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The advance in neuroscience and computer technology over the past decades have 
made brain-computer interface (BCI) a most promising area of neurorehabilitation 
and neurophysiology research. Limb motion decoding has gradually become a 
hot topic in the field of BCI. Decoding neural activity related to limb movement 
trajectory is considered to be of great help to the development of assistive and 
rehabilitation strategies for motor-impaired users. Although a variety of decoding 
methods have been proposed for limb trajectory reconstruction, there does not 
yet exist a review that covers the performance evaluation of these decoding 
methods. To alleviate this vacancy, in this paper, we  evaluate EEG-based limb 
trajectory decoding methods regarding their advantages and disadvantages from 
a variety of perspectives. Specifically, we first introduce the differences in motor 
execution and motor imagery in limb trajectory reconstruction with different 
spaces (2D and 3D). Then, we discuss the limb motion trajectory reconstruction 
methods including experiment paradigm, EEG pre-processing, feature extraction 
and selection, decoding methods, and result evaluation. Finally, we expound on 
the open problem and future outlooks.

KEYWORDS

brain-computer interface, EEG, trajectory reconstruction, motion execution, motion 
imagery

1. Introduction

For a long time, scholars in the fields of neuroscience and computer science have been 
exploring how to understand the brain and uncover the neural information within the brain 
(Perry et al., 2010). The development of computer technology makes research in the field of 
neurology increase year by year. With the help of powerful computers and machine learning, 
researchers can interpret and use signals extracted from the brain, making it possible to create 
brain-controlled devices and enable disease rehabilitation.

Brain-computer interface (BCI) is a communication system that uses different brain signals 
to convey human intentions to computers or machines (Korik et al., 2014; Tariq et al., 2018; Chen 
et al., 2019; Chaudhary et al., 2021; Xu et al., 2022). The BCI system collects brain activity signals 
through implanted electrodes or external devices. It then converts these signals into computer-
controlled commands in real-time, allowing information to be transmitted directly through the 
brain instead of peripheral nerves and muscles (Cho et al., 2018; Meng and He, 2019; Nagel and 
Spüler, 2019; Garcia-Moreno et al., 2020; Zhang, 2021). This technology has been widely explored 
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in the past few decades. The BCI system has great potential for 
applications in many fields, including clinical rehabilitation training 
programs (Bai et al., 2020; Mane et al., 2020; Brusini et al., 2021), typing 
communication systems (Wolpaw et al., 2002; Milekovic et al., 2018; 
Zhang et al., 2018; Renton et al., 2019), robotics (Bi et al., 2013; Wang 
et al., 2018; Chamola et al., 2020; Baniqued et al., 2021; Robinson et al., 
2021), entertainment (Noor et al., 2018; Pradhapan et al., 2018; Wang 
et al., 2019; Li et al., 2021), and so on. The recording methods of brain 
activity can be  divided into two main categories: invasive and 
non-invasive (Zhuang et al., 2020). Electroencephalography (EEG) and 
electrocorticography (ECoG) are the most common non-invasive and 
invasive recording methods, respectively (Nicolas-Alonso and 
Gomez-Gil, 2012). However, due to surgical risk and the gradual 
degradation of signal quality over time, invasive methods have 
significant shortcomings (Abiri et al., 2019b). EEG can measure neural 
activity directly with high-time resolution and can be operated in real-
time while non-invasive, cheap, and portable. It has been shown to 
be the most popular method (Abiri et al., 2019a).

Studies have shown (Bandara et  al., 2018; Abiri et  al., 2019b; 
Sandhaeger et  al., 2019) that EEG signals carry a variety of motion 
information, including position, velocity, acceleration, angular velocity, 
etc., which provides theoretical support for controlling external 
machinery such as prosthetics through EEG-based BCI. EEG-based BCI 
can provide access from the brain to external devices, providing brain-
controlled aids for patients with dyskinesia (due to stroke, neurological 
disease, or brain trauma). Among many BCI paradigms, sensorimotor 
rhythm (SMR) BCI based on multi-class classification is widely used in 
the robot control domain. This method mainly uses the power density of 
mu (8–12 Hz) and beta (18–26 Hz) EEG bands in the central and parietal 
cortex (Xu et al., 2021). Subjects need to learn to adjust these bands 
independently, and may take weeks or even months. Moreover, this 
method is only suitable for discrete control of external devices, typical 
applications are wheelchairs and mice, which can not effectively control 
artificial arms. In practice, for some complex and high-precision 
activities, we  hope to control the device to move smoothly and 
continuously. This requires richer motion information, therefore motion 
trajectory prediction (MTP) BCI is the ideal solution. MTP-BCI can 
predict the current motion state, such as position, speed, acceleration, 
and more, from the EEG characteristics of the last several time lags, to 
achieve the continuous reconstruction of the imagined or executed 
motion trajectory. So far, researchers have explored and published many 
related publications in this field, which can be categorized into the hand 
(Bradberry et al., 2010; Lv et al., 2010; Yuan et al., 2010; Heger et al., 2012; 
Ofner and Müller-Putz, 2012, 2014; Kim et al., 2014a,b; Robinson et al., 
2013, 2014, 2015, 2021; Korik et al., 2015, 2016, 2018; Sun et al., 2017; 
Úbeda et al., 2017; Mondini et al., 2020; Sosnik and Zur, 2020; Sosnik 
and Zheng, 2021), the arm (Ofner and Müller-Putz, 2012, 2014; Kim 
et al., 2014b), the shoulder (Mondini et al., 2020; Sosnik and Zur, 2020; 
Sosnik and Zheng, 2021), the elbow (Mondini et al., 2020; Sosnik and 
Zur, 2020; Sosnik and Zheng, 2021), the finger (Paek et al., 2014), the 
reconstruction of the trajectory and velocity of the lower limb (Presacco 
et al., 2011; Castermans et al., 2014), including the motion in the 2D 
plane and 3D space, and the on-line control of the continuous motion of 
the manipulator (Mondini et al., 2020).

Although there have been a lot of pioneering work in this field in 
the past decade, as far as we know, there is not an overview of the 
methodology of trajectory reconstruction. For example, as described 
in Korik et al. (2014), the design of the decoder and the decoding 

accuracy obtained by some studies are briefly introduced. To alleviate 
this gap, this paper investigates the literature on MTP-BCI, covering 
the 2D and 3D trajectories generated by motion imagination and 
motion execution, in order to summarizing a set of trajectory 
reconstruction processes as detailed as possible, and report the main 
research progress in this field.

In Figure  1, the basic process of trajectory reconstruction is 
illustrated. The experimental task can be divided into motion execution 
(ME) and motion imagination (MI). During the execution of the task, 
neural signals (EEG signals) and dynamic data (motion trajectories) are 
recorded in parallel. Then, the data is pre-processed, and the appropriate 
feature extraction method is adopted for EEG signal. The common 
features are EEG potential and band power. Next, we need to choose the 
appropriate decoding method, that is the most important part to 
determine the reconstruction accuracy. The decoder is then trained 
offline to achieve maximum correlation between the measured 
trajectory and the reconstructed trajectory. Finally, we reconstruct the 
motion trajectories online through the whole process, and dynamically 
optimize the parameters according to the results.

