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Quality control (QC) for functional connectivity magnetic resonance imaging (FC-
MRI) is critical to ensure the validity of neuroimaging studies. Noise confounds 
are common in MRI data and, if not accounted for, may introduce biases in 
functional measures affecting the validity, replicability, and interpretation of FC-
MRI study results. Although FC-MRI analysis rests on the assumption of adequate 
data processing, QC is underutilized and not systematically reported. Here, 
we describe a quality control pipeline for the visual and automated evaluation 
of MRI data implemented as part of the CONN toolbox. We  analyzed publicly 
available resting state MRI data (N = 139 from 7 MRI sites) from the FMRI Open 
QC Project. Preprocessing steps included realignment, unwarp, normalization, 
segmentation, outlier identification, and smoothing. Data denoising was 
performed based on the combination of scrubbing, motion regression, and 
aCompCor – a principal component characterization of noise from minimally 
eroded masks of white matter and of cerebrospinal fluid tissues. Participant-level 
QC procedures included visual inspection of raw-level data and of representative 
images after each preprocessing step for each run, as well as the computation of 
automated descriptive QC measures such as average framewise displacement, 
average global signal change, prevalence of outlier scans, MNI to anatomical and 
functional overlap, anatomical to functional overlap, residual BOLD timeseries 
variability, effective degrees of freedom, and global correlation strength. Dataset-
level QC procedures included the evaluation of inter-subject variability in the 
distributions of edge connectivity in a 1,000-node graph (FC distribution displays), 
and the estimation of residual associations across participants between functional 
connectivity strength and potential noise indicators such as participant’s head 
motion and prevalence of outlier scans (QC-FC analyses). QC procedures are 
demonstrated on the reference dataset with an emphasis on visualization, and 
general recommendations for best practices are discussed in the context of 
functional connectivity and other fMRI analysis. We hope this work contributes 
toward the dissemination and standardization of QC testing performance 
reporting among peers and in scientific journals.
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1. Introduction

Since its inception, neuroimaging has escalated our 
understanding of the brain in both health and disease. Functional 
magnetic resonance imaging (fMRI) is among the most common 
neuroimaging techniques, as it allows us to approximate neural 
activity in vivo and non-invasively by measuring the blood 
oxygenation level-dependent (BOLD) signal. Brain functional 
connectivity (FC), or the temporal coupling of BOLD signals from 
anatomically distant regions, is widely used to probe neural 
functioning, neurodiversity, and their relationship with behavior 
during explicit or implicit (i.e., at rest) tasks. However, the BOLD 
signal is noisy and only marginally representative of neural activity. 
It is generated from complex interactions between neuronal, 
metabolic, cardiac, vigilance, and other physiological processes 
(Bianciardi et al., 2009; Liu, 2016; Liu and Falahpour, 2020) and is 
commonly affected by machine-related and participant-specific 
characteristics. In many fMRI analyses, these noise sources act as 
nuisance effects, increasing variability of the BOLD signal and 
ultimately reducing the power and replicability of fMRI analysis 
results. In functional connectivity analyses, their effect is 
considerably more damaging, as many of these noise sources are 
highly correlated across different areas and will bias functional 
connectivity estimates, acting as confounder effects and affecting 
the validity and interpretation of FC-MRI analysis results.

Commonly, anatomical and functional data undergo a series of 
transformations aimed at minimizing the effects of these well-known 
sources of BOLD signal variability prior to statistical analysis. 
Functional and anatomical data are usually first preprocessed with a 
set of steps addressing mainly spatial properties of the data that are a 
direct consequence of the specificities of the fMRI acquisition 
procedure. Specifically, preprocessing focuses on intra-participant 
coregistration, e.g., compensating for head motion across different 
functional scans, correcting for inter-slice temporal differences and 
magnetic susceptibility distortions, when appropriate, as well as inter-
participant coregistration, e.g., by spatially projecting each subject’s 
anatomy to a common reference space. However, despite these 
common preprocessing steps, functional timeseries after 
preprocessing usually still contain substantial variability associated 
with non-neural sources, including cardiac, respiratory, and residual 
subject motion effects, limiting the ability to effectively use these data 
for statistical analyses without additional control or correction of 
these factors. For these reasons, and particularly in the context of 
functional connectivity analyses, preprocessed functional timeseries 
are often usually then denoised by a combination of band-pass 
filtering and regression of temporal components characterizing these 
additional noise sources. Many effective alternatives have been 
suggested to achieve optimal preprocessing (Friston et  al., 1996; 
Murphy et al., 2009; Chai et al., 2012; Hallquist et al., 2013; Power 
et al., 2014; Ciric et al., 2017) and denoising performance (Parkes 
et al., 2018; Maknojia et al., 2019; Tong et al., 2019; De Blasi et al., 
2020; Golestani and Chen, 2022; for a review, see Caballero-Gaudes 
and Reynolds, 2017). Regardless of the specific pipelines applied, 
preprocessing and denoising have been shown to successfully reduce 
the effect of known nuisance factors.

However, the beneficial effect of preprocessing and denoising 
depends on the ability of each step to successfully achieve its intended 
goal. Quality control (QC) procedures are designed to evaluate the 

quality of the data and to detect potential problems either in the 
original data or arising from failed or insufficient preprocessing and 
denoising steps. Quality control is an integral part of preparing fMRI 
data for statistical analyses, as without it there is no meaningful way 
to avoid problems in the data from affecting statistical analyses, 
leading to results that may fail to replicate, may be disproportionately 
influenced by the presence of outliers, or may be  confounded by 
physiological or other non-neural sources of variability among 
participants. While data quality is an agreed-upon essential element 
for fMRI analysis, what constitutes “good” data and “appropriate” QC 
procedures are still open questions. Perhaps owing to the complexity 
of assessing data quality in the absence of a ground truth, QC is often 
underappreciated and not systematically reported. Yet, QC and QC 
reporting are crucial to data interpretation and needed to develop 
standardized guidelines (Taylor et al., 2022).

Several studies have addressed the topic of MRI data quality, 
whether from the perspective of quality assurance (QA) or from a QC 
point of view. Although interwoven, QA and QC are complementary 
in that QA is usually a process-oriented approach aimed at preventing 
issues (e.g., Friedman and Glover, 2006; Glover et al., 2012; Liu et al., 
2015; for a review see Lu et al., 2019), whereas QC is output-oriented 
and evaluates the quality of the images resulting from said process. As 
such, even an optimal QA does not address the objectives of QC 
testing. Recent efforts from the field have resulted in the proliferation 
of QC tools and protocols for the evaluation of specific analytical step 
(Backhausen et al., 2016; Storelli et al., 2019; Benhajali et al., 2020), 
pipelines-specific outputs (Griffanti et al., 2017; Raamana et al., 2020; 
Chou et al., 2022), and raw-level data [e.g., MRIQC (Esteban et al., 
2017) and pyfMRIqc (Williams and Lindner, 2020)]. Additionally, 
many pipelines have been developed to preprocess (e.g., fMRIprep; 
Esteban et al., 2019), denoise (e.g., Tedana; DuPre et al., 2021), or 
generally analyze fMRI data from specific consortia [e.g., ABCD 
(Hagler et al., 2019), UK Biobank (Alfaro-Almagro et al., 2018), HCP 
(Marcus et  al., 2013), Configurable Pipeline for the Analysis of 
Connectomes C-PAC1 (Craddock et al., 2013; Sikka et al., 2014)]. 
While principally focused on data analysis, these tools also strongly 
support automatic and visual QC, and effectively aid the identification 
of issues in the data and during data analysis. These works, together 
with our and the other papers presented in this special issue (Taylor 
et al., 2022), help build a rich diversity of approaches and perspectives. 
Each provides unique contributions which help expand the field and 
build a consensus on best practices.

In this study, we describe the quality control pipeline for volume-
based connectivity analysis using the CONN toolbox (Whitfield-
Gabrieli and Nieto-Castanon, 2012; Nieto-Castanon, 2020). 
We analyzed publicly available resting-state data (n = 139) from the 
FMRI Open QC Project (Taylor et  al., 2022) to demonstrate 
participant-level and group-level QC procedures in an integrated 
framework with data preprocessing and denoising. Visual and 
automated QC procedures were demonstrated for the assessment of 
raw-level, preprocessed, and denoised data. Finally, we proposed a QC 
workflow based on the combination of visual and automated QC 
measures. Ultimately, we  hope this work contributes toward the 
dissemination and standardization of QC testing and reporting.

1 https://www.nitrc.org/projects/cpac/
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2. Materials

2.1. Dataset overview

We analyzed data from the FMRI Open QC Project (Taylor et al., 
2022) fmri-open-qc-rest collection v1.0.0, which combined 
subsamples of public data-packages including ABIDE and ABIDE-II 
(Di Martino et al., 2013), the Functional Connectome Project (Biswal 
et al., 2010), and OpenNeuro (Markiewicz et al., 2021). Data was 
accessed as already transformed nifti and json files curated to be in 
BIDS format v1.6.0 (Gorgolewski et al., 2016).

The fmri-open-qc-rest collection included (f)MRI data from 139 
participants acquired with 3.0T MRI scanners from seven sites. Each 
participant had available data corresponding to one MRI scanning 
session when one anatomical image and one or two echo-planar 
imaging (EPI) resting state functional BOLD runs were collected.

2.2. Software information

MRI data processing and statistical analyses were performed using 
the CONN toolbox (RRID:SCR_009550) version 22.a (Nieto-
Castanon and Whitfield-Gabrieli, 2022) and SPM version 12 release 
7,771 (Wellcome Department of Imaging Neuroscience, UCL, 
London, United Kingdom) in MATLAB R2022a (The MathWorks 
Inc., Natick, MA, United Kingdom).

3. Methods

Code and scripts required to replicate the analysis presented in 
this manuscript can be found at https://github.com/alfnie/conn.

