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Brain motion networks predict 
head motion during rest- and 
task-fMRI
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Introduction: The capacity to stay still during scanning, which is necessary to 
avoid motion confounds while imaging, varies markedly between people.

Methods: Here we  investigated the effect of head motion on functional 
connectivity using connectome-based predictive modeling (CPM) and publicly 
available brain functional magnetic resonance imaging (fMRI) data from 414 
individuals with low frame-to-frame motion (Δd < 0.18 mm). Leave-one-out was 
used for internal cross-validation of head motion prediction in 207 participants, 
and twofold cross-validation was used in an independent sample (n = 207).

Results and Discussion: Parametric testing, as well as CPM-based permutations 
for null hypothesis testing, revealed strong linear associations between observed 
and predicted values of head motion. Motion prediction accuracy was higher for 
task- than for rest-fMRI, and for absolute head motion (d) than for Δd. Denoising 
attenuated the predictability of head motion, but stricter framewise displacement 
threshold (FD = 0.2 mm) for motion censoring did not alter the accuracy of the 
predictions obtained with lenient censoring (FD = 0.5 mm). For rest-fMRI, prediction 
accuracy was lower for individuals with low motion (mean Δd < 0.02 mm; n = 200) 
than for those with moderate motion (Δd < 0.04 mm; n = 414). The cerebellum and 
default-mode network (DMN) regions that forecasted individual differences in d and 
Δd during six different tasks- and two rest-fMRI sessions were consistently prone to 
the deleterious effect of head motion. However, these findings generalized to a novel 
group of 1,422 individuals but not to simulated datasets without neurobiological 
contributions, suggesting that cerebellar and DMN connectivity could partially 
reflect functional signals pertaining to inhibitory motor control during fMRI.
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Introduction

Head motion causes artifacts during magnetic resonance imaging (MRI; Friston et al., 1996; 
Rohde et al., 2004) and other neuroimaging modalities (Cooper et al., 1992; Nehmeh and Erdi, 
2008; Catana et al., 2011), which is why patients are instructed not to move their heads during 
scanning. However, the capacity to lie still during scanning varies markedly between people, 
being dependent among other factors on brain maturation and hence much worse in children 
than adults (Poldrack et  al., 2002). It is also impaired in some neurodevelopmental and 
neurodegenerative disorders such as attention deficit hyperactivity disorder (ADHD), autism, 
and dementias (Maknojia et al., 2019).
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Head motion is particularly concerning for MRI studies of brain 
functional connectivity (Birn et  al., 2006; Power et  al., 2012; 
Satterthwaite et al., 2012; Van Dijk et al., 2012) because it can cause 
systematic group differences in connectivity (Andrews-Hanna et al., 
2007; Fair et  al., 2007; Damoiseaux et  al., 2008; Fair et  al., 2008; 
Greicius, 2008; Dosenbach et  al., 2010) and can even mimic trait 
correlates of behavior (Siegel et  al., 2017). While functional MRI 
(fMRI) studies treat motion-related signals as artifacts, removing 
imaging data with excessive motion (Power et al., 2012; Satterthwaite 
et al., 2012; Van Dijk et al., 2012; Fassbender et al., 2017; Hong et al., 
2019; Maknojia et al., 2019), most studies have not investigated if 
group differences in head movement explain the reported connectivity 
differences between patients and controls (Buckner et al., 2013). Also, 
the time frames that drive whole-brain functional connectivity are 
almost never among those censored for excessive in-scanner motion 
(Betzel et al., 2022).

Nonetheless the previously reported association between default 
mode network (DMN) connectivity and in-scanner head motion 
during resting-state fMRI could reflect greater self-referential mental 
activity, which could facilitate the person’s ability to stay still during 
scanning. Specifically, higher functional connectivity between distant 
default-mode network (DMN) regions was reported in subjects with 
low head motion compared to those with high motion (Zeng et al., 
2014). However, this study did not find within-subject differences in 
connectivity between fMRI sessions with low and high motion (Zeng 
et  al., 2014), suggesting that between subjects differences in head 
motion reflect a neurobiological trait (Pujol et al., 2014). However, no 
study to our knowledge has evaluated whether functional connectivity 
can predict an individual’s head motion behavior, nor what regions or 
networks predominantly contribute to in-scanner head movement or 
might be more sensitive to motion artifacts.

Here we  tested the hypothesis that individual differences in 
functional connectivity can be  used to predict in-scanner head 
motion. For this purpose, we analyzed brain imaging data of 414 
healthy adults who underwent six different task-fMRI and two rest-
fMRI sessions from the Human Connectome Project (HCP). 
We investigated the reproducibility of head motion prediction in two 
independent HCP samples, each with 207 healthy individuals, and two 
novel groups from the Brain Genomics Superstruct Project (GSP), 
each with 711 healthy young adults.