The rest of this review is arranged as follows. In the second part, 
we summarize the main methods used in each process of 2D trajectory 
reconstruction. Then, we  supplement other methods used in 3D 
trajectory reconstruction in the third part. In the fourth part, 
we  summarize the main findings of this review and discuss open 
issues that require further investigation. Finally, we summarize the 
whole thesis in the sixth part.

2. 2D limb motion trajectory 
reconstruction

In recent years, many articles have been published in the field of 
limb trajectory reconstruction. Therefore, a variety of experimental 
paradigms have been designed for various limbs, such as hands, 
shoulders, elbows, fingers, ankles, knee joints, and hip joints. 
We divide them into two categories: 2D limb trajectory reconstruction 
and 3D limb trajectory reconstruction. A common system for hand 
movement decoding from EEG and task paradigm are shown in 
Figure 2.The process of trajectory reconstruction from EEG signal 
includes signal pre-processing, feature extraction, and signal decoding. 
In this part, we will introduce in detail the experimental paradigm, 
signal pre-processing, feature extraction, and signal decoding methods 
in 2D limb trajectory reconstruction.

2.1. Experimental paradigm and decoding 
performances

We summarize the research on 2D plane trajectory reconstruction 
from seven aspects: task type, limb, experimental paradigm, number 
of subjects, decoding methods, EEG features, and decoding 
performance, as shown in Table 1.

2.2. Signal pre-processing

During the 2D motion task, the recorded EEG signal is 
contaminated by various artifacts such as Electrooculogram (EOG) 
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and Electromyography (EMG), which may confuse the EEG decoding 
of the trajectory (Lv et  al., 2010). Therefore, it is necessary to 
pre-process the EEG signal before reconstructing the motion 
trajectory in order to obtain a higher Signal Noise Ratio (SNR). So far, 
the main pre-processing methods are filtering and Independent 
Component Correlation Algorithm (ICA).

2.2.1. ICA
ICA is a method to transform multivariate random signals into a 

linear combination of statistically independent non-Gaussian signal 
sources. Using this method, independent components can be extracted 
from mixed signals (Subasi and Ismail Gursoy, 2010). ICA can be used 
to remove artifacts, such as EOG and EMG to improve signal quality 

FIGURE 1

Schematic diagram of EEG signal-based Trajectory reconstruction system.

FIGURE 2

A common system for hand movement decoding from EEG and motion trajectory. Movement directions are displayed as black arrows. The movement 
trajectories performed by a subject are displayed as blue lines. The reconstructed trajectories are displayed as red lines.
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TABLE 1 The studies for decoding limb movement trajectory on 2D tasks from EEG.

Authors Tasks Limb Methods Subjects Features Experimental 
paradigms

Decoding performances

Lv et al. (2010) ME① Hand
KF②, 

Smoother
5 DSP③, CSP④

Move a pen at their 

own pace along a 

zigzag route.

Pearson’s r: x:0.37 ± 0.08

y:0.24 ± 0.06

SNR⑤: x:0.81 ± 0.38 y:0.27 ± 0.13

Robinson et al. 

(2013)
ME Hand MLR⑥ 7 DWT⑦

Centre out right hand 

movements in 

horizontal 2D space.

Pearson’s r:0.56 ± 0.16

Robinson et al. 

(2015)
ME Hand KF 7

DWT Center-out right-hand 

movement tasks in 

four different 

directions at two 

different speeds in 

random order.

Pearson’s

r: 0.60 ± 0.07

Robinson Neethu 

et al. (2014)
ME Hand MLR 7 DWT

Center-out right hand 

movements in 

horizontal 2D space.

Pearson’s

r: 0.63

Sun et al. (2017) ME Hand MLR 5 Phase

Control the position of 

a cursor moving 

towards four different 

directions according 

to the target-cue on 

the screen.

Pearson’s r:

(position)

x: 0.46 ± 0.11

y: 0.43 ± 0.08

velocity:

x: 0.48 ± 0.11

y: 0.44 ± 0.09

Robinson et al. 

(2021)
ME Hand

Linear SVM⑧, 

KF, MLR
21 BP⑨, FBCSP⑽

Follow the line and 

move your hand to 

touch the target in the 

GUI.

Acc⑾:

F-S⒅: 73.36%

FR-SR⒆:69.46%

FL-SL⒇:68.99%

Pearson’s r: KF:0.3799 ± 0.08

(best case)

MLR:0.3968 ± 0.08

(best case)

Mondini et al. 

(2020)
ME Hand PLSKF⑿ 10 EV⒀

Track a moving object 

with a robotic arm 

through EEG-based 

decoded trajectories.

Pearson’s r:0.32

Paek et al. (2014) ME Finger LD⒁ 5 ED⒂

Tap right index finger 

three times in 

succession.

Pearson’s r: 0.36

Ofner and Müller-

Putz (2014)
MI⒃ Arm PLS⒄ 9 EV

Imagine horizontal or 

vertical repetitive 

rhythmic arm 

movements.

Acc:64% ± 10%

Úbeda et al. (2017) ME
Upper 

limb
MLR 5 EV

Subject actively or 

passively grasped the 

planner to perform a 

center-out task.

Acc: Configuration 

A:29.0% ± 11.8%(chance level 12.5%)

B: 51.3% ± 19.2%

(chance level 25%)

C: 52.3% ± 20.5%

(chance level 25%)

D: 79.6% ± 15.9%

(chance level 50%)

E: 75.6% ± 17.0%

(chance level 50%)

①Movement execution, ②Kalman filter, ③Discriminative spatial pattern, ④Commonspatial pattern, ⑤Signal-noise ratio, ⑥Multiple linear regression, ⑦Discrete wavelet transform, ⑧Support 
vector machines, ⑨Band power, ⑩Filter-bank common spatial pattern, ⑾Accuracy, ⑿Partial least squares, ⒀EEG voltage, ⒁Linear decoder, ⒂EEG derivative, ⒃Motor imagery, ⒄Partial 
least squares, ⒅Fast-slow, ⒆Fast right-Slow right, ⒇Fast left-slow left.
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and improve the correlation of trajectory reconstruction. Many works 
about trajectory reconstruction have adopted ICA as the signal 
pre-processing algorithm, such as Lv et al. (2010), Ofner and Müller-
Putz (2014), and Paek et al. (2014). There are two steps in the use of 
ICA, first decomposing the EEG signal into several independent 
components, and then manually checking and removing artifacts. 
Many tools for removing artifacts are provided in Matlab’s EEGLAB 
toolkit (Nicolas-Alonso and Gomez-Gil, 2012) and Python’s MNE 
toolkit (Delorme and Makeig, 2004).