3.1. Preprocessing

Functional and anatomical images were preprocessed using the 
default minimal preprocessing pipeline in CONN (Nieto-Castanon, 
2020, 2022), represented in Figure  1 (top). This pipeline includes 
functional realignment and unwarp (Andersson et  al., 2001) for 
intermodality coregistration of all scans to the first scan, slice-timing 
correction (STC; Henson et al., 1999) compensating for acquisition 
time differences among different slices, outlier detection (Whitfield-
Gabrieli et al., 2011) identifying individual scans with suprathreshold 
framewise displacement (FD) and/or global signal change (GSC) 
values, direct functional normalization (Calhoun et  al., 2017) 
projecting functional images into standard Montreal Neurological 
Institute 152 (MNI) reference space resampled to 2 mm isotropic 
voxels, and spatial smoothing with a 8 mm full width at half maximum 
Gaussian kernel. Anatomical data preprocessing comprised direct 
segmentation and normalization (Ashburner and Friston, 2005) which 
iteratively performed tissue segmentation into six tissue classes, 
including gray matter (GM), white matter (WM), and cerebrospinal 
fluid (CSF) using SPM12 posterior tissue probability maps, and 
normalization to IXI-549 MNI space, resampling the output 
anatomical images to 1 mm isotropic voxels.

Several automated measures were extracted as run-level timeseries 
(i.e., as 1st-level covariates) at various stages of preprocessing, 

following Nieto-Castanon (2020, 2022). Table  1 (QC timeseries 
section) includes a summary of each of these QC timeseries 
definitions, and Figure 1 provides a schematic representation of all 
preprocessing steps and associated QC timeseries. The QC timeseries 
named realignment is estimated during the realignment and unwarp 
preprocessing step, and it represents the estimated participant 
in-scanner head motion. The individual parameters in this timeseries 
represent the degree of relative translation (three parameters, in mm 
units) and rotations (three parameters, in radians) of the head at each 
individual scan, when compared to its position at the beginning of the 
functional run. Following SPM12 convention, rotation parameters are 
defined using the real word-space point (coordinate 0,0,0) as the 
center of rotation. The QC timeseries named Global Signal Change 
(GSC) and Framewise Displacement (FD) are computed during the 
outlier detection preprocessing step. GSC timeseries are defined at each 
scan as the absolute value of the scan-to-scan change in global BOLD 
signal, using SPM global BOLD signal definition. GSC timeseries are 
then scaled to standard units within each run by subtracting their 
median value and dividing by 0.74 times their interquartile range 
(Whitfield-Gabrieli et  al., 2011). FD timeseries are defined as the 
maximum change in the position of six points placed at the centers of 
each face in a 140 × 180 × 115 mm bounding box around the brain and 
undergoing the same rotations and translations as the participant’s 
head. From these measures, outlier scans are identified as the scans 
with FD values above 0.5 mm and/or GSC values above 3 standard 
deviations (Whitfield-Gabrieli et al., 2011), with the resulting list of 
potential outlier scans summarized in the QC timeseries 
named scrubbing.

In addition to being useful on their own to characterize image and 
subject properties during data acquisition in the scanner, relevant 
statistics of these 1st-level measures are also used to define additional 
summary measures, as shown in Table 1 (QC summary measures 
section) and discussed in section 3.3.2.

3.2. Denoising

In order to minimize the presence of non-neural noise sources, 
including cardiac, respiratory, and residual subject motion effects in 
the BOLD signal, functional data were denoised with the CONN fMRI 
default denoising pipeline (Nieto-Castanon, 2020). This pipeline 
comprises three main sequential steps (Figure 1, bottom) seeking to 
characterize noise components in the BOLD signal (noise components 
extraction) and minimize their effect on the BOLD timeseries (linear 
regression and temporal band-pass filtering steps). First, participant-
specific minimally eroded WM and CSF masks were generated using 
a one-voxel binary 3D erosion of the corresponding tissue masks 
derived from each subject’s anatomical segmentation. The QC 
timeseries named WM and CSF (Table 1) are defined as the principal 
components of the BOLD signal extracted from these minimally 
eroded masks, following the anatomical aCompCor method (Behzadi 
et al., 2007), which has been shown to minimize the effect of nuisance 
confounds (Chai et al., 2012). Principal components from WM and 
CSF areas were computed after discounting motion and outlier effects 
(within a space orthogonal to the realignment and scrubbing 
QC timeseries).

Next, ordinary least squares regression removed from each voxel 
BOLD timeseries the effect of all identified noise components, 
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including 5 components from white matter (from the QC timeseries 
WM), 5 components from CSF (from the QC timeseries CSF), 12 
estimated participant-motion parameters (6 parameters from the QC 
timeseries realignment and their first order temporal derivatives), 
participant-specific outlier scans (from the QC timeseries scrubbing), 
as well as the effect of session and its first order derivative convolved 
with the canonical hemodynamic response function (aiming to 
minimize the influence of transients in the first few scans of each run), 
and constant and linear session effects (aiming to minimize the 
influence of linear trends in each run). Lastly, temporal band-pass 
filtering (0.008–0.09 HZ) was applied to each run individually 
(Hallquist et al., 2013) in order to focus on slowly varying BOLD 
signal fluctuations.

3.3. CONN quality control pipeline

QC of raw-level, preprocessed, and denoised data was carried out 
following CONN quality control pipeline, building off from Nieto-
Castanon (2020, 2022) and summarized in Figure 2.

3.3.1. Quality control of raw-level data
Raw-level functional runs (all slices and all scans) and anatomical 

images (all slices) were visually inspected using multislice interactive 
displays of each participant’s data, as well as a combined montage of a 
single slice across all participants. We also inspected information from 
json sidecar files and header of nifti files to gather information about 

image resolution and scanner acquisition parameters. The goal of this 
step was to familiarize ourselves with the data, identify potential 
sources of heterogeneity, possible incongruencies among different 
sites or subjects, and inspect the data for potential outliers or artifacts 
that may require additional consideration during preprocessing.

3.3.2. Quality control of preprocessed data
Plots of representative brain slices and automated QC measures 

were generated for each individual subject and functional run to 
visualize the outputs of preprocessing, identify potential failures of 
functional and anatomical preprocessing steps, or otherwise confirm 
that between-run spatial heterogeneity across subjects and runs had 
been in fact minimized as a result of these steps.

Visual QC included the assessment of the accuracy of functional 
normalization through the inspection of plots rendering the mean 
BOLD signal across all scans of the normalized functional data for each 
participant overlaid onto the 25% boundaries of the gray matter a priori 
probability maps from SPM’s IXI-549 MNI-space template. Similarly, 
the accuracy of structural normalization was assessed through the 
inspection of plots displaying each participant’s normalized anatomical 
images overlaid onto the same gray matter boundaries. Segmentation 
and anatomical to functional alignment were assessed through plots 
overlaying the boundaries of each participant’s anatomical GM masks 
onto the normalized anatomical or functional data.

The presence of potential residual artifacts in functional 
timeseries was reviewed based on plots displaying a movie of the 
central axial slice (MNI z = 0 mm) of the functional data over time 

FIGURE 1

Schematic of preprocessing and denoising analysis flow and automated QC measures. The figure illustrates the CONN’s minimal default preprocessing 
and denoising pipelines and the automated quality control measures generated from each step. Automated QC measures were considered Covariates 
(1st-level) if they represented run-specific timeseries (i.e., one value per scan) or Covariates (2nd-level) if they were the collection of aggregated within-
run estimates (i.e., one value per run). BOLD, blood oxygen level dependent; CSF, cerebrospinal fluid; DOF, degrees of freedom; FD, framewise 
displacement; GM, gray matter; GCOR, global correlation; GS, global signal; HRF, hemodynamic response function; QC, quality control; WM, white 
matter. This figure was adapted with permission from Nieto-Castanon (2020), Copyright© 2020 Alfonso Nieto-Castanon.
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TABLE 1 Summary of automated quality control measures.

QC timeseries (1st-level covariates)

GSchange The global signal change timeseries is computed as the absolute value of the scan-to-scan 

change in global BOLD signal, computed separately at each scan/timepoint and scaled to 

standard units within each run.

0 < x < ∞. Higher values indicate higher sudden 

variability in signal intensity.

FD The framewise displacement timeseries is computed as the maximum change in the position 

of six control points placed at the center of a bounding box around the brain, computed 

separately at each scan/timepoint.

0 < x < ∞. Higher values indicate higher sudden 

displacements in head position.

Scrubbing The scrubbing covariate contains one separate timeseries per identified outlier scan. Each of 

these timeseries contain a single 1-value at the identified scan, and 0-values at all other 

timepoints. They are computed by thresholding GSchange and FD at the desired values.

x ∈ {0,1}. 1 indicates a scan identified as a potential 

outlier

Realignment The realignment covariate contains six timeseries, three characterizing head translations 

along the x/y/z directions in mm units, and three characterizing rotations around the x/y/z 

axes in radians.

-∞ < x < ∞. Higher absolute values indicate larger relative 

motion between a scan compared to the first scan within 

the same run

WM The WM covariate contains multiple timeseries, characterizing the principal components of 

the BOLD signal within white matter areas, sorted by decreasing variance.

-∞ < x < ∞. Higher absolute values indicate larger 

departures from the average BOLD signal within WM

CSF The CSF covariate contains multiple timeseries, characterizing the principal components of 

the BOLD signal within cerebrospinal fluid tissue areas, sorted by decreasing variance.

-∞ < x < ∞. Higher absolute values indicate larger 

departures from the average BOLD signal within CSF

QC summary measures (2nd-level covariates)

MaxMotion The maximum of motion is the maximum value of the FD timeserie from each run, 

calculated considering all original scans.

0 < x < ∞. Higher values indicate more extreme motion 

spikes.

