 
facilitate training of staff and reporting image quality.
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