Materials and methods

HCP datasets

The datasets used in this study were extracted from the HCP 1,200 
Subjects data release.1 HCP participants provided written informed 
consent as approved by the Institutional Review Board (IRB) at 
Washington University. To avoid phase encoding bias, the analyses 
were restricted to participants for whom both phase-encoding scans 
(left–right, LR; right–left, RL) for the two rest-fMRI sessions (R1 and 
R2; collected on two different days) and all six task-fMRI sessions 
(emotion, relational, motor, working memory, language, and 

1 http://www.humanconnectome.org/

gambling; Barch et al., 2013) were complete and available. Individuals 
were excluded from the study due to incomplete image datasets, image 
artifacts (identified with the aid of principal component analysis), or 
excessive head motion (frame-to-frame displacement, Δd > 0.18 mm). 
We chose this motion threshold to ensure sufficient sensitivity to head 
motion taking into account that the magnitude of motion-related 
fMRI signal changes scales with the magnitude of head motion 
(Satterthwaite et  al., 2013b) and that micromotion > 0.2 mm can 
systematically bias estimates of resting-state functional connectivity 
(Van Dijk et al., 2012). The 414 participants were half-split into the 
Training sample for the optimization of prediction models, and the 
Test sample for the twofold cross-validation of the prediction models 
in an independent set of subjects. The samples were matched so there 
was no significant age or sex differences between the Training and Test 
samples (Table 1). Only one family member was kept in the study.

GSP datasets

In addition, we  used imaging data from 1,422 healthy young 
adults (21.5 ± 2.9 years old; 800 females) from the Brain Genomics 
Superstruct Project2 to cross-validate the prediction in an independent 
dataset. GSP individuals provided written informed consent approved 
by the Partners Health Care IRB and the Harvard University 
Committee on the Use of Human Subjects in Research and agreed to 
data sharing.

fMRI tasks

We aimed to test linear associations of head motion with 
functional connectivity strength during the resting state, and during 
the performance of cognitive, emotional, and motor fMRI tasks. Thus, 
in the HCP dataset we selected eight fMRI sessions, including those 
collected during the resting state (R1 and R2) and during the 
performance of 6 different tasks, which are described in detail 
elsewhere and target the following domains (Barch et  al., 2013): 
Emotion, EMO (Hariri et al., 2002); Relational processing, REL (Smith 
et al., 2007); Motor, MOT (Buckner et al., 2011; Yeo et al., 2011); 
N-back working memory, WM (Barch et al., 2013); Language, LAN 
(Binder et al., 2011); and Gambling, GAM (Delgado et al., 2000).

MRI acquisition and image analyses

HCP datasets
Functional images with high spatiotemporal resolution were 

acquired in a 3.0 T Siemens Skyra scanner (Siemens Healthcare, 
Erlangen, Germany) with a 32-channel coil using a gradient echo-
planar imaging (EPI) sequence (multiband factor 8, repetition time, 
TR = 720 ms, echo time, TE = 33.1 ms, flip angle 52°, 104 × 90 matrix 
size, 72 slices, and 2 mm isotropic voxels) with whole brain coverage 
(including the cerebellum) and automated alignment of slice 
positioning (e.g., “AutoAlign” mode; Smith et al., 2013; Uğurbil et al., 

2 https://www.neuroinfo.org/gsp
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2013). Scans were repeated twice using left–right (LR) and right–left 
(RL) phase encoding directions. For the resting-state scans, the 
scanner room was darkened, and subjects were asked to lie with eyes 
open and not to fall asleep while fixating on a white cross (on a dark 
background) think of nothing, relax, and to remain still during 
scanning. The T1-weighted 3D magnetization-prepared gradient-echo 
image (Mugler and Brookeman, 1990; MP-RAGE; TR/
TE = 2,400/2.14 ms, TI = 1 s, FA = 8°) and variable flip angle turbo spin-
echo (Mugler et al., 2000; Siemens SPACE; TR/TE = 3,200/565 ms) 
pulse sequences were used to acquire high-resolution anatomical 
brain images with 0.7 mm isotropic voxels and field-of-view 
(FOV) = 224 mm × 224 mm. We used the “minimal preprocessing” 
datasets released by the HCP, which include gradient distortion 
correction, rigid-body realignment, field-map processing, and spatial 
normalization to the stereotactic space of the Montreal Neurological 
Institute (MNI; Glasser et al., 2013).

GSP datasets
Imaging data were collected on matched 3 T Tim Trio scanners 

(Siemens Healthcare, Erlangen, Germany) at Harvard University and 
Massachusetts General Hospital using a 12-channel phased-array 
head coil. Gradient-echo EPI (TR = 3 s; TE = 30 ms; flip angle = 85°, 47 
slices, 3 mm isotropic resolution; 124 measurements) with whole-
brain coverage, including the entire cerebellum, was used to acquire 
functional images with blood oxygenation level-dependent (BOLD) 
contrast. Participants were instructed to remain still, stay awake, and 
keep their eyes open during fMRI. Multi-echo T1-weighted 
magnetization-prepared gradient-echo (MP-RAGE; van der Kouwe 
et al., 2008) imaging (TR = 2.2 s; TE = 1.5/3.4/5.2/7.0 ms; flip angle = 7°; 
TI = 1.1 s; 144 slices, 1.2 mm isotropic resolution) was used to acquire 
anatomical images. The FreeSurfer (version 5.3.0) package3 (Fischl 
et al., 2002) was used to automatically segment anatomical MRI scans 
into cortical and subcortical gray matter structures. Functional images 

3 http://surfer.nmr.mgh.harvard.edu

were screened for artifacts and excessive motion. The first four image 
volumes were discarded for signal stabilization purposes. The 
University of Oxford’s Center for Functional Magnetic Resonance 
Imaging of the Brain (FMRIB) Software Library (FSL version 5.0)4 was 
used for image realignment (to correct for head motion with 
MCFLIRT, Motion Correction using FMRIB’s Linear Image 
Registration Tool), and for spatial normalization to the MNI152 
template using 3 mm isotropic voxels (with FLIRT, the FMRIB’s Linear 
Image Registration Tool; Jenkinson et al., 2002; Smith et al., 2004).