InvalidScans Invalid scans is the number of scans identified as outliers during outlier detection based on 

scan-to-scan GS and framewise displacement change.

0 < x < total number of scans. Higher values indicate 

higher presence of potential outlier scans.

ValidScans Valid scans is the number of valid or non-outlier scans. 0 < x < total number of scans. Lower values indicate fewer 

surviving scans.

PVS The proportion of valid scans is the ratio between non-outlier scans to all scans, representing 

a normalized measure of valid scans in the presence of potential differences in scanning 

lengths.

0 < x < 1. Lower values indicate higher presence of 

potential outlier scans.

MeanGSchange The mean global signal change is the mean value of GSchange timeseries, calculated by 

aggregating GSchange across non-outlier scans only.

-∞ < x < ∞. Higher values indicate higher residual 

variability in the global signal after scrubbing

MeanMotion The mean motion is the mean value of the FD timeseries, calculated by aggregating FD 

across non-outlier scans only.

0 < x < ∞. Higher values indicate higher residual motion 

after scrubbing.

NORMfunc The normalized space to functional accuracy is the Dice similarity coefficient between the 

IXI-549 MNI-space gray matter tissue mask thresholded at a 25% probability level and the 

binarized GM masks derived from the functional data and thresholded at a level that 

produced the same number of suprathreshold voxels as in the MNI-space mask.

0 < x < 1. Lower values indicate a worse normalization of 

functional data.

NORManat The normalized space to anatomical accuracy is calculated similarly to NORMfunc but it 

compares the IXI-549 gray matter mask to the binarized GM mask derived from the 

anatomical data instead.

0 < x < 1. Lower values represent worse normalization of 

anatomical data.

AFO The anatomical-to-functional overlap is the Dice similarity coefficient between the 

anatomical gray matter mask, thresholded at a 50% probability level, and the functional gray 

matter mask, thresholded at a level that resulted in the same number of suprathreshold 

voxels.

0 < x < 1. Lower values represent a worse inter-modality 

coregistration.

tissue_vol The gray matter, white matter, or cerebrospinal fluid tissue volumes is the count of voxels 

with tissue-specific probability >50% from participant-specific segmented anatomical tissue 

ROIs.

0 < x < ∞. Extreme values indicate a combination of 

individual anatomical differences and normalization 

performance.

tissue_eroded_

vol

The tissue eroded volume is the count of voxels in the tissue-specific ROIS resulting from 

anatomical segmentation after a 1-voxel erosion procedure.

0 < x < ∞. Extreme values indicate a combination of 

individual anatomical differences and normalization 

performance.

DOF The effective degrees of freedom are calculated as the total number of scans minus the 

number of regressors involved in the denoising’s linear regression step, multiplied by the 

fraction of the Nyquist frequency covered by denoising’s band-pass frequency filter.

-∞ < x < all original scans. Lower values indicate 

potential lack of precision when estimating modeled 

effects in the BOLD signal.

(Continued)
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(i.e., over all scans). This movie was rendered above the timeseries 
traces of (i) the GSC QC timeseries representing scan-to-scan 
changes in the global BOLD signal, (ii) the FD QC timeseries, 
characterizing subject motion, and (iii) the outlier QC timeseries, 
characterizing scans identified as potential outliers. The movies 
were reviewed to visually assess the amount of motion and imaging 
artifacts in the data, and identify potential artifacts in the functional 
data which may not be  apparent in the motion, GSC, or 
outlier timeseries.

Several automated QC summary measures were generated based 
on preprocessing outputs and related QC timeseries. These measures 
are described in Table 1 (QC summary measures section). Some of 
these measures provided an agnostic description of features of the 
original functional data, including the maximum value of GSC 
(MaxGSchange) and FD (MaxMotion). Since, often, these worst-
case instances have already been identified as potential outlier scans, 
these measures inform about the state of the data prior to 
preprocessing. Other measures such as MeanGSchange or 
MeanMotion represent average GSC or FD values limited only to 
valid (non-outlier) scans, so they can be  considered as more 
informative about the state of the data after preprocessing. Other 
useful statistics include the total number of run-specific outlier scans 
(InvalidScans), the number of non-outlier scans (ValidScans), and 
the proportion of valid scans (PVS), providing several indicators of 
the overall quality and amount of valid data within each individual 
run for each subject. Last, and aiming to directly quantify the 
performance of spatial normalization and its indirect effect on inter-
modality coregistration, the measures NORMfunc (functional 
normalization) and NORManat (anatomical normalization) measured 
the similarity between the gray matter mask in the normalized data 
and in a reference MNI atlas. Relatedly, AFO (anatomical to 
functional overlap) measured the similarity between gray matter 
masks in functional and anatomical images, evaluating the accuracy 
of inter-modality coregistration.

Participant-level denoising exclusion criteria included cases that 
were considered extreme in either the visual QC step, or in the 
automated QC summary measures. For automated QC summary 
measures, extreme values were considered those above the threshold 
Q3 + 3 IQR (or below Q1–3 IQR, for those cases when extreme low 
values were indicative of problems in the data), where Q1 and Q3 

represent, respectively, the first and third quartiles of the distribution 
of a measure across the entire dataset, and IQR represents their 
difference (inter-quartile range).

3.3.3. Quality control of denoised data
QC of denoised data aimed at evaluating the quality of the 

functional data after denoising. Since denoising is the last step when 
preparing the data before computing functional connectivity measures 
or performing other statistical analyses, quality control measures of 
the denoised data provide a way to globally evaluate the suitability of 
the resulting fMRI data for functional connectivity or other 
statistical analyses.

Participant-level visual QC aimed at evaluating possible 
patterns or other features that may be visible in the BOLD signal 
timeseries after denoising and which may be indicative of a possibly 
too liberal or too conservative denoising strategy. In particular, 
we reviewed run-specific plots rendering carpetplots (Power, 2017) 
of fully preprocessed BOLD timeseries before and after denoising, 
together with the traces of GSC, FD, and outliers timeseries. These 
were inspected to confirm that sudden and synchronized variations 
in signal intensity had been flagged as outliers, and that there are 
no visible residual large-scale patterns in the BOLD signal 
timeseries, which could indicate the persistence of global or 
widespread noise sources (for example, respiratory-related motion 
or artifacts can appear as patterns with frequency around 0.3 Hz). 
Carpetplots carry a rich set of information about the timeseries 
which, in combination with other indicators of potential problems 
in the data, allow researchers to hypothesize potential sources of 
noise that may be  prevalent in the data, guiding the search of 
possible solutions.

Several QC summary measures were computed characterizing 
properties of the BOLD signal after denoising (Figure  1). These 
measures are described in Table 1 (QC summary measures section). 
The QC measure DOF computes the effective degrees of freedom of 
the BOLD timeseries after denoising. Lower values (close to zero or 
negative) indicate that denoising is overly aggressive for the number 
of functional scans available, and that noise correction comes at the 
expense of loss of meaningful variability severely impacting our ability 
to accurately estimate any model parameters of interest from the 
BOLD timeseries, such as functional connectivity measures or 

TABLE 1 (Continued)

QC summary measures (2nd-level covariates)

BOLDstd The BOLD standard deviation is the temporal standard deviation of the BOLD signal, after 

grand-mean scaling to 100 across the entire brain and denoising, averaged across all runs 

and all voxels in the analysis mask.

0 < x < ∞. High values may indicate the presence of 

potential noise, while values close to 0 may indicate lack 

of retained signal.

GCOR The mean global correlation (Saad et al., 2013) is the average of Pearson’s r correlation 

coefficients between the denoised BOLD timeseries of all pairs of voxels within the analysis 

mask.

-∞ < x < ∞. High absolute values may indicate the 

presence of residual noise sources in the BOLD signal.

QC-FC % Quality Control to Functional Connectivity distributions (Ciric et al., 2017) represent the 

observed distribution of correlations across participants between individual QC measures 

and functional connectivity strength (edges in a fixed graph of 1,000 random voxels within 

the MNI-space gray matter template mask). QC-FC % match level represents the distance 

between these observed distributions and those that could be expected by chance, as 

computed using permutation analyses.

0% < x < 100%. Values above 95% indicate negligible 

modulations associated with nuisance factors in the 

correlation structure of the BOLD signal.

All quality control measures are automatically calculated by CONN (v22.a) during data preprocessing and denoising, but all could also be derived post-hoc from data fully or partially 
processed by other software.
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task-related responses. The QC measure BOLDstd characterizes the 
stability of the BOLD signal after denoising. BOLDstd is a measure 
similar to MeanGSchange but computed from the data after denoising. 
It is inversely related to the BOLD signal temporal signal-to-noise 
ratio and, similarly to GCOR, high values are often indicative of the 
presence of potential noise sources in the residual fMRI data, although 
it needs to be interpreted with care as unusually low values can also 
indicate low effective degrees of freedom associated with the loss of 
meaningful variability from the BOLD timeseries. The QC measure 
GCOR (Global Correlation; Saad et al., 2013) represents the mean of 
functional connectivity measures (BOLD signal bivariate correlation 
coefficients) among all voxels, and it has been proposed as an effective 
control covariate for group-level analyses. GCOR often takes small 
positive values, caused by local correlations resulting in positive 
skewness in the distribution of functional connectivity values. High 
values can indicate an insufficient denoising strategy, and negative 
values can result from overly aggressive denoising, global signal 
regression, or biased-inducing denoising strategies.

Additional QC procedures and measures were derived from the 
distribution of functional connectivity (FC) values, computed as 
Pearson’s r correlation coefficients between the BOLD signal 
timeseries after denoising among all pairs from a fixed set of 1,000 
random voxels within the MNI-space gray matter template mask, in 

order to evaluate a relatively dense sample of connections from the 
whole-brain connectome.