2.2.2. Filtering
Due to the existence of power frequency interference (50 Hz in 

Asia and Europe, 60 Hz in the United States) and high-frequency 
noise, filtering has become the most common signal pre-processing 
method in trajectory reconstruction tasks, including EEG signal 
filtering and motion trajectory filtering.

Band-pass filtering and notch filtering are the most commonly 
used EEG filtering methods. Studies have shown that the neural 
correlation of kinematics mainly exists in SCP above 0.1 Hz 
(Garipelli et  al., 2013). Therefore, most work adopts band-pass 
filtering to retain the correlation part of the EEG signal while 
removing high-frequency noise. For example, in Mondini et  al. 
(2020), EEG goes through two-stage filtering (0.18 Hz high-pass + 
anti-aliasing low-pass filter and 1.5 Hz low-pass filter), and [0.5–20] 
Hz band-pass filtering is carried out in Robinson et al. (2021). In 
Úbeda et  al. (2017), The EEG signal is filtered by band-pass at 
0.1–2 Hz. Besides, it is also filtered between 8–12 Hz, 14–30 Hz and 
0.1–40 Hz to estimate the amount of information present in each 
frequency band, and so on (Ofner and Müller-Putz, 2014; Paek 
et al., 2014; Sun et al., 2017). Notch filter (50/60 Hz) is usually used 
to attenuate power line noise (Robinson et al., 2015), but it is easy 
to cause waveform distortion (Ai et al., 2018). Low-pass filtering is 
usually used for kinematic data. In Mondini et al. (2020), low-pass 
filtering is performed at 4 Hz for motion tracks recorded using Leap 
Motion. In Paek et al. (2014), kinematic data are filtered at 3 Hz 
(that is, in the delta band), because subjects in this frequency band 
retain more than 95% of the cumulative power in the finger 
movement PSD, and can reasonably maintain the integrity of the 
kinematic track during visual inspection. In Úbeda et al. (2017), 
cursor kinematics (position and velocity) also uses a zero-phase 
fourth-order Butter-worth filter lower than 2 Hz for 
low-pass filtering.

2.3. Feature extraction

After data pre-processing, we obtain data with a higher signal-to-
noise ratio (SNR). Next, we need to extract the salient features from 
the EEG signal to construct the predictor group (predictor set). At 
present, most of the features are concentrated in the frequency 
domain. We  will introduce the feature extraction methods in 
detail below.

2.3.1. DWT
EEG signal is non-stationary, which brings difficulties to signal 

analysis because we need to extract stationary features from the signal 
constantly. For the trajectory reconstruction task, most of the work is 
focused on the reconstruction of trajectory motion parameters from 

low-frequency EEG signals, so it is particularly important to improve 
the resolution of low-frequency signals (Robinson et al., 2013).

DWT (Discrete Wavelet Transform) decomposes the original 
signal into a set of prototype functions through continuous high-pass 
and low-pass filtering, which is called wavelet function cluster. Wavelet 
can represent the local characteristics of the signal in the time domain 
and frequency domain, and the trade-off of time-frequency resolution 
can be realized by selecting the appropriate scale, so as to solve the 
problem of instability of EEG signal. After that, the signals of different 
sub-bands are obtained by inverse transform reconstruction 
(Robinson et al., 2015). Robinson et al. (2013, 2014, 2015) used the 
orthogonal wavelet cluster to filter the EEG signal in the 
non-overlapping subspace, and the sub-band is defined as a predictor 
set, which achieves better decoding performance than other methods 
at that time.

2.3.2. DSP and CSP
Discriminative Spatial Pattern (DSP) and Common Spatial 

Pattern (CSP) are two linear projection methods with different 
purposes. DSP projects the EEG signal to the linear subspace to 
maximize the inter-class variance and minimize the intra-class 
variance to extract the amplitude of slow non-oscillatory sources. CSP 
uses the diagonalization of the matrix to find a set of optimal spatial 
filters for projection, so that the variance value difference of the two 
types of signals is maximized, thereby obtaining a feature with a high 
degree of discrimination vector. Let X∈RC × N represent the matrix of 
collected EEG signals, where the channel number is C and the number 
of samples is N. The classic CSP problem is formulated as follows:

 
max
ω

ω ω

ω ω∈
=

R

T

TC

m
m
1

2  
(1)

where ω is the spatial filter coefficient and Mi (i = 1, 2) represents 
the one-class covariance matrix. In general, generalized eigenvalue 
decomposition (EVD) can solve this problem.

 M M M1 1 2ω ω= +( )»  (2)

where λ is an eigenvalue of M1 and M2. The C eigenvector is a 
generalization obtained by solving Equation 2.

Lv et al. (2010) filter the ICs retained after ICA into 10 frequency 
bands (0.1–4 Hz, 4–8 Hz, 8–12 Hz, …36–40 Hz), then extract slow 
assignment features in 0.1–4 Hz band by DSP, and uses CSP to extract 
oscillation power features in other frequency bands of IC. The FBCSP 
algorithm is used in Bradberry et al. (2010). The selected frequency 
band is [2b, 2b + 2] Hz, b = [0, 8], and the CSP parameter is selected as 
3 to extract features.

2.3.3. Phase feature
Most previous studies have selected the amplitude characteristics 

of EEG signals when selecting features (Ofner and Müller-Putz, 2014; 
Paek et al., 2014; Úbeda et al., 2017; Mondini et al., 2020). However, 
the amplitude feature only represents the intensity of neural activity, 
and the phase information has not been widely applied in this field of 
research. Previously, Sburlea et al. (2016) have proved that the phase 
feature has a higher SNR than the amplitude feature in the discrete gait 
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intention detection task. Sun et al. (2017) extracted the hand motion 
parameters of instantaneous phase feature decoding by Hilbert 
transform, and obtained higher decoding accuracy than 
amplitude features.

2.4. Decoding methods

Reconstructing the limb motion trajectory with high correlation 
through EEG signal is the main task of exploiting high-performance 
trajectory reconstruction BCI. After two steps of pre-processing and 
feature extraction, we get the feature set, then we need to design an 
effective decoding model. Since we need to get continuous predicted 
trajectories, this is a regression problem. In this section, we introduce 
some commonly used motion trajectory reconstruction algorithms in 
detail, such as Kalman filter, Multivariate Linear Regression (MLR), 
and Partial Least Squares (PLS).