In addition, displacement timeseries reflecting how much a given 
voxel moved as a function of time were simulated by applying the 
affine transformations from image realignment to the first volume 
(Satterthwaite et  al., 2013a). These simulated time series were 
realigned and spatially normalized to the MNI space.

Head motion
The Euclidian norms of head displacement and frame-to-frame 

velocity, di  and ∆ id , were calculated from image realignment 
parameters (translations along x, y, and z with respect to the first 
volume) for each timepoint, i:
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and the average root-mean-square (RMS) values of di  and ∆ id , 
across LR and RL scans and timepoints, were used as summary 
metrics of absolute (d; measured from t = 0) and relative (frame-to-
frame; Δd) head motion, respectively, in mm.

Framewise displacements (FD) were computed for every time 
point from head translations and rotations:
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4 http://www.fmrib.ox.ac.uk/fsl

TABLE 1 Demographics and residual time-averaged root-mean-square (RMS) estimates of absolute (d) and relative (Δd) motion for the first 150 frames 
that survived scrubbing with framewise displacement threshold of 0.2 mm for Training and Test HCP samples.

HCP Training Test P # Frames 
removed

Age [years] 29(4) 29(4) ns

Sex (M/F) 84/123 87/120 ns

d [mm] mean (SD) Δd [mm] mean (SD) d [mm] mean (SD) Δd [mm] mean (SD) (d) (Δd) mean (SD)

WM 0.14(0.12) 0.029(0.014) 0.12(0.08) 0.028(0.011) 0.03 ns 1.1(3.3)

LAN 0.16(0.14) 0.038(0.017) 0.14(0.15) 0.035(0.014) ns ns 0.9(2.4)

REL 0.23(0.16) 0.052(0.024) 0.21(0.11) 0.048(0.019) ns ns 1.8(2.8)

MOT 0.19(0.10) 0.043(0.018) 0.17(0.10) 0.041(0.016) ns ns 1.8(3.9)

GAM 0.17(0.09) 0.046(0.021) 0.16(0.08) 0.042(0.016) ns ns 0.7(1.8)

EMO 0.30(0.22) 0.065(0.030) 0.24(0.11) 0.060(0.024) 0.001 ns 0.7(1.8)

R1 0.04(0.02) 0.010(0.004) 0.04(0.02) 0.009(0.003) 0.05 ns 0.6(1.7)

R2 0.04(0.02) 0.010(0.005) 0.04(0.02) 0.009(0.004) ns ns 0.7(1.6)

EMO, emotion; LAN, language; REL, relational; GAM, gambling; MOT, motor; and WM, working memory; R1, rest1; and R2, rest2. #Frames: Average number of frames removed by 
scrubbing in 0 < t < 2 min.
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where rotational angles, α, β, and γ (in radians) were converted to 
displacements on the surface of a sphere of radius 50 mm as in 
previous work (Power et al., 2012). Time points were excluded if the 
RMS change in BOLD signals frame-to-frame was larger than 0.5%, 
and exceeded the censoring threshold FDi > 0.5 mm (or FDi > 0.2 mm; 
Power et al., 2015). Global signal regression (GSR) was used in all 
evaluated data to remove non-neuronal sources that contribute to the 
global signal (Power et  al., 2014). Low-pass filtering (0.10 Hz 
frequency cutoff) was used to attenuate physiologic noise of high-
frequency components.

Effect of pipeline choices for noise suppression
To assess the effect of motion on functional connectivity 

we studied fMRI datasets with and without removal of motion-related 
signals using linear regression with the time-varying realignment 
parameters (Tomasi and Volkow, 2010) and independent component 
analysis (ICA)-based X-noiseifier, an ICA-based automatic noise 
detection algorithm that can minimize various types of noise sources 
including head motion (Salimi-Khorshidi et al., 2014).

Functional connectome
Connectivity matrices, M, were constructed for each fMRI dataset 