Visual inspection of these distributions allowed us to evaluate 
the relative presence of residual noise sources in the BOLD 
timeseries of each individual participant, which tend to shift the 
entire FC distribution toward positive values, altering the FC 
distribution center (representing the value GCOR) and its overall 
shape in a manner that is highly variable across different 
participants and across different runs. In comparison, the relative 
absence of noise sources is expressed as FC distributions that appear 
relatively centered (with a small positive distribution mean, and a 
distribution mode approximately at zero) and similar across 
different runs and participants.

Participant-level exclusion criteria included severe departures 
from expected FD distribution shapes after denoising – that is, with 
significantly skewed, shifted, flat, or bimodal distributions after 
denoising – as well as the presence of extreme outlier values in any of 
the computed QC measures (using the same Q3 + 3 IQR or Q1–3 IQR 
thresholds as before).

Last, the QC measure QC-FC % (percent match in QC-FC 
correlations) represents an individual quality control measure 
characterizing a property of the entire dataset, rather than properties 
of individual participants or runs. This measure is also computed from 

FIGURE 2

Flowchart of quality control pipeline.
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these same distributions of FC values (one FC distribution per 
participant), but this time focusing on QC-FC inter-subject 
correlations (Ciric et al., 2017), evaluating whether changes in the 
spatial correlation structure of the BOLD data covaried with 
participant-level quality control measures. In particular, using the 
same sample of connections from the whole-brain connectome 
estimated in the FC distribution step above, we computed the bivariate 
Pearson’s r correlation coefficients across participants between each of 
the estimated connectivity values and representative QC measures 
(MeanMotion, InvalidScans, and PVS). The resulting distributions of 
QC-FC correlations were evaluated to detect systematic biases by 
computing the distributional distance between these distributions and 
those expected by chance (in the absence of QC-FC correlations, as 
estimated using permutation analyses). QC-FC % values were used to 
evaluate whether the chosen combination of preprocessing and 
denoising steps, as well as the choice of thresholds for participant-level 
exclusion criteria and other QA procedures resulted in satisfactory 
fMRI data quality levels, and to choose between possible alternatives 
when necessary. Match levels above 95% were considered indicative 
of negligible modulations in the BOLD signal correlation structure, 
while lower values are considered indicative of the persistence of 
potential problems in the denoised data, requiring either alternative 
preprocessing and denoising choices or more severe participant 
exclusion criteria (Figure 2).

4. Results

4.1. Participants and data characteristics

Information reported here derive from investigating the nifti files 
characteristics directly or from their sidecar json files, which had been 
generated prior to release via unspecified procedures (n = 124) or via 
dcm2niix (Li et al., 2016) v1.0.20170314 (n = 15).

In this study, we analyzed resting state and anatomical MRI data 
from 139 participants acquired from 7 sites, including 151 functional 
runs and 139 anatomical images (mprage, 3D TFE, or unspecified). All 
sites contributed 20 participants except for site #3 (n = 16) and site #4 
(n = 23). Throughout the manuscript, individual participants are referred 
to using both the collection’s ID number (e.g., sub-___) where the first 
digit reflects the acquisition site of origin, and using ascending numbers 
(e.g., S___) representing participants ordered from site #1 to site #7.

The fmri-open-qc-rest collection was characterized by data with 
heterogeneous image resolution, scanner acquisition parameters, and 
experimental design. A detailed characterization of data features 
broken down by acquisition site is reported in 
Supplementary Tables S1, S2 for anatomical images, and in Table 2 for 
functional data.

Gathered information about functional data suggested that data 
were acquired by Siemens or Philips MRI scanners of various models 
(Trio Tim, Prisma Fit, Verio and Magnetom Trio, or Achieva or 
Achieva DS), using head coils with 12, 32, or unspecified number of 
channels. Data sampling differed on temporal (2- or 2.5-s TR) and 
spatial parameters, such as voxel dimensions (ranging from 
1.6 × 1.6 × 3.1 to 4 mm isotropic) and number of acquired slices 
(between 32 and 45). No information was available regarding whether 
any online processing was performed during or after acquisition, for 
example prospective motion correction or denoising. By design, the 

experience of the participants was also different. Total time spent for 
the functional BOLD imaging acquisition ranged between 288 and 
1,810 s (approximately between 5 and 30 min) which was acquired 
either in one continuous run or split into two (n = 12). During the 
functional data acquisition, participants were exposed to different 
visual stimuli (black screen with crosshair, eyes closed, or unspecified) 
and instructions (rest, relax and think of nothing particular, 
or unspecified).

Information incongruencies were encountered for sub-506 (S85) 
and sub-507 (S86) functional data, wherein 39 slice timings were 
reported in the sidecar json files but only 35 slices were available as per 
the nifti header information. This may suggest that these functional 
runs were not in a raw-level form or that the json files included 
faulty information.

There was no available information regarding several elements 
which had been shown to carry meaningful individual differences and 
which were relevant for data interpretation. No information was 
available regarding participant demographics (age, sex, medical and 
mental health history, mental and physical status at time of acquisition, 
psychoactive medication, etc.), participant inclusion and exclusion 
criteria, informed consent and assent. For example, the task 
description of sidecar json files of site #1 could be  interpreted as 
suggesting that participants might include children who were asked 
to withhold taking psychostimulants the day prior to and the day of 
scanning; and the procedure description reported from the json files 
of site #5 could imply that participants were recruited under a study 
of brain traumas. Additionally, no information was available about the 
study paradigm, study design, or presence of experimental 
manipulation prior to or during data acquisition. Relatedly, it was not 
possible to determine whether the same individual was scanned in 
different sites or longitudinally, or if data were deemed unusable by 
the experimenters for any reason.

Critically, we  did not know whether all or any of the above 
elements covaried with site and, consequently, whether potential inter-
site variability encompassed meaningful individual differences in 
addition to heterogeneity associated with differences in scanner or 
acquisition details. Given the information available, or lack thereof, 
site was identified as a control variable. We  cannot rule out that 
differences among sites may include meaningful factors, such as 
sample’s age, health or medical status, or study design. These may 
legitimately affect BOLD signal properties of interest, including 
functional connectivity measures, in a manner that cannot 
be effectively separated from other sources of differences among sites, 
such as those resulting from differences between MR acquisition 
parameters or noise sources. Because of this, whenever possible 
we limited analyses of intersubject variability to focus only on within-
site analyses, explicitly disregarding variability across sites due to the 
unavoidable issues when attempting to interpret sources of inter-
site variability.

4.2. Raw-level data QC

Visual QC of the functional data identified different types of 
artifacts. We noticed artifacts appearing as spatial susceptibility 
distortion or signal drop out (e.g., sub-304 [S44]; Figure  3A), 
ghosting/aliasing (e.g., sub-717 [S136]; Figure  3B), signal 
inhomogeneity localized in regions of high tissue contrast [e.g., 
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sub-314 (S54); Figure  3C], of unspecified nature, or their 
combination [e.g., sub-409 (S65); Figure 3D]. For a complete list 
of identified artifacts broken down by participant and modality see 
Supplementary Table S3.

Incorrect orientation of functional data was encountered for 
sub-518 (S97) and sub-519 (S98), which appeared upside-down. 
We considered to correct it by either applying a 180° rotation along 
the y-axis (i.e., preserving the relative position between the x, y, z axes) 
or a non-rigid reflection along the z-axis (i.e., flipping the data via a x, 
y, −z axis transformation which effectively would swap the signal 
between the left and right hemispheres). We opted to flip the data in 
both instances, based on the better visual match achieved between the 
flipped functional data and its respective anatomical data 
(Supplementary Figure S1).

During visual QC of anatomical data, we noticed few artifacts. 
Several participants from site #5 showed potential signs of past 
surgeries, as identified by localized darker areas (appearing as dots) 
traveling through contiguous slices reaching from the cortex to 
subcortical medial areas [e.g., sub-509 (S88); Figure 4A, z = 4]. Often, 
these artifacts were localized in areas which appear to correspond to 
artifacts in the participant’s functional data (Supplementary Figure S2). 
Sub-509 (S88) showed areas of intensity inhomogeneities bilaterally 
(Figure 4A, y = 5 and x = −35) which appeared as bands in the y axis, 
and large asymmetrical lateral ventricles (Figure 4A, x = −17). Other 
cases of potential anatomical variations or artifactual signal intensity 
were encountered including in sub-719 (S138; Figure 4B). Few cases 
of ringing-like patterns more prominently visible along the z-axis were 
noticed in a sub-218 (S38; Figure 4C) and in a few other anatomical 

TABLE 2 Functional MRI data information for each acquisition site.