2.4.1. Kalman filter
Kalman filter is an estimation algorithm using the linear system, 

which optimally estimates the current state of the system through the 
system input and the last prediction result. This is a recursive process, 
and the filter model is continuously optimized by new observations. 
The Kalman filter consists of two parts, including the process equation 
and the measurement equation, which describe the evolution of the 
internal state over time and describe the relationship between the 
noise measure and the state. The Kalman filter equation can be written 
in discrete time and linear form as:

 

θ θ
θ

k k k

k k k

F v v N Q
z H w w N R
+ = + ∼ ( )
= + ∼ ( )






1 0

0

,

,  
(3)

where θ denotes the nθ-dimensional state of the system, F is the 
transition matrix between the current k and the next k + 1 time 
samples, and v is the additive Gaussian noise modeling uncertainty 
and error propagation. z is an nz-dimensional vector of measured 
values, H is a matrix that simulates the linear relationship between z 
and θ, and w is the additive Gaussian noise of simulated measured 
values and model errors.

In the trajectory reconstruction study, the Kalman filter was used 
to estimate the motion parameter, ie, the state θ, from the noise 
measurement z, ie, the multi-lag EEG. The Kalman filter has previously 
been applied to decode hand movements in invasive BCI (Wu et al., 
2002, 2003). The Kalman filter models discrete-time linear systems, 
which assume that the measured output of the system (EEG signal) is 
linearly related to the state (motion trajectory). Many BCI works 
based on trajectory reconstruction (Lv et al., 2010; Robinson et al., 
2015; Mondini et al., 2020) have employed the Kalman filter.

In Lv et al. (2010), Lv et al. choose the decoding method of the 
Kalman filter and smoother and used the smoothing method to 
integrate the past, present, and future information of hand speed 
into the Kalman model, obtaining a better correlation and SNR 
than the linear filter and the Kalman filter. The decoding 
performance of different frequency bands is also compared in this 
paper. It is found that in addition to the 0.1–4 Hz band, the 
oscillation rhythm of the 24–28 Hz band also carries hand speed 
information (Lv et al., 2010).

In the method proposed by Robinson et al. (2015), the Kalman 
filter is used to adaptively estimate hand motion parameters from EEG 
signals. Too many prediction variables will provide redundant and 
non-stationary information, which will affect the performance of the 
Kalman filter and deteriorate it. Given this, Robinson et al. (2015) 
proposed to select the channel a priori through the sorting algorithm, 
and then eliminate the prediction variables backward to select the 
prediction variables with the largest amount of information to model 
the estimator, which significantly reduces the number of predictors 
and estimation time under the condition that the prediction accuracy 
is unchanged.

2.4.2. Multivariate linear regression
The purpose of the MLR model is to construct a regression 

equation and use multiple independent variables to estimate 
dependent variables to explain and predict the value of dependent 
variables. MLR can be described by the following formula:

 
x t x t a b S t kx

c

C

k

L
ckx c[ ] − −[ ] = + −[ ]

= =
∑∑1

1 0  
(4)

 
y t y t a b S t ky

c

C

k

L
cky c[ ] − −[ ] = + −[ ]

= =
∑∑1

1 0  
(5)

 
z t z t a b S t kz

c

C

k

L
ckz c[ ] − −[ ] = + −[ ]

= =
∑∑1

1 0  
(6)

where x[t]-x[t-1], y[t]-y[t-1], and z[t]-z[t-1] are the position axes 
of time t in x, y, and z. L is the time lag number, Sc[t-k] is the 
standardized voltage difference measured by the EEG sensor c at time 
lag k, and the variables a and b are the weights obtained by multiple 
linear regression. C is the number of electrodes used in the analysis.

In the trajectory reconstruction task, the dependent variables 
are usually the reconstruction parameters of interest, such as 
position, velocity, acceleration, etc., and the independent variables 
are usually EEG signals with different time lags from different 
channels or features extracted from EEG signals, such as the direct 
use of EEG signals (Úbeda et al., 2017), the signal amplitudes of 
different frequency bands obtained by DWT (Robinson et al., 2013), 
and the instantaneous phase features obtained by Hilbert transform 
(Sun et al., 2017).

With its simple and effective characteristics, multiple linear 
regression has always been the most commonly used decoding 
method in trajectory reconstruction. However, due to the large 
channel correlation of EEG signals, the weights of multiple linear 
regression are unexplained, which is called multicollinearity. In order 
to solve the problem of multicollinearity, in recent years, more and 
more work began to use other decoding methods, such as PLS.

2.4.3. Partial least squares
For EEG signals, multiple collinearities have become a serious 

problem because of the large channel correlation, resulting in the 
unexplainable weight of multiple linear regression (Farrar and 
Glauber, 1967). PLS is particularly suitable for such situations, such as 
multiple lags, and low-frequency EEG (Mondini et al., 2020). PLS 
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provides a method of many-to-many linear regression modeling. It 
studies the correlation between variables by using potential variables 
to consider the internal structure of the data. In addition, it can deal 
with noisy and multi-linear variables, which has advantages over 
traditional classical regression analysis methods.

In the study of motion imagination by Ofner and Müller-Putz 
(2014), the trajectory of the right arm is decoded by PLS to classify 
horizontal and vertical imaginative rhythmic movements. The model 
in Mondini et  al. (2020) combines the dimension reduction 
characteristics of PLS regression and the data fusion characteristics of 
KF, and is used to decode the hand motion from EEG online, which 
is called PLSKF. This method integrates linear models with different 
motion parameters, which can significantly improve the correlation 
than using PLS alone, and the decoded trajectory has a more 
smoothing effect.

3. 3D limb motion trajectory 
reconstruction

Compared with 2D limb motion, 3D limb motion has higher 
degrees of freedom, so the trajectory formed by 3D limb motion is 
more complex, and the method used to reconstruct 3D limb motion 
trajectory is also more complex. In this section, we will introduce in 
detail the experimental paradigm and reconstruction process in the 
research on 3D limb trajectory reconstruction in recent years.

3.1. Experimental paradigm and decoding 
performances

We summarize the research of 3D trajectory reconstruction from 
the same aspect, and draw as shown in Table 2.

3.2. EEG signal pre-processing

The 3D trajectory reconstruction task uses the same 
pre-processing method as the 2D trajectory reconstruction task, as 
detailed in Section 2.1.