and subject, using the corresponding preprocessed 4D time series. To 
assess the functional connectivity between regions-of-interest (ROIs) 
we used the Interactive Data Language (IDL, L3Harris Geospatial, 
Broomfield, CO). Three different brain atlases were used to provide 
ROIs: 1) Automated Anatomical Labeling (AAL)—Tzourio-Mazoyer 
et  al. (2002) and 2) Shen et  al. (2013), both of which include the 
cerebellum and subcortical regions and 3) Gordon et al. (2016), which 
does not include the cerebellum and subcortical regions, to assess the 
effect of brain parcellation on the accuracy of the behavioral prediction 
model. In addition, we combined the cortical partitions of the Gordon 
atlas with the 26 subcortical (including the brainstem) and 41 
cerebellar partitions of the Shen atlas in a new whole-brain atlas with 
400 partitions (Gordon400). Pearson correlation coefficients between 
pairs of ROI time courses were calculated independently for LR and 
RL scans and normalized to z-scores using the Fisher transformation. 
This resulted in 116 × 116 (AAL), 268 × 268 (Shen), 333 × 333 
(Gordon), and 400 × 400 (Gordon400) symmetric connectivity 
matrices for each fMRI session and participant. The LR and RL 
correlation matrices corresponding to the same functional session 
were averaged to increase signal-to-noise. To allow for comparisons 
between task- and rest-fMRI results that were not biased by unequal 
data sampling, only the first 150 frames (to correspond with the short 
duration of the Emotion task-fMRI; ~2 min; 176 time points) of the 
time series that survived scrubbing were used to compute the 
corresponding M.

Head motion prediction model

The optimization of the prediction models was carried out using 
connectome-based predictive modeling (CPM; Shen et  al., 2017) 
using leave-one-out cross-validation. Specifically, at each of n 
iterations, one of the n individuals was excluded and the four CPM 
steps, feature selection, feature summarization, model building, and 
assessment of prediction significance were carried sequentially n times 
in an iterative fashion as follows. Feature selection: Pearson correlation 

was used to assess associations between head motion scores and each 
element of the connectivity matrices (Mij) in the Training sample. 
Matrix elements that had significant positive or negative correlations 
with the observed head motion scores (RMS values of d and Δd) were 
identified as edges of the positive or negative adjacency matrices and 
included in the model. Two thresholds were tested (p < 0.01 or 0.05) 
for feature selection to ascertain that results did not depend on 
arbitrary threshold selection. Feature summarization: Edges with 
positive (negative) correlation with motion scores were added to 
compute the positive (negative) network strength, X (Y). Model 
building: a bilinear model was fitted to the data across the 
n-1 individuals.

 Ψ = + +a b cX Y  (3)

Here a, b, and c are model parameters, Ψ is the observed head 
motion score, and X and Y are the positive and negative network 
strengths derived from the connectivity matrices. We also assessed 
linear models purely driven by positive or negative features by setting 
c = 0 or b = 0. Assessment of prediction significance: The model was then 
used to predict the head motion score of the remaining individual 
from his/her corresponding positive and negative network strengths.

In addition, we used a twofold cross-validation approach to assess 
how the CPM results generalize to an independent data set. 
Specifically, the CPM model and features derived from the Training 
sample were used to predict head motion in the independent Test 
sample. Finally, the Training and Test samples were swapped (e.g., the 
CPM model and features derived from the Test sample were used to 
predict head motion in the independent Training sample) to complete 
the cross-validation.

Statistical analyses

The Shapiro–Wilk normality test (Shapiro and Wilk, 1965) was 
used to confirm the normal distribution of the functional connectivity 
strength. Thus, Pearson correlation was used to assess prediction 
accuracy, unless otherwise specified. Since Training and Test were 
independent samples, we  used parametric statistics to assess the 
statistical significance of group differences in correlation between 
observed and predicted motion scores. To test for differences between 
two dependent correlations sharing one variable we  used the 
Williams’s test (Williams, 1959), and for correlations with different 
variables we  used the Steiger’s test (Steiger, 1980). The cortical 
networks were labeled using the Yale network definitions (Noble and 
Scheinost, 2020). Statistically significant correlations for a sample size 
n = 207 were set at p < 3.213E-03, corresponding to R = 0.204, using 
Bonferroni corrections for 16 comparisons (8 fMRI sessions × 2 
motion measures). The Bonferroni method was also used to correct 
for multiple comparisons the results from within- and between-
network predictions with the Gordon400 parcellation atlas (14 
networks). Specifically, Bonferroni corrections were carried with 14 
(within-network; R > 0.2) or 91 (between-network; R > 0.23) 
comparisons. A permutation framework was used for null hypothesis 
significance testing. Specifically, 1,000 random permutations of head 
motion scores were used to assess the distribution of prediction 
accuracy under possible rearrangements of motion scores.
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Results

The realignment estimates of motion (d; i.e., “absolute motion”) 
were significantly lower for rest (d = 0.04 mm ± 0.02 mm) than for task 
sessions (d = 0.19 mm ± 0.14 mm; p < 2E-16; Figure 1). Similarly, the 
frame-to-frame motion estimates (Δd; i.e., “relative motion”) were 
significantly lower for rest (Δd = 0.010 ± 0.004 mm) than for task 
sessions (Δd = 0.044 mm ± 0.022 mm; Figure 1). There were no sex 
differences, but older age was associated to lower d and Δd (p < 0.004, 
F = 11.3, df = 3,302, ANOVA).