Site #1 Site #2 Site #3 Site #4 Site #5 Site #6 Site #7
N 20 20 16 23 20 20 20
Collection ID Sub-101 to 120 Sub-201 to 220 Sub-301 to 316 Sub-401 to 423 Sub-501 to 520 Sub-601 to 620 Sub-701 to 720
CONN ID S1 to S20 S21 to S40 S41 to S56 S57 to S79 S80 to S99 S100 to S119 S120 to S139

MRI scanner Philips Achieva Philips Achieva Philips Achieva DS /

Philips Achieva (5) 

Siemens Trio  

Tim (14)  

Siemens Prisma  

Fit (1)

Siemens 

Magnetom Trio
Siemens Verio

Head coil / / 32 channels / / 12 channels /

Flip angle [°] 75 90 90 /
90 (17)  

80 (3)
90 80

Phase encoding 

direction
j- j- j- /

j- (15)  

/ (5)
/ j-

Parallel acquisition 

technique
SENSE SENSE SENSE /

/ (15)  

no_stimulation 

SENSE (5)

/ /

Voxel dimension 

[mm3]

2.7×2.7×3 (19) 

2.3×2.3×3 (1)
3x3x3.8 1.6×1.6×3.1 2.7×2.7×3

3×3×4 (15) 

1.9×1.9×4 (5)
4×4×4 3×3×3.5

Field of view [slices]
96×96×47 (19) 

112×112×47 (1)
80×80×38 128×128×45 96×96×47

80×80×35 (10) 

128×128×34 (5) 

80×80×34 (4) 

80×80×39 (1)

64×64×32 64×64×39

Repetition time [s] 2.5 2 2.5 2.5 2 2.5 2.5

Acquired EPI runs 1 1 1 1 1
1 (8)  

2 (12)
1

Scans acquired
156 (18)  

128 (2)
150 162 123 144 [240–724] 198

Acquisition 

duration [s]

390 (18)  

300 (2)
300 405 307.5 288 [600–1,810] 495

Slice timings 

available
Yes Yes Yes /

Yes (13)  

/ (5)  

wrong (2)

/ Yes

Task stimuli
White cross over 

black screen
Eyes closed

White cross over 

black screen
/ Eyes open / Eyes closed

Task instructions / Rest
Relax and think of 

nothing particular
/ / / /

Number of 

properties present in 

json file(s)

31 29 32 2

15 (5)  

20 (13)  

21 (2)

8 (8)  

8 each  

run (12)

14

The information reported refers to all participants of each site, unless otherwise specified by the number in parentesis reflecting the subset of participants. Participants are identified by the 
collection’s ID number (e.g., sub-___) and by increasing numbers (e.g., S___) representing participants in ascending order. mm, millimeters; MRI, magnetic resonance imaging; properties of a 
json file, key-value pairs included in the json files; s, seconds; SENSE, sensitivity encoding; °, degrees; “/” indicates that information was not available.
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FIGURE 3

Spatial artifacts of raw-level functional data. (A) Spatial distortions and signal drop out in superior/orbito-frontal regions in sub-304 (S44). (B) Aliasing or 
ghosting in the coronal (y = 19) and axial (z = 45) slices from sub-717 (S136). For visualization purposes only, intensity values have been scaled so that low 
and high values would appear darker, making more evident artifacts such as those highlighted by the white arrows stemming from the superior (left 
image) and frontal (right image) regions of the head. (C) Unspecified signal inhomogeneity artifacts affecting sub-314 (S54) functional scans localized 
near areas of high intensity contrast such as CSF to WM. (D) Ghosting, spatial distortions, and signal inhomogeneities are noticeable in sub-409 (S65) 
functional data across all scans and several slices. For all panels, the images render the first functional scan of raw-level data.

images (see Supplementary Table S3). Additionally, there were few 
cases with noticeable motion-related and ghosting, of which sub-519 
(S98; Figure 4D) was an example. Inasmuch the preprocessing of 
anatomical images for FC-MRI analysis was instrumental to preparing 
the functional data, a low(er) quality of anatomical images was not 
considered a major roadblock unless it produced a faulty segmentation 
or normalization.

During anatomical visual QC, we  also observed what could 
be described as a skin marker on the forehead (right hemisphere) of 
most participants from site #5 (n = 15) including all those scanned 
with Philips Achieva, and in a few from site #7. While there was no 
available information regarding which hemisphere the marker was 
placed on, and under the assumption that they would be placed in a 
standardized fashion, the consistent lateralization with which the 
marker was observed for all participants was considered as a hint of 
lack of left–right flip relative to one another.

Cross-modality visual comparison aided the characterization of 
artifacts. For example, unspecified signal intensity inhomogeneity 
was noticed in the functional data of sub-315 (S55; Figure  5A, 
x = 2), which corresponded to an undefined artifact or anatomical 
feature (Figure  5B). The artifact was localized in the medial-
superior area above the cingulate cortex in the interhemispheric 
fissure, appearing dark in the functional data and bright in the 
anatomical images. Additionally, several examples of highly 
localized signal inhomogeneity with sharp intensity differences 
were characteristic of participants from site #5. From a visual 
inspection, those appeared similar to those reported in Figure 5, but 

the comparison with the anatomical data suggested that those could 
potentially derive from past brain surgeries (e.g., sub-509 [S88]; 
Supplementary Figure S2).

Overall, only one run corresponding to sub-409 (S65) was deemed 
to be excluded based on extreme spatial corruption severely affecting 
multiple slices and persistent across all scans. All other cases 
mentioned above were flagged as uncertain (see 
Supplementary Table S3 for a complete list) as we considered that in 
the absence of additional indications their potential effect on the 
quality of the BOLD signal may not be  severe enough to 
warrant exclusion.

4.3. Preprocessed data QC

Since fieldmaps were not available, our preprocessing included a 
direct, rather than indirect, normalization procedure to try to 
minimize EPI-specific warping caused by susceptibility distortions 
(Calhoun et al., 2017). Similarly, we skipped STC because slice timing 
information was available for only a portion of runs (n = 89 out of 151) 
and most importantly, it was selectively missing for entire sites (#4, #6, 
and some cases from site #5). We  elected to skip STC for all 
participants in order to prevent introducing variability driven by 
distinct analytical approaches into the results, which, in light of the 
characteristics of the fmri-open-qc-rest collection, could exacerbate 
potential inter-site (and in the case of site #5, even intra-site) 
heterogeneity even further.
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FIGURE 4

Spatial artifacts of anatomical raw-level data. (A) Sub-509 (S88) presented signs of potential past surgery (z = 4) appearing as dark, small, localized areas 
traveling through several slices, signal intensity inhomogeneity localized bilaterally along the y-axis (y = 5 and x = −35), and individual anatomical 
variations of size and shape of the lateral ventricles (x = −17). (B) Individual anatomical differences in the form of an asymmetrical mass or unspecified 
signal inhomogeneity localized in the lateral ventricle of a sub-719 (S138). (C) Motion-related artifacts or ringings in sub-218 (S38). (D) Sub-519 (S98) 
showed severe aliasing, ghosting, and/or motion-related artifacts.

A B

FIGURE 5

Example of cross-modality visual quality control for artifact characterization. Potential artifact of unspecified type in sub-315 (S55) functional (panel A) 
and anatomical (panel B) data. (A) Signal inhomogeneity affecting several axial slices localized in the interhemispheric fissure. The first scan is displayed 
here, however similar artifacts are noticeable across all scans. (B) Unspecified anatomical artifacts rendered in contiguous sagittal (x = 22 to x = 16) and 
axial slices (x = 38 to x = 50) in the top and bottom row, respectively. White circles indicate areas where artifacts are visible in a location comparable 
between functional and anatomical data. Note, the anatomical and functional images displayed here were in raw-level form, hence the spatial 
coordinates refer to subject-space and might differ across modalities.
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FIGURE 6

Preprocessed anatomical data. The same axial slice (MNI z = 18) of the fully preprocessed anatomical images is rendered for each participant (n = 139). 
For visualization purposes only, the BOLD signal intensity was scaled by the average value within each image.

Visual QC of preprocessed data identified severe failures of 
anatomical normalization and segmentation for sub-509 (S88) and 
sub-511 (S90). In both cases, the normalized anatomical and 
segmented tissue ROIs appeared fragmented and showed poor 
continuity within tissue type but sharp differences across tissues, see 
Figure 6 (slices in row 7 columns 4 and 6) and Figure 7B (bottom).

Beyond those issues, visual inspection of the functional and 
anatomical data and potential residual artifacts in the functional 
timeseries identified no other obvious failures of functional 
preprocessing, including for the cases flagged as uncertain during 
raw-level data QC. For an overview of the full dataset after 
preprocessing, see Figure 6 (anatomical images, n = 139) and Figure 8 
(functional scans, n = 151).

Automated QC measures (InvalidScans, PVS, MeanMotion, 
NORManat, NORMfunc, and AFO in Figure 9; other measures are reported 
in Supplementary Figure S3) were generated from n = 151 functional 
runs and n = 139 anatomical images (Figure  9, left). Low extreme 
outliers (values 3 IQR below the 1st quartile) were identified for 
NORManat [n = 2, sub-509 (S88) and sub-511 (S90)] and AFO [n = 1, 

sub-509 (S88)], which corresponded to the cases identified during visual 
inspection. These data were also identified as extreme low outliers based 
on the distribution of total tissue volumes (Supplementary Figure S4). 
We visually inspected again the cases identified as mild low outliers 
from the distribution of NORManat (n = 2; see sub-716 [S135] in 
Figures 7A,B), NORMfunc (n = 0), and AFO (n = 0) and confirmed that 
those indicated an acceptable preprocessing performance.

Several extreme low PVS outliers were identified (n = 7 with PVS 
below 75%): sub-118 (S18), sub-405 (S61), sub-519 (S98), sub-703 
(S122), sub-706 (S125), sub-708 (S127) and sub-714 (S133) as well as 
several, mostly overlapping, extreme high InvalidScans participants 
(n = 6 with 48 or more InvalidScans): sub-519 (S98), sub-607 (S106), 
sub-703 (S122), sub-706 (S125), sub-708 (S127) and sub-714 (S133). 
The only participant with extreme high InvalidScans who did not have 
low PVS was sub-607 (S106), who, despite having 50 outlier scans, 
accounted for less than 7% of the total scanning session.

One participant [sub-111 (S11)] had a GCOR value (0.0534) 
borderline but below the level of extreme outlier (GCOR = 0.0535). 
However, this participant showed no obvious artifactual effects in 
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carpetplots, or from other visual checks, nor had values in the mild 
(1.5 IQR) or extreme (3 IQR) outlier range for any other QC measure. 
Given that GCOR potentially includes some amount of meaningful 
intersubject variability, we elected not to exclude this run in order to 
avoid suppressing possibly natural variability.

Last, confirming our previous observations, there were strongly 
significant differences in all QC measures between the different sites 
(InvalidScans F(6,132) = 4.24 p = 0.0006, PVS F = 3.33 p = 0.0044, 
MeanMotion F = 8.85 p < 0.0001, NORManat F = 13.22 p < 0.0001, 
NORMfunc F = 23.49 p < 0.0001, and AFO F = 13.42 p < 0.0001).