3.2.1. Filtering
Some studies have shown that low-frequency EEG signals carry 

information about limb movement (Korik et  al., 2015, 2018). 
Therefore, low-pass filters or band-pass filters are used to 
pre-process EEG. In this work, the 3D motion information of the 
hand and arm is preserved by using the 0–1 Hz low-pass filter. In 
Presacco et  al. (2011), the lower limb motion information is 
preserved by a 0.1–2 Hz band-pass filter. In Ofner and Müller-Putz 
(2012), the velocity and position of arm motion are decoded by 
low-pass filter and band-pass filter, respectively. In addition, a lot of 
work uses multi-band filtering to extract the power characteristics 
of EEG signals. In Korik et al. (2015), FFT is used to calculate the 
power of 0–4 Hz (delta), 4–8 Hz (theta), 8–12 Hz (mu), 12–18 Hz 
(low beta), 18–30 Hz (high beta), 30–40 Hz (low gamma), 60–84 Hz, 
84–100 Hz and 100–150 Hz (high gamma) band, and put it into 
neural network decoding. In Korik et  al. (2018), the frequency 
bands of delta (0.5–2 Hz), theta, mu, low beta, high beta (18–28 Hz), 

and gamma (28–40 Hz) are filtered, and the results are directly 
input to the PTS model. The band power of the filtered EEG signal 
is calculated and input into the BTS model. In order to discuss the 
frequency band which makes the greatest contribution to trajectory 
reconstruction, the lower delta band, including slow cortical 
potential (SCPs) (cutoff frequency is 1 Hz), higher delta band 
(1–4 Hz), theta band, alpha band (8–12 Hz) and lower beta band 
(12–15 Hz) are filtered. The multi-class filter library common space 
mode (FBCSP) algorithm is applied to the prediction of continuous 
output in Heger et al. (2012). A set of 4 Hz broadband pass filters 
are applied to the range from 1 to 28 Hz (1–4 Hz, 4–8 Hz, 8–12 Hz, 
12–16 Hz, 16–20 Hz, 20–24 Hz and 24–28 Hz).

For the limb motion data, because the power range in the 
low-frequency band accounts for the vast majority of the total power 
of the signal, low-pass filtering is mainly used to process the limb 
motion data.

3.3. Decoding methods

3.3.1. MLR
MLR is the most commonly used decoding method in 3D 

trajectory reconstruction. For a detailed introduction to MLR, see 
Section 2.4.2. Bradberry et  al. (2010) first proposed to use MLR 
decoding EEG signals to reconstruct hand trajectories in Bradberry 
et al. (2010), which is called the PTS model method (Korik et al., 
2018). Since then, it has been widely used to reconstruct various limb 
trajectories, such as lower extremities, hands, shoulders, elbows and 
arms. Korik et  al. (2015) modified the PTS model, calculated the 
multi-band power density of the initial EEG signal, and proposed the 
BTS model (Korik et al., 2018).

3.3.2. Kernel ridge regression
EEG limb trajectory reconstruction tasks are mostly limited to 

simple tracks, such as center-out tasks and point-to-point movement. 
However, in daily life, patients often have to do more complex 
movements. In KRR, the input data is mapped to the kernel feature 
space by mapping ∅. We used the kernel technique based on the 
Gaussian kernel function and defined variables:

 k x i x j e x i x j( ) ( )( ) = − ( )− ( )( )
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TABLE 2 The studies for decoding limb movement trajectory on 3D tasks from EEG.

Authors Tasks Limb Features Methods Subjects Experimental 
paradigms

Decoding 
performances

Presacco et al. 

(2011)

ME Lower limbs 

(hip, knee, and 

ankle joints)

EV MLR 6 Walk on a treadmill at 

their self-selected 

comfortable speed while 

receiving visual 

feedback of their lower 

limbs.

Pearson’s r:0.75 ± 0.1

SNR values (dB):

4.13 ± 2.03

Presacco et al. 

(2012)

ME Lower limbs 

(hip, knee, and 

ankle joints)

EV MLR 6 Walk on a treadmill at 

their self-selected 

comfortable speed while 

receiving visual 

feedback of their lower 

limbs.

Worst-case:

Pearson’s r:0.6

SNR values (dB): 2

Bradberry et al., 

2010)

ME Hand EV MLR 5 Center-out right hand 

movements in 

horizontal 3D space.

Pearson’s r:

x velocity:0.19

y velocity:0.38

z velocity:0.32

Kim et al. 

(2014a)

ME Hand EV MLR,

KRR①

4 Subjects were instructed 

to move their right arm 

continuously and along 

the infinity shape 

trajectory (∞) symbol 

and‘˄’ symbol when 

viewed from y-z axes 

and x-y axes

NRMSE:

KRR:0.22

(2,400 samples)

MLR:0.28

(2,400 samples)

Korik et al. 

(2015)

ME,MI Hand EV, BP MLR,

NN②

1 Repeated movement of 

right dominant hand 

between a home 

position and one of five 

target positions.

Pearson’s r: MLR:0.43 

(best case)

NN:0.73 (best case)

Korik et al. 

(2018)

ME,MI Hand EV, BP MLR 12 Executed or imagined 

arm movements from 

the home position to 

target(four targets).

Pearson’s r: ME:

BTS③:0.4

PTS④:0.15

MI:

BTS:0.2

PTS:0

Sosnik and Zur 

(2020)

ME,MI Hand, elbow, 

and shoulder

EV MLR 7 Executed or imagined 

arm movements from 

the home position to 

four targets.

Pearson’s r: ME:

Hand:0.24 ~ 0.49

Elbow:0.41 ~ 0.48

Shoulder:0.18 ~ 0.40

MI: Hand:0.09 ~ 0.23

Elbow:0.20 ~ 0.27

Shoulder:0.11 ~ 0.18

Sosnik and 

Zheng (2021)

ME,MI Hand, elbow, 

and shoulder

BP MLR 9 Executed or imagined 

arm movements from 

the home position to 

four targets.

Pearson’s r: 

ME:0.36 ± 0.13

MI:0.18 ± 0.11

Korik et al. 

(2016)

ME Hand EV, BP MLR 3 Perform 15 hand 

movements between the 

home position and one 

of the six targets.

Pearson’s r: 0.45

(Continued)
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where σ  is the width of the Gaussian kernel function, p is the w 
position of time t on the x, y, and z axes, s is the normalized EEG data, 
L is the number of time lags, and C is the number of electrodes used 
for analysis.

Kim et al. (2014a,b) used the non-linear method Kernel Ridge 
Regression (KRR) to decode complex motion trajectories. KRR uses 
the kernel method to map input data to a kernel feature space, which 

is widely used in the field of robot motion control (Ofner and Müller-
Putz, 2012). In Kim et al. (2014a), Kim used the Gaussian kernel 
function to define kernel functions with multi-channel EEG time 
series as input, motion speed and trajectory position as output. The 
results show that KRR achieves better decoding accuracy than the 
linear method in reconstructing complex motion which is highly 
related to real scene, and KRR can also produce better results when 

TABLE 2 (Continued)

Authors Tasks Limb Features Methods Subjects Experimental 
paradigms

Decoding 
performances

Heger et al. 

(2012)

ME Hand FBCSP MLR 5 Fill water into a glass. Pearson’s r:

velocity:

x: 0.41

y: 0.36

z: 0.48

speed: 0.17

Kim et al. 

(2014b)

ME,MI Arm EV MLR, KRR 10 Execute a motor 

trajectory, observe the 

trajectory performed by 

a volunteer’s hand and 

imagine the motor 

command for this 

trajectory, and to 

observe a trajectory 

performed by a robotic 

arm and imagine the 

movement.

-

Ofner and 

Müller-Putz 

(2012)

ME Arm EV MLR 5 Perform natural, round, 

and in speed varying 

arm movements.