Prediction of head motion from fMRI data

We found a strong linear association between observed and 
predicted values of d using Spearman correlation (ρ > 0.59; p < 2.2E-16; 
Figure 2A). Prediction models based on positive and negative network 
strength performed similarly across fMRI sessions in the Training 
sample (Figure 2B), in agreement with prior studies (Finn et al., 2015), 
supporting the notion that the negative and positive networks contain 
redundant information (Rosenberg et  al., 2016). The correlation 
between observed and predicted absolute motion scores across 
subjects (“R,” a benchmark of prediction accuracy) did not differ 
between task- or rest-fMRI sessions across all parcellations (p > 0.3, 
2-sided t-test). Across linear and bilinear models, prediction accuracy 
was higher for Gordon than Shen and AAL and for Shen than AAL 
parcellations (p < 1E-03, 2-sided paired t-test; Figure 2C). The linear 

associations between observed and predicted measures of Δd were 
like those of d (Figure 3). Across fMRI sessions and models, motion 
prediction accuracy was lower for Δd than d, independently for the 
Training and Test sessions (p < 0.01, 2-sided paired t-test, 
Figures 2D, 3D).

Validation in an independent sample

We confirmed the generalizability of the linear association 
between head motion and functional connectivity in the Test sample 
(e.g., using twofold cross-validation). Specifically, for each participant 
in the independent Test sample (n = 207) we predicted head motion 
from the positive and negative features and the model parameters 
derived from the Training sample (Figure 2E). In the Test sample, 
prediction accuracy was lower for Gordon than Shen and AAL 
parcellation (p < 0.01, 2-sided paired t-test). In the Test sample, we also 
found that all prediction models performed similarly across fMRI 
sessions. Δd-prediction accuracy was lower for the Test sample than 
for the Training sample (p < 5E-07, 2-sided paired t-test, df = 23; 
Figure 3F).

Sensitivity to motion

Functional connectivity studies frequently address motion 
concerns by minimizing BOLD signals associated with head motion. 

A B C

D E F

FIGURE 1

Residual head motion. Density plots showing across-subjects’ distributions of residual time-averaged root-mean-square (RMS) estimates of absolute 
(d) and relative (Δd) motion, and the number of frames removed with framewise displacement (FD) thresholds of 0.5 mm (A–C) and 0.2 mm (D–F) for 6 
task-fMRI sessions: (EMO: emotion; LAN: language; REL: relational; GAM: gambling; MOT: motor; and WM: working memory) and 2 rest-fMRI session 
(R1: rest1; and R2: rest2). Sample size: 414 healthy young adults.
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Popular approaches for this are based on (1) linear regression of rigid-
body realignment parameters (Satterthwaite et  al., 2013a) and 
ICA-based denoising algorithms that can minimize various types of 
noise sources, including head motion (Behzadi et al., 2007; Salimi-
Khorshidi et al., 2014; Pruim et al., 2015); and (2) the removal of 

subjects with excessive micro-motion (Van Dijk et al., 2012). Here 
we used these approaches to assess the sensitivity of the head motion 
prediction model to the amount of motion in the data. The removal of 
214 individuals from the original cohort of 414 individuals (“moderate 
motion”) who had micro motion 0.18 mm > Δd > 0.08 mm in at least 

A

B

C D

E F

FIGURE 2

Prediction of absolute head motion. (A) Observed absolute head motion during fMRI sessions was predicted from positive and negative network 
strengths in “left out” individuals of the Training sample (n = 207), using leave-one-out cross-validation for working memory (WM). (B) Correlation 
factor (R) between observed and predicted absolute motion excursions (d) did not differ across models purely based on positive, negative network 
strength, or both. Prediction accuracy (R) across brain parcellations (C) and for absolute and relative motion (Δd; D) in the training sample. 
(E) Functional connectivity predicted absolute head motion in an independent set of individuals (“Test sample”; n = 207) using optimal models and 
features derived from the Training sample for the bilinear model for WM. (F) Prediction accuracy for absolute motion in Test and Training samples. 
---p < 0.05, Bonferroni corrected for 16 comparisons. Shen parcellation atlas. EMO, emotion; LAN, language; REL, relational; GAM, gambling; MOT, 
motor; and WM, working memory; R1, rest1; and R2, rest2. Sample size: 414 healthy young adults. Censoring threshold 0.5 mm.
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one of the fMRI sessions resulted in a subsample of 200 individuals 
with “low motion” (Δd < 0.08 mm). The low-motion subsample was 
split into 2 groups of 100 individuals for CPM training and 
testing purposes.

Compared to datasets with moderate motion, datasets with 
ICA-based denoising (i.e., “noise suppression”) demonstrated slightly 
attenuated head motion prediction, independently for d and Δd 
(p < 0.05, ANOVA; Figures 4A,B) and those with low motion did not 

A

B

C D

E F

FIGURE 3

Prediction of relative head motion. (A) Observed relative head motion during fMRI sessions was predicted from positive and negative network strengths 
in “left out” individuals of the Training sample (n = 207), using leave-one-out cross-validation. (B) Correlation factor (R) between observed and 
predicted relative motion excursions (Δd), as a function of fMRI session and model. Prediction accuracy (R) across brain parcellations in the training 
sample (C) and for absolute and relative motion (Δd; D) in the test sample. (E) Functional connectivity predicted relative head motion in an 
independent set of individuals (“Test sample”; n = 207) using optimal models and features derived from the Training sample for the bilinear model for 
WM. (F) Prediction accuracy for relative motion in test and training samples. ---p < 0.05, Bonferroni corrected for 16 comparisons. Shen parcellation 
atlas. EMO, emotion; LAN, language; REL, relational; GAM, gambling; MOT, motor; and WM, working memory; R1, rest1; and R2, rest2. Sample size, 414 
healthy young adults. Censoring threshold 0.5 mm.
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predict d or Δd in the Test sample (Figure 4C), consistent with the 
removal of signals correlated with rigid body motion.

