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Analysing complex auditory scenes depends in part on learning the long-term
statistical structure of sounds comprising those scenes. One way in which the
listening brain achieves this is by analysing the statistical structure of acoustic
environments over multiple time courses and separating background from
foreground sounds. A critical component of this statistical learning in the auditory
brain is the interplay between feedforward and feedback pathways—"listening
loops”"—connecting the inner ear to higher cortical regions and back. These
loops are likely important in setting and adjusting the different cadences over
which learned listening occurs through adaptive processes that tailor neural
responses to sound environments that unfold over seconds, days, development,
and the life-course. Here, we posit that exploring listening loops at different
scales of investigation—from in vivo recording to human assessment—their role
in detecting different timescales of regularity, and the consequences this has
for background detection, will reveal the fundamental processes that transform
hearing into the essential task of listening.
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The act of listening

Our brain is continuously interpreting the soundscape, it is listening even when we
are not. Listening is essential to understanding. Without listening, sound is meaningless
to us—a wash of noise, reflections, and competing sources vying for our attention. Many
of our listening environments are challenging—from restaurants to railway stations, we
listen in complex, multi-sensory and multi-dimensional spaces. Compared to even the most
advanced listening technologies, however, we navigate these spaces with relative ease, and
it is not obvious how we do so. We evolved to deal with listening in an embodied manner
but our experimental approaches, and often our listening technologies, pay little regard to the
immersive and embodied qualities of listening. A reductionist approach to our exploration of
the listening brain will limit the development of algorithms, devices, and therapies that seek
to establish or re-establish listening—in humans and machines—as an immersive experience.

Here, we posit that advancing our understanding of the listening brain requires a
reframing of our investigative neuroscience to include both the multi-layered soundscape
with its noisy background as well as its complex foreground. In doing so, we will have
to contend with the complexities of an extensive neural circuit and the specific features
of the auditory pathway—evident from cochlea to cortex and back—the “listening loops”
responsible for setting the cadences of our listening lives (Winer, 2005; Asilador and Llano,
2020). Sensitivity to salient foreground acoustic cues is important for processing speech
information, for example, but background features such as multi-talker babble or the flurry
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of late-arriving reflections from walls and other surfaces in a
room also need to be integrated into our listening experience.
Exploring how the listening brain parses background features of
the soundscape is critical to survival—fight or flight—since this
sensitivity to the statistical structure of background sounds may
also enhance our capacity to attend to foreground sounds. Here
we posit that studying the mechanisms underlying the detection
and coding of the background is essential to understand listening
(McWalter and McDermott, 2018). What are the statistics of the
background that facilitate its detection? How is it coded? What
is the role of feedback? And on which time scale? How and
when does its coding depend on contextual information (spatial
context, movement, visual stimuli)? Learning the longer-term
statistical structure of acoustic environments involves an interplay
between feedforward and feedback pathways—the listening loops—
including to the level of the inner ear, which takes us directly
to the issue of how to explore listening through, and in the
context of the complex neural circuits that constitutes the
auditory brain. Though afferent, or feedforward, pathways in the
auditory brain are rightly considered vital at the juncture between
hearing and cognition, feedback (efferent) fibres outnumber
feedforward in the auditory brain to influence every station in
the pathway, including mechanical and neural structures within
the middle and inner ear (Saldana et al., 1996; Terreros and
Delano, 2015). The functional understanding of these cortico-
subcortical loops lags well behind our knowledge of their anatomy.
Overall, it seems reasonable to assume that the act of listening
arises from activity generated in a rich subcortical network
replete with bilateral and feedback connectivity, and that this
activity operates over progressively wider time windows along
the ascending pathway (Ding et al., 2016; Kell and McDermott,
2019; Asokan et al., 2021; Henin et al., 2021), with feedback
from relatively higher centres in the auditory pathway modulating
neural activity at lower centres over potentially progressively
longer epochs (Robinson et al., 2016; Figure 1). Understanding
the functional role of cortico-subcortical listening loops in the
human brain could support the many autonomous listening
devices—from hearing aids and cochlear implants to Amazon’s
“Alexa”—that currently provide little of the capacity of human
listening abilities. Striving for signal fidelity on millisecond,
and even sub-millisecond, timescales, they often struggle to
perform in even moderately noisy environments, and fail to
operate over the multiple, and much slower, cadences of listening
that make effective communication possible. The dominance of
rapid signal-processing techniques in the development of hearing
technologies and therapies, also surfaces in machine-learning and
artificial intelligence approaches to listening. Performance remains
distinctly subpar but progress on this front will be critical if
autonomous listening devices.