Pearson’s r:

position:

x: 0.70 ± 0.12;

y: 0.78 ± 0.09

z: 0.62 ± 0.14

velocity:

x: 0.70 ± 0.13

y: 0.77 ± 0.11

z: 0.62 ± 0.15

Pancholi et al. 

(2022)

ME Hand EV WPD⑤, CNN⑥, 

LSTM⑦

12 Reach and grasp the 

object and lift it stably 

for a couple of seconds.

Pearson’s r:

position:

x: 0.86

y: 0.89

z:0.82

Jeong et al. 

(2020)

ME,MI Arm EV CNN-BiLSTM 15 Perform and image 

center-out arm reaching 

in six directions.

Pearson’s r:

ME:0.4712

MI: 0.4575

NRMSE:

ME: 0.1780

MI: 0.1685

Shakibaee et al. 

(2019)

ME,MI Knee EV NARX⑧ neural 

network

10 Extend and flex their 

right knee slowly at a 

constant speed.

Imagine the movement 

of folding and unfolding 

the knee

MSE error:

ME: 5.81E-07

MI: 2.36E-07

①Kernel ridge regression, ②Neural network, ③Band power time-series, ④potential time-series, ⑤Wavelet packet decomposition, ⑥Convolutional neural network, ⑦Long short-term memory, 
⑧Nonlinear autoregressive exogenous.
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the number of training samples is small, and the computational cost 
is significantly reduced.

3.3.3. Artificial neural network
In the past few years, deep learning, a sub-field of machine 

learning, has achieved breakthrough in complex and high-dimensional 
data, such as image classification (Zhang et al., 2019) and emotion 
recognition (Li et al., 2019). Compared with linear decoding methods, 
deep learning models infuse non-linearity by adding nonlinear 
activation functions in the hidden and output nodes. So that they can 
access very descriptive (nonlinear) features that define the underlying 
relationships quite well (Irimia et al., 2018). Neural networks have 
been popular in MTP tasks, which could be  used to reconstruct 
complex motion trajectories.

Korik et al. (2015) used a neural network to decode the 3D motion 
trajectory of the hand (Korik et al., 2015). It is considered that the time 
evolution of the spectrum power value contains more valuable 
information than the original EEG potential, so the spectrum power 
value is used as the input. The paper also sets up many control groups, 
including potential-based NN, spectrum power-based MIMO and 
MISO architecture NN, potential-based MLR, and spectrum power-
based MLR. Finally, the proposed neural network model based on 
spectrum power value achieves the highest decoding accuracy of 
approximately 0.7.

Shakibaee et al. (2019) used NARX neural network to decode 
knee angle trajectory. The NARX is a nonlinear dynamic neural 
network model, which combines Autoregressive Exogenous (ARX), 
polynomial nonlinear function and Classical Gram Schmidt (CGS) 
orthogonalization method. NARX model is used in modeling the time 
series, meaning that the current value of a time series (output) can 
be predicted by the previous values of the same times series (output at 
previous moments), along with the current and previous values of the 
exogenous input. It has nonlinearity, dynamicity, tractability, and 
simplicity trait, which makes it an appropriate model for online 
MTP-BCI application. The NARX recursive neural network has two 
structures: parallel and series. In this research, Shakibaee et al. (2019) 
used series structure to get a better result of 5.81E-07 MSE error in 
ME and 2.36E-07 MSE error in MI.

The hybrid deep learning model using the CNN and the LSTM 
performed fairly well in MTP-BCI field (Irimia et al., 2018; Pancholi 
et al., 2022) for extracting spatio-temporal quality features. Jeong et al.
(Pancholi et  al., 2022) proposed MDCBN (Multi-Directional 
CNN-BiLSTM Network) framework to decode hand velocity for six 
directions in 3D space and control a robotic arm based on the result. 
Conventional hybrid deep learning frameworks (Tabar and Halici, 
2016; Li et al., 2018; Wang et al., 2018; Shakibaee et al., 2019) usually 
trained CNN to extract spatial features of brain activities and trained 
LSTM for temporal information. In contrast, MDCBN uses a CNN 
architecture to train the multi-direction information per axis as 
pre-training and the BiLSTM network for training the relationships in 
the 3D space (x-, y-, and z-axes). This research adopts a subject-
dependent BCI and got a decoding result of 0.4712  in ME and 
0.4575  in MI. Pancholi et  al. proposed a CNN-LSTM framework 
based on wavelet packet decomposition (WPD) for hand kinematics 
prediction (Irimia et al., 2018). WPD could decompose he EEG signal 
into sub-bands with increasing resolution toward the lower frequency 
band (Zhang et al., 2017; Khalil et al., 2019), which is considered to 
carry detailed limb kinematic information. Despite the high 

computational cost and a large amount of training data, this model got 
an extremely high accuracy of 0.86, 0.89, and 0.82 in the x-, y-, and 
z-axes, respectively.

4. Discussion

In the past decade, many achievements have been made in 
EEG-based limb trajectory reconstruction, and it is possible to use 
EEG to control the continuous movement of external prosthetic 
devices, which brings good news to patients with spinal cord injuries 
and other people with severe mobility. However, there are still many 
problems to be further explored, such a how to reconstruct complex 
motion trajectories and which frequency bands carry motion 
information and artifacts influence. In order to further promote the 
practical application of MTP, we believe that these important problems 
should be solved in future work. In this section, we briefly summarize 
the main findings of this review and introduce these research 
directions and current developments. It also illustrates the basic 
challenges and some potential ideas.

4.1. Summary of major findings

In this section, we  summarize the data processing flow and 
common algorithms in the task of limb trajectory reconstruction, to 
provide a reference for readers when designing algorithms. In the 
healthy subjects reconstruction process, the MLR and Kernel Ridge 
Regression models are fast in operation and efficient in decoding. The 
artificial neural network model for reconstructing simple motion 
trajectories has high decoding accuracy.

Data quality, feature selection, and decoding methods may have a 
great impact on the accuracy of reconstruction results. In order to 
obtain high-quality EEG signals, data pre-processing is an 
indispensable step. Filtering and ICA are the two most common 
pre-processing methods. Since it is generally believed that limb 
motion information exists in low-frequency EEG signals, the low-pass 
filter of 2 Hz are often used in pre-processing. ICA is used to eliminate 
the influence of ophthalmogram, EMG, and other signals. Manual 
removal is a common method.

The purpose of feature extraction is to achieve better results in the 
following decoding process. The amplitude of EEG signal is the most 
commonly used feature, which can be  decoded after simple 
standardized processing. Some studies have used signal processing 
methods, such as DWT (Robinson et al., 2013; Robinson Neethu et al., 
2014; Robinson et al., 2015) and DSP, CSP (Bradberry et al., 2010; Lv 
et al., 2010), for processing amplitude signals. Band power is also a 
common feature in the frequency domain. In addition, phase features 
have also been used (Sun et al., 2017).