We also confirmed the significance of the findings, against the null 
hypothesis that functional connectivity would not predict head 
motion, using a permutation test in which head motion (d or Δd) did 
not correspond to functional connectivity datasets across individuals. 
Under the null hypothesis, prediction accuracy had a bell-shaped 
distribution of σ = 0.09 (Figure 4D).

Scrubbing (censoring) is also a popular approach to control for 
head motion artifacts in functional connectivity (Power et al., 2012, 
2014, 2015). Both for d and Δd, prediction accuracy did not differ 
when computed from datasets with different censoring threshold 
(FDi < 0.2 mm, Figure  5 vs. FDi < 0.5 mm, Figures  2F, 3F; 
p > 0.15, ANOVA).

Within- and between-network predictions

Next, we  assessed prediction accuracy for specific network 
connections by restricting the features to either within-network or 
between-network edges. We used the 14 resting-state networks in the 
Gordon400 parcellation and R1 datasets with extremely low motion 
[d = 0.04(0.02) mm; Δd = 0.010(0.004) mm]. d- and Δd-prediction 
accuracies were statistically significant across within- or between-
network edges and were higher for Training than Test samples 
(p < 2.2e-16; Figure 6). In the Test sample, prediction accuracy varied 
significantly across networks when using within-network edges 
(>54%; Figure  6) but less so when using between-network edges 
(<27%). In the Test sample, within-network prediction accuracy was 
significant only for the visual and ventral attention networks, 
subcortical regions, and the cerebellum but was significant for most 

between-network edges, independently for d and Δd (p  < 0.05, 
corrected). Similar results emerged from task-fMRI datasets 
(not shown).

Predictions from simulations

To rule out potential neuronal contributions to motion prediction 
we assessed head motion prediction accuracy in simulated datasets in 
which the time-varying signals reflected only the real translations and 
rotations of GSP datasets, but not BOLD signal changes. Compared to 
the significant and reproducible d- and Δd-predictions obtained with 
the real GPS data, prediction accuracy in simulated data was very 
weak for Δd and did not reach significance for d, both for GSP1 and 
GSP2 (Figure 7).

Common motion-sensitive network

Hypothesizing that a unique subset of positive and negative 
network edges can be used to predict head motion for any of the 
fMRI sessions and using the moderate motion subsamples 
we  identified edges that overlapped 25% or more across fMRI 
sessions, independently for positive and negative networks. Using 
Shen atlas partitions, the overlapping networks that predicted d 
had 100 positive edges and 52 negative edges, which predominantly 
emanated from bilateral hubs in the cerebellum Crus II (Figure 8A; 
Table  2) as well as medial DMN (anterior cingulum, superior 
medial frontal, and inferior temporal cortices) and salience 
network (SN; insula) regions, and the calcarine cortex (Figure 8A; 
Table 2). Positive edges predominantly reflected connections to 

A B

C D

A B

C D

FIGURE 4

Sensitivity to motion signals: Predictability of relative (right panel) and absolute (left panel) head motion from functional connectivity datasets (R1: rest1; 
R2: rest2) in the Training (n = 207) and Test (n = 207) samples with “moderate motion” (Δd < 0.04 mm), without (A) and with (B) ICA-denoising (i.e., “noise 
suppression”), and in a “low motion” subsample of 200 (Training: 100; Test = 100) individuals (Δd < 0.02 mm); (C) Density plots showing distributions of 
prediction accuracy obtained from 1,000 random permutations of d or Δd across individuals in the moderate motion sample for each fMRI session (D). 
---p < 0.05, Bonferroni corrected for 2 comparisons. Shen parcellation atlas. Bilinear model. Censoring threshold 0.5 mm.
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A B

FIGURE 5

Sensitivity to head motion with censoring threshold 0.2 mm: Absolute (d; A) and relative (Δd; B) motion prediction accuracies from functional 
connectivity datasets. Training (n = 207) and Test (n = 207) samples. ---p < 0.05, Bonferroni corrected for 16 comparisons. Shen parcellation atlas. 
Bilinear model.

A B

C D

FIGURE 6

Within- and between-network predictions. Absolute (d; A,B) and relative (Δd; C,D) motion prediction accuracies that emerged from 
within-network (A,C) and between-network (B,D; the threshold R > 0.23 corresponds to p < 0.05, Bonferroni corrected for 91 comparisons) 
edges of the functional connectivity matrix from R1. Training (n = 207) and Test (n = 207) samples. ---p < 0.05, Bonferroni corrected for 14 
comparisons. Gordon400 parcellation atlas. AN, auditory; CO, cingulum-operculum; CP, cingulum-parietal; DAN, dorsal-attention; DMN, 
default-mode; FPN, frontoparietal; RT, retrosplenial-temporal; SMh, sensorimotor-hand; SMm, sensorimotor-mouth; VAN, ventral attention; 
and VN, visual networks; CER, cerebellum; and SC, subcortical regions.
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contralateral regions (left–right cerebellum, left–right prefrontal 
cortex, PFC) and negative edges reflected ipsilateral and 
contralateral anterior-to-posterior connections (cerebellar-PFC). 
The overlapping networks that predicted Δd were more restricted 
than those that predicted d, and had 14 positive and 44 negative 
edges that predominantly emanated from lateral (inferior and 
middle temporal gyri) and medial (superior medial frontal gyrus 
and precuneus) DMN, and FPN (left temporal pole) networks 
(Figure 8B; Table 3).