4.4. Denoised data QC

The distribution of automated QC measures (DOF, BOLDstd, and 
GCOR) for all denoised data (n = 151 corresponding to 139 
participants) is reported in Figure 9 (right). There were no extreme 

outliers in BOLDstd, nor extreme low absolute DOF values, and 
participants with the lowest DOF values in this dataset [sub-519 (S98) 
DOF = 17.1, sub-405 [S61] DOF = 24.2, and sub-714 (S133) 
DOF = 26.2] were already identified as extreme outliers with low PVS 
values. As with preprocessing QC measures, there were strongly 
significant differences in all QC denoising measures evaluated when 
compared between the different sites [DOF F(6,132) = 27.92 p < 0.0001, 
BOLDstd F = 19.65 p < 0.0001, and GCOR F = 12.98 p < 0.0001].

After preprocessing but before denoising, the distributions of 
functional connectivity estimates (FC distributions, Figure 10 left 
column) revealed severe biases, with connectivity values centered 
at r = 0.27 on average across all participants, and also showed high 
levels of variability in the FC distribution center, with standard 
deviation 0.12 across participants. After denoising, the FC 
distributions (Figure  10, central column) were centered around 
r = 0.031, and had low variability (standard deviation 0.01 across 
participants). Visually, FC distributions after denoising appeared 

A B

FIGURE 7

Automated and visual quality control of normalized anatomical data. (A) Distribution of the overlap between the normalized anatomical data (n = 139) 
and the MNI-space (NORManat). Extreme outliers are identified as values 3 IQR above the 3rd quartile or below the 1st quartile (red dotted lines). Mild 
outliers are values 1.5 IQR above the 3rd quartile or below the 1st quartile (red dashed lines). (B) The same reference axial slice (MNI z = 18) renders the 
normalized anatomical images from five participants. The participants’ anatomical image is, on the left, overlaid on the 25% boundaries of the gray 
matter a priori probability maps MNI-space template (blue outline), and on the right, against each participant’s anatomical gray matter boundaries. The 
participants reported in the figure are ordered from top to bottom based on their NORManat values. Specifically, compared to the full dataset, sub-107 
(S7) had the highest value, sub-301 (S41) was close to the median value, sub-716 (S135) was close to the low mild outlier threshold, sub-511 (S90) and 
sub-509 (S88) were the two lowest values and extreme outliers. GM, gray matter; MNI, Montreal Neurological Institute space; NORManat, overlap 
between the MNI-space and the normalized anatomical data.
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FIGURE 8

Preprocessed unsmoothed functional data. The same axial slice (MNI z = 18) for the first and the last functional scan are rendered for all runs (n = 151). 
For visualization purposes only, the BOLD signal intensity of each scan was scaled by its average value.

more centered and similar across participants, and nearly 
symmetrical with slightly longer positive than negative tails, as 
expected (for comparison, Supplementary Figure S5 displays 
examples of FC distributions that could result if our denoising 
strategy had been overly or insufficiently aggressive in this 
same dataset).

No individual runs were identified as potential outliers after 
denoising from visual inspection of these results. Site #6 included 
several runs with distinctive narrower FC distributions, but these were 
associated with scanning length that were considerably longer 
(identified in the Figure 9 DOF distribution as having significantly 
higher degrees of freedom compared to other runs in this dataset). 
We did not exclude these runs but depending on the planned analyses 
it may be advisable to consider homogenizing the scanning duration 
length of the fMRI data.

QC-FC correlations were estimated separately within each site to 
avoid potential site confounder effects. Before denoising, QC-FC 
correlation distributions showed poor percentage match levels, 
indicating the persistence of motion and data quality effects on 
functional connectivity estimates after preprocessing. Specifically, 
percentage match levels were below the 95% cutoff for InvalidScans 
[average within-site %match = 86.70 ± 11.77 ranged (65.82; 97.59)], 

MeanMotion [85.37 ± 13.94 (56.78; 98.52)], and PVS [83.70 ± 11.51 
(65.82, 97.59)], see Figure 11 (left) and Table 3 (top).

Denoising increased the percentage match levels of QC-FC 
distributions (Figure  11 middle and Table  3 middle) for 
InvalidScans [average within-site % match = 94.24 ± 2.56 (91.47; 
97.68)], MeanMotion [96.82 ± 1.07 (95.64; 98.89)], and PVS 
[94.21 ± 2.50 (91.47; 97.26)]. Despite this, several QC-FC 
correlations still did not pass the desired 95% cutoff for at least one 
of the three evaluated QC measures, including site #3, site #4, site 
#5, and site #7 (Table 3).

Excluding all runs with identified extreme outliers in any of the 
evaluated QC measures (n = 10, 1 run identified during raw-level 
visual QC, 2 runs with problems in spatial normalization, and 7 runs 
with extreme low PVS) increased the percentage match level of 
QC-FC distributions for InvalidScans [average within-site % 
match = 96.79 ± 2.07 (92.35; 98.48)], MeanMotion [97.64 ± 1.03 
(96.12; 99.21)], and PVS [96.75 ± 2.04 (92.35; 98.48)]. Despite this, 
QC-FC correlations of site #3 still did not pass the desired 95% cutoff. 
Since the distribution of PVS did not show a clear cutoff among those 
participants with extreme outliers and those with mild outliers, 
we  decided to re-evaluate QC-FC correlations varying the PVS 
threshold used for participant-level exclusion, excluding one 
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additional participant at a time, in order to identify the minimal 
number of excluded participants that would result in suprathreshold 
QC-FC match levels for all QC measures. The results indicate that 
removing one additional participant, i.e., the 8 participants with 
lowest PVS values (instead of 7 when using the originally suggested 
extreme-outliers threshold), was sufficient to push all sites above the 

desired 95% threshold in QC-FC match levels across InvalidScans 
[97.3 ± 0.89 (95.92; 98.48)], MeanMotion [97.77 ± 0.86 (97; 99.21)], 
and PVS [97.26 ± 0.86 (95.92; 98.48)], see Figure 11 (right column) 
and Table 3 (bottom). Automated QC measures of the final n = 11 
excluded participants and their carpetplots are reported in 
Supplementary Figures S6 and S7, respectively.

FIGURE 9

Automated quality control measures of preprocessed and denoised data. Distributions of automated QC measures extracted from the full fmri-open-
qc-rest collection (n = 139 anatomical and n = 151 functional data). QC measures were calculated from preprocessed functional (InvalidScans, PVS, 
MeanMotion, NORMfunc, and AFO), preprocessed anatomical (NORManat and AFO), and denoised functional (DOF, BOLDstd, and GCOR) data. Extreme 
outliers were identified as values 3 IQR below the 1st quartile or above the 3rd quartile (red dotted lines). Mild outliers were defined as values 1.5 IQR 
below the 1st quartile or above the 3rd quartile (red dashed lines). BOLDstd, standard deviation of the BOLD signal; DOF, degrees of freedom; GCOR, 
global correlation; IQR, interquartile range; NORMfunc, MNI-space template to functional overlap; NORManat, MNI-space template to anatomical overlap; 
PVS, proportion of valid scans.

FIGURE 10

Functional connectivity density distributions. Density distributions of within-run FC strengths (r coefficients) between all pairs among 1,000 randomly 
selected voxels from functional runs of the entire data collection (n = 139) before (left) and after denoising (central), and after excluding outlier runs 
(right, n = 128). FC distributions are plotted for data from each site independently (top) and from all sites jointly (bottom row). FC, functional 
connectivity.
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5. Discussion

In this study, we presented the CONN quality control pipeline 
(Table 4; Figure 2) based on a combination of visual and automated 
QC procedures. Publicly available resting state data were analyzed to 
showcase a complete QC workflow for the screening of raw-level, 
preprocessed, and denoised data for volume-based FC-MRI analysis. 
This pipeline includes visual-QC steps, where researchers visually 
judge the severity of potential artifacts in the raw, preprocessed, and 
denoised data, as well as a number of automated QC measures 
quantifying relevant aspects of the functional data. We recommend 
that researchers use the combination of visual- and automated- QC 
measures to motivate possible changes in their data preprocessing or 
denoising strategy that would address the issues raised by these 
measures, or, ultimately, to determine a list of individual participants 
or runs that may need to be excluded from the main analyses. The 
choice of a threshold for participant exclusion should be informed by 
the characteristics of one’s own sample and the needs of their research 
questions or planned analyses. Rather than using absolute thresholds 
in QC measures, we suggest that sample-specific thresholds, such as 
the choice of a classical “extreme outliers” threshold of Q3 + 3 IQR for 
extreme high values (or Q1–3 IQR for extreme low values) are a 
reasonable starting point for participant exclusion. Last, our QC 
workflow uses the measure QC-FC %, characterizing the presence of 
inter-subject associations between functional connectivity and subject 
motion or outlier prevalence, and the stability of the FC distributions 
across different runs and participants (FC mean ± SD), as a way to 
evaluate the overall quality of the data, helping guide possible choices 
between alternative preprocessing and denoising strategies or 
participant exclusion thresholds.

Our QC workflow included a combination of procedures, of 
which some can be quantified precisely and even automated, while 
others cannot and will ultimately rely on each researcher’s experience 
and judgment. In both cases, our approach is not that there is an 
“optimal” or even “correct” form of QC, but rather to encourage 
researchers to understand the rationale behind performing QC, 
follow a reasonable set of procedures, justify their choices during QC, 
and report their decision process when sharing their results to the 
community. For example, there is currently no agreed-upon correct 
choice or criterium of what constitute severe ghosting or other image 
artifacts, but our recommendation is for researchers to perform 
visual QC to evaluate the presence and severity of artifacts in their 
data, and then to define, based on their own criteria, experience, 
research goals, and specificities of their sample, what constitutes 
possibly extreme cases that would justify their exclusion. From this 
general perspective, we have attempted to provide specific measures 
and thresholds that could be used as precise exclusion criteria when 
possible (as sample-specific outliers, using a Q3 + 3 IQR threshold for 
individual QC measures, and as an absolute 95% threshold in QC-FC 
percent match levels), while also leaving room for other less easily 
quantifiable aspects of QC (using severity scores based on a 
researcher’s own criteria during visual QC, and judging the overall 
level of centering and similarity of the QC distributions across the 
different subjects in our sample).