Choosing the appropriate decoding method is the key to obtaining 
good reconstruction results. In the existing work, MLR is the most 
popular decoding method. MLR has the advantages of simple 
principles and strong applicability. MLR can decode the amplitude 
feature, band power and phase feature reading and obtain satisfactory 
results. Kalman filter is used to reconstruct 2D motion trajectory, 
which can optimize the model and estimate the current state of the 
system through new observations. PLS is usually used to solve the 
problem of multiple collinearities caused by large channel correlation 
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(Ofner and Müller-Putz, 2014; Mondini et al., 2020). KRR achieves 
good decoding accuracy when reconstructing complex motion that 
closely resembles real-life scenarios, and KRR can also produce better 
results when the number of training samples is small, and significantly 
reduce the computational cost (Kim et al., 2014a). In addition to KRR, 
neural networks are also used to reconstruct complex motion 
trajectories and produce fairly high decoding accuracy when using 
band power as input.

4.2. Current issues and future 
considerations

4.2.1. Artifact influence
Using ICA to remove EOG, and EMG components is a very 

common EEG pre-processing method. However, many studies have 
found that using ICA to remove artifacts will reduce the correlation 
coefficient of the reconstructed trajectory. Given this phenomenon, 
the popular view is that the motion performed may have some effect 
on the signal in the low-frequency band, that is, the actual physical 
motion distortion on the EEG electrode. The artifacts generated 
during the execution of the motion exist in many independent 
sub-spaces decomposed by ICA, which is difficult to remove. The use 
of over-sensitive ICA will lead to the destruction of EEG signals, 
which results in a reduction of decoding accuracyy. Concerning the 
effect of eye movement, Kim et  al. (2014b) show that some ICA 
components show a strong correlation with EOG signals, which are 
being used by decoders when EOG-related activities are left in 
the EEG.

In order to reduce the impact of artifact removal on reconstruction 
accuracy, some work uses nonlinear decoding methods, such as KRR, 
and neural networks. The results show that the decoding performance 
of nonlinear methods is less affected by artifact removal. Because the 
execution motion may have some influence on the low-band signal, 
and most of the reconstruction work uses the low-frequency EEG 
signal as input to the decoder, we can try to use the signal of other 
frequency bands, using the band power density, phase and other 
characteristics as the input to weaken the influence of the 
low-frequency signal. Although the use of other features and other 
decoding methods can reduce the impact of artifacts, the mechanism 
of the impact of artifacts on EEG is still unknown, which still remains 
an open question.

4.2.2. Motion variability and complex motion
Most of the research in the field of limb trajectory reconstruction 

focuses on decoding some low-speed, simple motion trajectories, such 
as center outward movement. However, in daily life, we usually need 
to perform some tasks with complex trajectories. Conventional linear 
methods are not effective in decoding such tasks. Some studies have 
shown that there is a negative correlation between motion variability 
and trajectory reconstruction accuracy in the process of limb 
trajectory reconstruction. Bradberry et al. (2010) offer two possible 
explanations: from the point of view of machine learning, the reason 
that higher motion variability will lead to lower decoding accuracy is 
that the EEG-kinematics samples of complex motion have low 
similarity, while simpler movements lead to an increase in the number 
of similar training samples, and the training effect of the decoder is 
better. From the point of view of neuroscience, the subjects have 

different abilities to perform tasks without practice, so the intensity of 
the prior neural representation of the movement required is different. 
These different strengths may be directly related to the accuracy of the 
extracted representation.

We can use sensorimotor integration of multi-dimensional 
sensory stimulation as an instruction to execute or imagine complex 
motion trajectories (Li et al., 2022). Unlike the simple sensory cue 
instructions used in most previous work, sensorimotor integration 
combines multiple sensory commands such as vision and hearing, 
Mazurek et al. (2019) can deliver information to the subjects in a time 
series. They have found ERPs that differentiate the instruction used 
and the action performed in neural activity near motor cortex and 
posterior parietal cortex in the left hemisphere. Delivering complex 
sensor stimulation to be used as instructions for performing detailed 
actions, we  can accurately describe the changes in kinematics 
trajectory and EEG signal, which may be  helpful to improve the 
reconstruction accuracy.

For complex movements (e.g., stroke gait, gait in the elderly), the 
direct reconstruction may lead to a decrease in accuracy due to the 
irregular trajectory of the extremities. We  can use biomechanical 
models of the lower limb to capture the intrinsic joint angles 
performed, and indirectly reconstruct the end trajectory by 
reconstructing the angle, torque, and other parameters, which has 
been adopted in previous studies (Presacco et al., 2011, 2012; Mazurek 
et al., 2019; Mercado et al., 2021).

In order to improve the ability to decode complex motion 
trajectories, some nonlinear methods, such as KRR (Kim et  al., 
2014a,b), and NN (Korik et al., 2015), can significantly improve the 
decoding accuracy, but the computational overhead is also increased. 
In addition, why the nonlinear decoding method can produce better 
accuracy is also a problem to be studied. One explanation put forward 
by Kim et al. (2014b) is that we cannot represent all the trajectories 
needed under realistic conditions in the linear subspace of EEG 
activities. The kernel method has been proven to be very effective for 
motor control tasks in robots, which shows that motor control with 
complex trajectories can be better modeled using nonlinear models. 
Additionally, we cannot completely rule out the possibility that the 
nonlinear decoder uses non-neural signals that cannot be accessed by 
the linear decoder in the EEG data.

The realization of real-time and accurate decoding of complex 
trajectories is an important step in the practical application of 
MTP-BCI, which requires us to constantly optimize the performance 
and delay of decoding methods. Our understanding of the key 
characteristics of different trajectories and which neural signals are 
used by decoders is still very limited, which is a very important issue, 
which involves the mechanism of motion control and can provide 
guidance for us to design decoders. Solving this problem requires the 
joint efforts of more researchers.

4.2.3. Reconstruction in patients movements
Stroke has brought a heavy burden to patients, families, and 

society, and the recovery after stroke is usually incomplete. Improving 
the recovery and long-term outcomes after stroke has become an 
important challenge for clinical and BCI applications. Trajectory 
reconstruction of stroke is great significance for patients’ rehabilitation 
and assisting patients’ movement.

Di Marco et al. (2021) recruited stroke survivors and a sex-and 
age-matched control group, undergo a single training session with an 
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active exoskeleton for gait rehabilitation, and recorded EEG, MEG, 
and gait characteristics before and after training. By analyzing the EEG 
signals during gait, they found the negative deviation of low EEG 
frequency (0.1–3 Hz) before the start of exercise, that is, the motor-
related cortical potential (MRCP). This kind of biomarker can be used 
as a reliable predictor of lower limb movement, which can help to 
more accurately divide the EEG signals during trajectory 
reconstruction. Furthermore, the negative amplitude of MRCP is 
related to participants’ level of participation in performing exercise 
tasks, which can help evaluate the quality of EEG signals during 
trajectory reconstruction.