Next, we tested the prediction power of these overlapping features 
in the Training and Test subsamples. Specifically, we  computed 
network strength from positive and negative edges of the overlapping 
networks, which we refer to as ‘motion-sensitive networks’ and found 
that these features predicted head motion in all fMRI sessions with 
similar accuracy in the Training and Test subsamples, both for d and 
Δd (Figure 8C, left and middle panels).

Further support for the involvement of these motion-sensitive 
networks in head motion prediction emerged from an independent 
validation study in 1,422 healthy young adults who underwent resting-
state fMRI with standard spatiotemporal resolution (3 mm-isotropic; 
3 s TR) under the GSP study (Holmes et  al., 2015). Specifically, 
we found that motion-sensitive network strengths, computed using 
the positive and negative edges defined in the HCP absolute motion-
sensitive network and the corresponding parameters of the bilinear 
model (Figure 8A), predicted d (0.13 mm ± 0.08 mm; mean ± sd) in 
two age- and gender-matched samples of 711 individuals: GSP1 
(21.5 ± 2.9 years; 394 females) and GSP2 (21.5 ± 2.9 years; 406 females), 
with similar accuracy to that in the HCP subsamples (R ~ 0.3; 
Figure 8C). However, the predictability of Δd (0.04 mm ± 0.02 mm/
TR; mean ± sd) in the GSP datasets, based on the Δd-motion-sensitive 
network and the parameters of the bilinear model (Figure 8B), was not 
consistent across GSP1 and GSP2 (Figure 8C). In simulated data, the 
parameters of the bilinear model and positive and negative edges of 
the d- and Δd-motion-sensitive networks (Figures 7B, 8A) predicted 
Δd in GSP1 and d in GSP2, with significantly lower accuracy than in 
real data (Figure 8C).

Discussion

Here we identify two motion-sensitive networks that predicted 
individual differences in head motion across six different task-fMRI 
and two rest-fMRI sessions. Reproducible predictions emerged from 
a Training sample of 207 individuals, using internal validation, and 
from an independent sample of 207 novel individuals, using twofold 
cross-validation. Head motion prediction was robust to changes in 
motion metric (d or Δd), task-rest condition, brain parcellation, and 
model, demonstrating that results were stable and reproducible. 
We  further validated our head motion prediction model in two 
independent datasets of 711 individuals, but similar validations failed 
in simulated datasets without neurobiological contributions. The 
predictability of head motion despite the relatively small frame-to-
frame translations in this work (Δd ~ 0.04 mm), compared to the 
stringent 0.2 mm micro motion threshold (Van Dijk et  al., 2012), 
suggests that even extremely low amounts of head motion can 
influence functional connectivity.

The predictability of d is both surprising and interesting because 
“absolute motion” is a summary measure of slow motion rather than 
one of velocity. Here we show for the first time that the cerebellum 
(Crus II) reliably contributed to the prediction of d, whereas lateral 
DMN components (temporal cortex) contributed to the prediction of 
Δd. The specificity of the cerebellum to d-prediction accuracy suggests 
that Crus II is particularly sensitive to slow head motion. The 
specificity of the lateral temporal DMN areas to Δd-prediction 
accuracy suggests that this DMN subsystem is particularly sensitive to 
rapid head motion. However, the highly reproducible predictions of 
motion from within- and between-network edges (Figure  6) is 
consistent with the notion that all the networks are associated with 
head movement (Satterthwaite et al., 2013a), and not only the Crus II 
and temporal DMN regions.

A frequent approach to control for motion in functional 
connectivity studies is to exclude data with large Δd (Power et al., 
2012; Satterthwaite et  al., 2012; Van Dijk et  al., 2012) while little 
attention is given to d. However, our data shows that excluding data 
based on Δd may not be sufficient to warrant the absence of motion 
effects on functional connectivity. Indeed, we  show that motion 
prediction was higher for d than Δd. Furthermore, functional 
connectivity data predicted both d and Δd despite the use of current 
methods to attenuate the influence of head motion on fMRI. Prior 
studies showed that scrubbing with FD > 0.2 mm attenuated negative 
(but not positive) correlations between head motion (i.e., the average 
residual FD) and fMRI signals suggesting that negative relationships 
are likely to originate from motion artifacts (Yan et  al., 2013). 
However, prediction accuracy from datasets with low motion 
(Δd ~ 0.04 mm) did not differ when computed from positive or 
negative edges or when using stringent (FD > 0.2 mm) or lenient 
(FD > 0.5 mm) scrubbing thresholds.