In that context, several automated QC measures were proposed 
to aid the identification of potential problems in the data or faulty 
preprocessing. NORManat, NORMfunc, and AFO measures can 
be  useful to evaluate functional normalization, anatomical 
normalization, and between modality coregistration success. 
Similarly, the relative severity of participant motion and other events 

FIGURE 11

QC-FC correlation distributions. QC-FC plots tested functional connectivity associations with three nuisance factors (MeanMotion, InvalidScans, and 
PVS). Plots were generated from functional data from all participants (n = 139) before (left) and after (middle) denoising, and after excluding outlier runs 
(right) identified during raw-level, preprocessed, and denoised data QC (n = 128). Analyses were performed within each site independently (top) and 
across all sites jointly (bottom row). Red boxes indicate QC-FC with at least one QC-FC distribution that did not reach above the 95% cutoff. Red 
dotted lines represent a theoretical artifact-free null-hypothesis distribution. QC, quality control; FC, functional connectivity.
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that may cause outliers in the scan timeseries can be quantified using 
measures such as average of framewise displacement (MeanMotion), 
and the number or proportion of identified outlier scans (PVS). 
Measures evaluating the effective degrees of freedom of the BOLD 
signal timeseries after denoising (DOF), as well as its variability and 
intercorrelation (for example BOLDstd and GCOR), can also 
be  useful to identify potential problems in the BOLD signal of 
individual participants before proceeding to statistical analyses. As 
other QC measures computed after preprocessing and denoising, 
outlier values in these measures may depend on the combination of 
most analytical steps that preceded it, so they do not directly suggest 
a potential source or cause of the identified problems. Finally, QC-FC 
correlations evaluate whether changes in the spatial correlation 
structure of the BOLD data covaried with participant-level quality 
control measures, such as the extent of participant motion, and the 
number or proportion of outlier scans, so they can be used as general 
measures of data quality to guide other data processing choices.

In this dataset these measures were used to evaluate the quality of 
the fMRI data and help guide our choices of denoising and exclusion 
procedures. Altogether, the QC pipeline and exclusion criteria 
adopted (Table 4) excluded 8% of the participants and minimized the 
presence of a variety of noise sources in the data as evaluated using a 
combination of visual and automated QC measures and procedures.

Many reasons may explain why bias persists after a successful 
preprocessing and adequate denoising, and these reasons create a 
multi(uni)verse of effective possibilities to counteract. Although 
relevant to the understanding of QC procedures, the evaluation of 
different processing pipelines was outside the scope of this paper and 
has been discussed in several seminal papers about preprocessing 
(Friston et al., 1996; Strother et al., 2004; Murphy et al., 2009; Chai et al., 
2012; Hallquist et al., 2013; Power et al., 2014; Ciric et al., 2017) and 
denoising strategies (Churchill and Strother, 2013; Parkes et al., 2018; 
Maknojia et al., 2019; Tong et al., 2019; De Blasi et al., 2020; Golestani 
and Chen, 2022; for a review, see Caballero-Gaudes and Reynolds, 2017).

TABLE 3 FC density distributions and QC-FC correlations.

Site n n excluded FC mean ± SD InvalidScans-FC MeanMotion-FC PVS-FC QC-FC 
performance

Before denoising (n = 139)

Site #1 20 / 0.27 ± 0.13 90.81 91.38 92.01 Below cutoff

Site #2 20 / 0.29 ± 0.08 65.82 56.78 65.82 Below cutoff

Site #3 16 / 0.24 ± 0.07 97.59 98.52 97.59

Site #4 23 / 0.17 ± 0.08 75.85 78.41 75.85 Below cutoff

Site #5 20 / 0.2 ± 0.07 87.58 91.03 87.58 Below cutoff

Site #6 20 / 0.32 ± 0.13 97.46 91.71 75.24 Below cutoff

Site #7 20 / 0.39 ± 0.11 91.78 89.76 91.78 Below cutoff

All 139 / 0.27 ± 0.12 55.18 58.83 64.64 Below cutoff

After denoising (n = 139)

Site #1 20 / 0.04 ± 0.02 95.73 98.89 95.96

Site #2 20 / 0.04 ± 0.01 97.19 97.02 97.19

Site #3 16 / 0.03 ± 0.01 92.35 96.12 92.35 Below cutoff

Site #4 23 / 0.02 ± 0.01 93.01 96.07 93.01 Below cutoff

Site #5 20 / 0.03 ± 0.02 92.27 95.64 92.27 Below cutoff

Site #6 20 / 0.03 ± 0.01 97.68 97.04 97.26

Site #7 20 / 0.02 ± 0.01 91.47 96.99 91.47 Below cutoff

all 139 / 0.03 ± 0.01 91.41 94.20 90.02 Below cutoff

After denoising and excluding outliers (n = 128)

Site #1 19 1 0.04 ± 0.02 96.40 97.60 96.48

Site #2 20 0 0.04 ± 0.01 97.19 97.02 97.19

Site #3 15 1 0.03 ± 0.01 95.92 97.00 95.92

Site #4 21 2 0.02 ± 0.01 98.00 98.01 98.00

Site #5 17 3 0.03 ± 0.02 98.48 98.50 98.48

Site #6 20 0 0.03 ± 0.01 97.68 97.04 97.26

Site #7 16 4 0.02 ± 0.01 97.47 99.21 97.47

All 128 11 0.03 ± 0.01 97.24 95.84 93.97 Below cutoff

Values reported under FC mean represent the average ± standard deviation across participants of GSC, the mean values of the FC density distributions, and QC-FC represent the percentage 
match level values, characterizing the presence of inter-subject associations between functional connectivity and subject motion or outlier prevalence. Bold font indicates % match values that 
are above the 95% cutoff. QC-FC performance values indicate whether any QC-FC measure percentage match level is below the 95% cutoff. FC, functional connectivity; GSC, global signal 
change; PVS, proportion of valid scans; QC, quality control.
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TABLE 4 CONN quality control pipeline checklist and exclusion criteria for whole brain resting state functional connectivity analysis.

Category QC Checklist Tools Exclusion criteria

Raw-level data

Source of heterogeneity 

of no interest (defined 

by the data intended 

used)

Acquisition parameters MRI data (A) Data that do not meet criteria 

for the specific analysis goals as 

defined by each individual research 

study

Demographic Sidecar json files

Task design Scan sequences protocol

Artifacts Ghosting

Visual inspection (scan-to-scan and slice-to-

slice)

(B) Data corrupted beyond repair as 

judged by rater

Aliasing

Foreign objects artifacts

Dropouts/truncation

Ringing

Spatial distortions

Contrast inhomogeneities

Personalized 

preprocessing needed

Artifacts that may require 

personalized consideration
Visual inspection (slice-to-slice)

Challenging data 

features

Motion related artifacts 

Anatomical variations

Visual inspection (scan-to-scan and slice-to-

slice)

Preprocessing

Failures of functional 

preprocessing

Artifacts in the timeseries Visual comparison between the scan-to-scan 

movie of a reference functional slice with 

motion, GSC, and outlier timeseries traces

Normalization Visual comparison between normalized 

functional data and MNI template

(C) † Functional data which cannot 

be preprocessed satisfactorily as 

judged by raterVisual comparison between anatomical gray 

matter and normalized functional data

Automated QC measure NORMfunc (D) † Cases with extreme values, as 

judged by a sample-specific Q1-3 

IQR threshold criterion

Failures of anatomical 

preprocessing

Normalization and segmentation Visual comparison between normalized 

anatomical data and MNI template

(E) † Anatomical data which cannot 

be preprocessed satisfactorily as 

judged by raterVisual comparison between anatomical gray 

matter and normalized anatomical data

Automated QC measures AFO and NORManat (F) † Cases with extreme values, as 

judged by a sample-specific Q1-3 

IQR threshold criterion

Denoising

Residual noise factors Within-participant Visual comparison of carpetplots with motion, 

GSC, and outlier timeseries traces

Between-participant Other QC variables: distribution of participant-

level QC measures

(G) † Cases with extreme values in 

PVS, MeanMotion, or DOF, as 

judged by a sample-specific Q3 + 3 

IQR or Q1-3 IQR threshold criterion

Distribution of functional connectivity values (H) † Extremely skewed, shifted, 

flat, or bimodal functional 

connectivity distributions after 

denoising, as judged by rater.

Also used to guide preprocessing, 

denoising, and participant-

exclusion-criteria choices.

Distribution of QC-FC associations, for 

InvalidScans, MeanMotion, and PVS

Used to guide preprocessing, 

denoising, and participant-

exclusion-criteria choices.

Cases with extreme values could be represented by values below 3 times the interquartile range above the 3rd quartile or below the 1st quartile, depending on the specific QC measure, 
compared to the full dataset distribution. BOLD, blood oxygenation level-dependent; FC, functional connectivity; GCOR, global correlation; MNI, Montreal Neurological Institute; QC, 
quality control; TPM, tissue probability map. † Indicates exclusion criteria applied only if potential remediatory analytical or processing alternatives fail.
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It is nevertheless important to note that not all measures that are 
used to evaluate the quality of the fMRI data in the context of QC 
procedures can or should be used to compare different preprocessing or 
denoising pipelines. In general, global or sample-level properties such 
as QC-FC %, characterizing between-subject QC-FC correlations, and 
FC mean ± SD, characterizing between-subjects variability in the shape 
of FC distributions, are meaningful measures that can be used to guide 
choices in preprocessing and denoising, and in particular to compare 
the relative success of different preprocessing pipelines. In contrast, 
many measures, such as BOLDstd, DOF, MeanGSchange, which are 
designed to provide useful contrasts when comparing different 
participants undergoing the same acquisition and analytical procedures, 
should be considered with extreme care in the context of comparing 
different analytical procedures or pipelines, as they provide only a very 
limited view of the overall quality of the data, with often contradictory 
results when interpreted as direct measures of data quality.