Tools for exploring listening loops

If we are to take advantage of listening loops to explore the
timescales over which sensory information is integrated in the
auditory brain (Ding et al., 2016) we may need to implement some
new tools to do so. One difficulty in studying cortico-subcortical
loops has been the sampling and targeting of, not only deep-sitting
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neurons, but also those specifically involved in the loop. Thanks
to the development of genetic tools, combined with the creation
of manipulation tools, we can now opto- and chemo-genetically
target deep and superficial cells specifically involved in cortico-
subcortical interactions in awake rodents (Clayton et al., 2021;
Souffi et al., 2021). The use of the newly developed large-scale
high-density recording probes (Jun et al., 2017) allows to record
activity from deep and superficial neurons simultaneously across
structures (Kleinfeld et al.,, 2019). The advent of brain-imaging
techniques, with the potential to sample from wide populations of
neurons within and across brain structures (Bathellier et al., 2012;
Silva, 2017), has put hearing on a more equal footing to other
sensory systems, particularly vision, for which an understanding
of cortical structure and function was well advanced through
in vivo experimentation (Hiibener and Bonhoeffer, 2005). Imaging
of the auditory brain has rapidly advanced from employing simple
sounds that build on our understanding of sensory reception
and the importance of spectral analysis—tonotopy is widely
accepted as the primary representation of the cochlea (Marin
et al., 2022)—to more-naturalistic listening assessments permitted
by advances in audio technologies (Filipchuk et al., 2022). The
downside of current brain-imaging techniques, however, is that
they still favour a cortico-centric perspective, with some exceptions
(Barnstedt et al., 2015), at a time when subcortical structures
and efferent pathways are increasingly understood to be critical
to the act of listening (Cruces-Solis et al, 2018). In in vivo
experimental settings, two-photon imaging is generally confined to
the exploration of cortical structures—though this is changing with
the implementation of mesoscale imaging techniques. However,
access to subcortical structures—some deep within the brainstem—
as well investigations of the efferent pathways, remain limited,
especially in humans. Further, many practical limitations of
imaging arise beyond the inability to access subcortical structures.
The (dangerously loud) sounds generated by magnetic resonance
imaging (MRI) scanners pose a specific challenge to structural
and functional investigations of the listening brain per se, but
MRI as well as magnetoencephalography (MEG) are contra-
indicated for the use of the very listening devices that might
provide powerful insights to hearing and listening in health and
disease.

Listening loops and the adapting
brain

Exploring the auditory brain in terms of listening loops
conditioned for effective sensing and communication with
the outside world is, in fact, how the research field is
starting to align (Bajo et al, 2010; Robinson et al, 20165
Weible et al, 2020; Yudintsev et al, 2021; Wang et al,
2022), powered by a combination of new technologies applied
generally across sensory neuroscience (e.g. Zingg et al., 2017;
Williamson and Polley, 2019), and a specific re-imagining of
the structure and function of subcortical auditory structures
2015; 2018;
2021). Freed from a cortico-centric approach, the concept of

(Xiong et al, Bidelman et al., Lohse et al.,

listening loops provides the time-dimensional perspective to
understanding, or at least exploring, the different cadences of
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FIGURE 1

cochlea to primary cortex, projected on a mouse brain (BioRender).

Schematic representation of major feedforward (black) and feedback (green) pathways between subcortical and cortical auditory structures, from

listening (Antunes and Malmierca, 2021; Homma and Bajo, 2021),
and connects with the well-developed concept of the predictive
brain. Indeed, despite the technical challenges of accessing sub-
cortical structures, the concept of listening loops that operate over
distinct feedforward and feedback pathways provides an excellent
framework in which to investigate fundamental principles of brain
processing such as predictive coding that might be applied to
other sensory systems, not generally a role the auditory system has
performed.

One means by which the temporal dynamics of the listening
brain might be investigated, including its capacity for prediction,
is by assessing how it adapts over time to enhance the flow
of information (Latimer et al., 2019). We can define adaptation
to mean changes (usually a reduction) in neural firing in
response to sustained stimulation, though definitions of the
term are plentiful. From a functional perspective, firing-rate
adaptation seems important in the listening brain’s ability to
adjust dynamically to the listening environments in response to
changes in that environment, or in response to internal changes
that alter its overall sensitivity or dynamics. Adaptive coding is a
common phenomenon throughout the brain, and a recent review
article provides an excellent primer for understanding the different
cadences over which adaptation in the auditory brain unfolds, from
the range of milliseconds to over the life-course, as well as potential
mechanisms by which these cadences are set or arise (Willmore and
King, 2022).

Continuous adaptation within listening loops likely sets and
adjusts the cadences over which learned listening occurs, tailoring
neural responses to sound environments that unfold over seconds,
days, development, and the life-course. Exploring these loops in
the context of the adapting auditory brain—from single neurons
in animal models to human behavioural assessments—will help us
understand the immersive quality of listening, as well as advance
the many technologies currently available or under development
that purport to listen to us.
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