Task-based fMRI studies, which frequently restrict head 
movement to minimize task-correlated motion artifacts, have 
demonstrated that older adults and patient populations move more 
during scanning than healthy controls (Seto et al., 2001; Yuan et al., 
2009; Haller et  al., 2014). Moreover, some have suggested that 
in-scanner head motion could be heritable (Engelhardt et al., 2017). 
Head motion is particularly problematic for resting state fMRI studies 
in pediatric populations, where an inverse relationship exists between 
head motion and age (Frew et  al., 2022). Note that children have 

FIGURE 7

Prediction accuracy in real and simulated data. Absolute (d) and 
relative (Δd) motion prediction accuracies from real and simulated 
functional connectivity datasets from the Brain Genomics 
Superstruct Project (GSP1, as the training sample, and GSP2, as the 
test sample; n = 711, each). Brain parcellation: Shen; Model: bilinear. 
---p < 0.05, Bonferroni corrected.

https://doi.org/10.3389/fnins.2023.1096232
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Tomasi and Volkow 10.3389/fnins.2023.1096232

Frontiers in Neuroscience 11 frontiersin.org

greater difficulty in staying still during scanning than adults, due in 
part to the incomplete maturation of prefrontal cortical regions 
necessary for self-regulation, and also their propensity to boredom 
and anxiety (Morel et al., 2019). However, anxiety concerns are also 
relevant to adults, many of whom report some level of anxiety when 
undergoing MRI scans (Dziuda et al., 2019).

Pathological conditions or demographic parameters such as age 
can influence in-scanner head motion (Saccà et al., 2021). Thus, our 
findings on young healthy subjects could differ from those in older or 
pathological populations. Future studies are needed to investigate the 
extent to which this could be disentangled into contributions from the 
different components of the displacement (i.e., translational, 
rotational) and the effect of respiratory artifacts (Fair et al., 2020). It is 

challenging to explore all possible alterations in image preprocessing 
choices that might potentially interact with head motion. The use of 
different MRI acquisition protocols and preprocessing pipelines could 
reduce the reproducibility across HCP and GSP datasets. Nevertheless, 
the use of a different image acquisition protocol and preprocessing 
pipeline in the GSP and HCP datasets, allowed us to generalize our 
findings on motion prediction to different image acquisition protocols 
and preprocessing pipelines.

Since deleterious effects of head motion on fMRI data are well-
documented (Power et al., 2012; Satterthwaite et al., 2012; Van Dijk 
et al., 2012) and considering that true brain-behavior associations 
have small effects (Marek et al., 2022) the predictions of head motion 
in this work likely reflect correlations of time-varying artifacts among 

A

B

C

FIGURE 8

Motion-sensitive networks. Motion-network reflecting the 50% overlap of positive (─) or negative (─) networks that predicted absolute (A) and relative 
(B) head motion across 8 fMRI sessions and Training and Test subsamples, each of 207 individuals with moderate motion, and a glass brain plot where 
each node is represented as a sphere of size proportional to the number of edges of the node (right). The BioImage Suite Web (https://
bioimagesuiteweb.github.io) was used to create these figures. (C) The motion-networks predicted absolute and relative head motion for both HCP 
samples and for real sessions from the Brain Genomics Superstruct Project (GSP1 and GSP2; n = 711, each). Brain parcellation: Shen; Model: bilinear. 
---p < 0.05, Bonferroni corrected. Bilinear model parameters: a = 0.016; b = 0.005; c = −0.010.
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brain regions that are highly sensitive to motion. However, the poor 
prediction accuracy obtained with simulated fMRI data reflecting 
rigid-body motion contrasts with the successful validation of the 
prediction model in real data (Figure 8C), does not allow us to rule 
out the potential contributions of neurobiological origins in the 
prediction of d.

Together, our findings show that functional connectivity is a 
reproducible predictor of head motion and identify cerebellar and 
DMN subsystems that are highly sensitive to absolute and 
relative micromotion.
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TABLE 2 Degree and coordinates of the 9 major hubs of the absolute ‘motion-sensitive network’ in the stereotactic space of the Montreal Neurological 
Institute (MNI).

Node Region BA/nucleus Degree MNI coord [mm] Region

x y z

100 Cerebellum Crus II 20 32 −78 −40 CB

242 Cerebellum Crus II 15 −30 −80 −40 CB

155 Insula 47 9 −33 22 6 SN

215 Calcarine 17 5 −6 −81 12 VN

185 Inferior Temporal 21 5 −38 3 −38 DMN

148 Sup medial frontal 8 5 −11 34 51 DMN

140 Ant Cingulum 32 4 −6 48 12 DMN

141 Sup medial frontal 10 4 −12 65 4 DMN

CB, cerebellum. Networks: SN, salience; DMN, default-mode; VN, visual. Node numbers correspond to the Shen atlas.

TABLE 3 Degree and coordinates of the five major hubs of the relative “motion-sensitive network” in the stereotactic space of the Montreal 
Neurological Institute (MNI).

Node Region BA/nucleus Degree MNI coord [mm] Region

x y z

57 Inferior temporal 21 4 47 4 −40 DMN

44 Precuneus 7 4 8 −57 62 DMN

191 Middle temporal 22 3 −59 −30 4 DMN

187 Temporal pole 21 3 −50 11 −31 FPN

148 Sup medial frontal 8 3 −11 34 51 DMN

Networks: DAN, dorsal attention; DMN, default-mode; VN, visual; FPN, frontoparietal. Node numbers correspond to the Shen atlas.
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