We encourage researchers to consider preprocessing and 
denoising strategies as an array of tools to use on their data, and rely 
on quality control measures described above to help guide and 
substantiate their choice of the best tools to use for each dataset. 
Indeed in our case, QC testing did suggest to evaluate alternative 
analytical approaches to attempt to improve the overall quality of the 
results. For example, there were two cases [sub-509 (S88) and 
sub-511 (S90)] in which anatomical normalization failed. This could 
have suggested that trying alternative normalization procedures 
customized to the dataset could have been tested. For example, 
normalization approaches using lesion-informed templates (which 
could have been relevant for site #5), age-specific normalization 
templates, or different normalization parameters could have led to 
overall better normalization performance for these two cases and 
perhaps others. Moreover, we  did not perform STC to avoid 
introducing artificial heterogeneity between and within sites driven 
by differences in preprocessing pipelines. Our choice was based on a 
lack of information regarding slice timings for a portion (41.6%) of 
the data. But in a real-life context, we would have reached out to the 
research groups where the data originated trying to find said 
information. Similarly, we would have reached out to the site#5 to 
confirm that sub-518 (S97) and sub-519 (S98) functional data 
needed to be  flipped rather than rotated. Also, the QC-FC 95% 
benchmark was not reached for PVS when considering data from all 
sites jointly (Figure 11, bottom row). That indicates that if we want 
to perform analyses jointly across all sites, we would need to correct 
site effects, as those potentially contain a mixture of noise sources 
together with perhaps other meaningful differences in sample 
demographics, but similarly other site homogenization approaches 
could be attempted to try to reduce or remove the residual QC-FC 
correlations across sites. In deciding the best course of action for the 
fmri-open-qc-rest collection, we  faced a tradeoff between 
maximizing power (i.e., including as much data as possible) and 
prioritizing the optimal approach for the majority – but perhaps not 
the totality – of the data. Excluding a portion of runs (n = 11 out of 
151 runs, corresponding to n = 11 out of 139 participants) resulted in 
an overall more lenient approach to the rest of the data and 
minimized the estimated residual bias driven by invalid scans, 
proportion of valid scans, and mean motion within each site 
independently and improved it across all sites jointly. Ultimately, the 
data and the research question motivating one’s own analysis will 
define what the “best” approach entails, potentially involving 
different analytical strategies. Whichever that is, we  stress how 

reporting the rationale guiding preprocessing and denoising choices 
in a study and supporting those choices with reports describing the 
associated QC measures and procedures used, is a key element for 
results interpretation and reproducible science.

The proposed QC workflow, checklist, recommendations, and 
exclusion criteria are agnostic of the analytical software employed. While 
designed and discussed around the implementation in CONN, our 
recommendations generalize to data fully or partially analyzed 
(preprocessed and/or denoised) via other software packages including 
AFNI (Cox, 1996), SPM (Friston and Al, 2007), FSL (Jenkinson et al., 
2012), FreeSurfer (Fischl, 2012), fMRIprep (Esteban et al., 2019), Tedana 
(DuPre et al., 2021), MRIQC (Esteban et al., 2017), pyfMRIQC (Williams 
and Lindner, 2020), and others. For example, NORManat, NORMfunc, and 
AFO are measures diagnostic of preprocessed data quality, but they can 
be computed independently of the software or process that generated 
them. Furthermore, while the analytical details used to generate well-
known metrics (framewise displacement, CompCor components, etc.) or 
methods (ICA, AROMA, CompCor) may vary across software packages, 
we expect that the recommendations provided in this manuscript should 
generalize beyond the specific measures used in the example presented in 
this manuscript. For example, we have no reasons to believe that the data 
exclusion based on the extreme departures of PVS relative to the sample’s 
distribution should be  specific to the outlier threshold or motion 
estimation method that we  used, rather they could generalize to 
alternative definitions of FD (Jenkinson et al., 2002; Power et al., 2012). In 
a similar fashion, considerations about visual QC could be expanded to 
apply to data inspected through MRI image viewers or visual plots 
generated with alternative methods.

The FMRI Open QC Project dataset (Taylor et al., 2022) combines 
information from multiple sites. The preprocessing, denoising, and QC 
steps discussed in this manuscript did not directly address the issue of 
data harmonization across sites (Friedman et al., 2006; Yu et al., 2018). 
Effective harmonization of features across sites would require a 
considerably richer array of information from the sampled participants in 
order to be able to differentiate among intersite differences that may carry 
meaningful information, such as those due to differences in age and 
health status of participants sampled in different sites or studies, from 
intersite differences that may be related to other factors of no interest, such 
as those introduced by specific acquisition details used in each study. 
Despite this, the quality control procedures described in this manuscript 
attempted to focus, whenever possible, on features of the entire dataset, 
treating site as one would normally treat different subject groups in a 
single-site study, except for QC-FC correlations, where we chose to focus 
only on intrasite analyses as otherwise the results would be naturally 
confounded by some of the very large differences in QC measures 
observed among sites. QC procedures in the context of multisite studies 
would benefit from an integrated approach to data homogenization and 
quality control, which is still an open area of research.

Most of the QC pipeline that we had described for resting state 
functional connectivity analysis is also suitable for task-based 
connectivity and task-based activation analyses. The QC workflow and 
exclusion criteria related to raw-level data visual inspection, 
preprocessed data visual and automated procedures (e.g., NORManat, 
NORMfunc, AFO, and PVS) apply to (f)MRI data regardless of the final 
intended analysis goal. However the nature of the analysis (connectivity 
vs. activation) and of the behavioral/cognitive processes elicited during 
data acquisition (to rest or to perform an explicit task) carry distinct 
potential dangers on the final statistical analyses and require customized 
considerations. For example, motion is highly problematic for functional 
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connectivity analysis, as it introduces biases reducing the accuracy of 
results, so it is thus usually more aggressively controlled for in the 
context of resting state analyses. In contrast, in task-activation studies, 
this is usually less of a concern as motion tends to simply reduce power 
(i.e., lowering statistical significance of the results) rather than 
introducing spurious results. Yet, activation analysis could suffer from 
a similar curse when motion artifacts are unbalanced between task 
conditions (e.g., larger subject motion during rest blocks compared to 
task blocks), so in the context of task-activation analyses QC measures 
that focus on the presence of task-correlated motion are often 
recommended. While the general QC workflow described in this 
manuscript can be equally used in the context of task-activation or other 
types of analyses, we would expect that the inclusion of additional QC 
measures focusing on analysis-specific features or sources of concern 
(e.g., quantifying the presence of task-correlated motion or other task-
correlated noise sources in the context of task-activation analyses) 
would be necessary in order to better capture the suitability of the 
resulting data for those specific analyses.

Overall, the guidelines of our QC approach were to improve data 
quality and quantify residual nuisance effects. However, these guidelines 
were constrained by at least four limitations, which are the objective of 
open and active lines of work in the neuroimaging field. First, the field 
currently lacks a ground truth of what the BOLD signal is. It follows that 
quantifying the differences between the actual signal and the true signal 
was limited in its scope. Second, neural and non-neural signals are best 
thought of as a continuum rather than two ontological classes. Although 
regarded as a viable approach to minimize well-known bias, regressing 
out “non-neural” components might also have removed neural signals 
too (for example see Wang et  al., 2021). Third, we  applied similar 
processing to all data regardless of specific acquisition parameters, but 
it has been shown that non-harmonized MRI data could introduce 
spurious heterogeneity in FC estimates. However, potential sources of 
heterogeneity (e.g., inter-run, inter-participant, and inter-site variability; 
Greve et al., 2012) may be intertwined with true individual differences. 
Considering all available data, hence maximizing power and 
heterogeneity, may promote generalizability and reproducibility of 
neuroimaging results. Lastly, we defined exclusion criteria and cutoffs 
based on relative terms rather than absolute, which risks leading further 
away from a standardization of QC procedures. However, we argue that 
this shortcoming not only provides a necessary level of flexibility in view 
of the heterogeneity in acquisition details, sample characteristics, and 
experimental designs across different studies and fields, but also that it 
might effectively be overcome if QC procedures were to be consistently 
reported alongside FC results, however varied the QC strategies may be. 
Similarly to how distinct analytical approaches are regarded as equally 
valid in addressing the same research questions (Botvinik-Nezer et al., 
2020), different QC pipelines could represent effective alternatives. As 
the description of the processing analytical details applied to fMRI data 
are considered necessary for interpretation and replicability purposes, 
likewise QC procedures are instrumental to results interpretation. Thus, 
QC reporting should become an integral part of neuroimaging studies.

6. Conclusion

In this study, we presented the CONN quality control pipeline 
for the visual and automated QC testing of resting state fMRI data 
for FC-MRI analysis, demonstrated on publicly available and 

heterogeneous data. We complemented knowledge and guidelines 
from the literature with additional automated QC strategies. 
Several, modular, and mutually non-exclusive procedures were 
included and emphasized how automated QC testing can help 
guide choices of preprocessing, denoising, and exclusion 
procedures. Overall, visual and automated QC were reciprocally 
informative, and their synergy was necessary for a sensitive 
evaluation of fMRI quality at all stages of the data life cycle. 
We hope this work contributes to the understanding, dissemination, 
and standardization of QC testing and QC reporting among peers 
and in scientific journals.
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