Alpha and beta rhythms are cortical rhythms that are mainly 
involved in exercise planning and control, and the movement disorder 
of stroke survivors is the main factor leading to disability. In Di Marco 
et al. (2021)'s experiment, the frequency band power density of the 
alpha and beta bands of the control subjects increased after training. 
This result inspired us to extract features from higher frequency band 
(> 8 Hz) signals for trajectory reconstruction or increase the 
proportion of cortical activity signals in sensory-motor areas during 
signal preprocessing (Section 2.2) and feature extraction (Section 2.3). 
Moreover, because the gait of stroke is usually complicated, the 
nonlinear decoding method in Section 3.3, such as KRR and NN, can 
be selected as the decoding method.

In addition, research shows that the effective connectivity between 
the stroked motor area and other areas degraded in patients when 
compared to healthy controls, and after rehabilitation training, the 
connectivity between the non-stroke motor area and other areas, 
especially the frontal lobe and parietal-occipital lobe, is enhanced 
(Sadiq et al., 2019). This discovery can not only guide us to choose 
suitable electrodes for trajectory reconstruction, but also provide a 
reliable biomarker for the rehabilitation effect.

As far as the author knows, there is no work to reconstruct the 
trajectory directly by using the EEG signals of stroke or other 
neurological populations. These clinical populations are the main 
users of MTP-BCI applications, and this work needs the supplement 
of BCI researchers.

4.2.4. Frequency band analysis
Determining the frequency band of motion information in EEG 

signals is an important issue in MTP-BCI research. Existing studies 
have drawn different conclusions on this issue, which mainly 
depends on the selected features and decoding methods. The 
commonly used features can be  divided into two categories, 
potential time series (PTS) and band power time series (BTS). If 
PTS model is selected, MLR decoding method can usually achieve 
the highest decoding accuracy in delta band. Many studies based 
on the Bradberry model (Bradberry et  al., 2010) confirm this, 
showing the special status of the delta band. However, this conflicts 
with a large body of literature on classical SMR-BCI, which reports 
the highest accuracy using the power values of mu and beta bands. 
However, the PTS model can not only be decoded in the delta band. 
Korik et al. (2015) use the PTS model based on a nonlinear feed-
forward neural network to achieve high decoding accuracy in most 
sub-gamma bands (< 40 Hz), which is consistent with the research 
in the field of SMR. If we choose the BTS model for executing and 
imagining motion, many studies have shown that it can achieve 
high decoding accuracy in the low gamma band of mu and beta 
(Korik et al., 2015, 2018), which is consistent with the research 

results in the SMR field, and the accuracy is significantly higher 
than that of the PTS model.

Using the linear regression model to adjust the two-time signals 
requires that the two signals span the same frequency range. Therefore, 
it has been proposed that the good decoding performance in the delta 
band is because the experimental paradigm usually involves periodic 
arm motion at low speed (0.5–2 Hz), rather than carrying motion 
information. The result of shuffling tests (Sosnik and Zur, 2020) 
negates this claim, but the decoding performance of the delta band is 
indeed highly modulated by motion planning and generation. For the 
potential signal in the intermediate band (mu, beta), because of its low 
SNR and the reconstruction process depending on a short time 
window, it is difficult to reconstruct the trajectory (Sosnik and Zur, 
2020). However, when using the BTS model, the decoding accuracy 
in mu and beta bands is significantly higher than that in delta bands. 
At present, the correlation of trajectory reconstruction obtained by 
BTS model is significantly higher than that of PTS model, so BTS 
model has become potential.

The EEG signal is nonlinear and non-Gaussian, so the 
mathematical relationship between EEG and limb motion will 
be complex. We still do not know why the BTS model has better 
performance, and the relationship between frequency band and 
motion is still an open problem worth exploring. We have achieved 
excellent decoding performance in these frequency bands, so we have 
reason to believe that the research in this area is promising.

4.2.5. Generalization performance
Improving the applicability of decoding methods to different users 

and the generalization performance in different environments is an 
important topic in MTP-BCI. Subjects need to receive real-time 
feedback from external devices when performing motion imagination 
or motion execution tasks to obtain the perception of the adaptability 
of the BCI system, and dynamically adjust the attention and control 
mode (for example, the speed of movement). The control effect often 
varies from person to person and requires a certain amount of 
training. In order to improve the generalization performance of the 
decoder, we expect to modify the regression weight through the EEG 
activity (Bradberry et  al., 2010). However, for other nonlinear 
methods, there are still gaps in this part of the research, looking 
forward to the exploration of more researchers.

4.2.6. Kinesthetic memory
Repeating the same action may lead to strong kinesthetic memory, 

in which subjects use joint muscle memory for motor imagination. 
Kinesthetic memory may lead to the evolution of separate and 
different neural patterns of different joint trajectories, which allows 
them to be  reconstructed. This explanation is consistent with our 
experience and has been supported by some research results (Sosnik 
and Zur, 2020). The accuracy of trajectory reconstruction enhanced 
by muscle memory is a very attractive conjecture, but its effectiveness 
and induction methods for people with motor disorders still need to 
be further studied.

4.2.7. Pathological damage
Most of the MTP-BCI studies were conducted on healthy 

subjects, but it is not easy to transfer the results of healthy subjects 
to patients with dyskinesia (due to stroke, neurological disease, or 
brain trauma), which is the target group of MTP-BCI. Because there 
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is no guarantee that the response of the normal BCI paradigm to 
motor intentions in healthy subjects’ brain activity will normally 
behave the same in patients with brain damage, it is not clear how 
best MTP-BCI uses the user’s EEG signal (Sosnik and Zheng, 2021). 
However, many studies (Gramfort et  al., 2013; Cantillo-Negrete 
et al., 2018; Shu et al., 2018) have shown that the results obtained 
from healthy subjects can be used to shorten the calibration phase 
of patients with motor impairment, and similar factors contribute to 
the decoding of motor imagination. Future work should test the 
applicability of the results to patients with exercise impairment and 
modify the model pertinently.

5. Conclusion

MTP-BCI is ideal for controlling the continuous motion of the 
external prosthesis. This study provides a comprehensive review of it, 
focusing on the process of trajectory reconstruction. The latest 
development and limitations of data pre-processing, feature 
extraction, and decoding methods are introduced, which provides a 
feasible reference for future research. In addition, we discuss the main 
findings of this study. Finally, we list the open problems and trends 
that need to be further studied from the aspects of artifact influence, 
complex trajectory reconstruction, frequency band range, 
generalization performance, kinesthetic memory, and pathological 
damage. Overall, we  believe that MTP-based BCI has strong 
application potential for disability assistance and rehabilitation for 
people with disabled individuals, and there is still much room for 
improvement in decoding complex tasks.
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