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Exploring the potential of 
mindfulness-based therapy in the 
prevention and treatment of 
neurodegenerative diseases based 
on molecular mechanism studies
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Neurodegenerative diseases (ND) have received increasing attention due to their 
irreversibility, but there is still no means to completely cure ND in clinical practice. 
Mindfulness therapy (MT), including Qigong, Tai Chi, meditation, and yoga, etc., 
has become an effective complementary treatment modality in solving clinical 
and subclinical problems due to its advantages of low side effects, less pain, and 
easy acceptance by patients. MT is primarily used to treat mental and emotional 
disorders. In recent years, evidence has shown that MT has a certain therapeutic 
effect on ND with a potential molecular basis. In this review, we summarize the 
pathogenesis and risk factors of Alzheimer’s disease (AD), Parkinson’s disease 
(PD), and amyotrophic lateral sclerosis (ALS), relating to telomerase activity, 
epigenetics, stress, and the pro-inflammatory transcription factor nuclear factor 
kappa B (NF-κB) mediated inflammatory response, and analyze the molecular 
mechanism basis of MT to prevent and treat ND, to provide possible explanations 
for the potential of MT treatments for ND.
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1. Introduction

Neurodegenerative diseases (ND), primarily caused by the loss of specific neurons in the 
central nervous system, include AD, PD, ALS, and other disorders. The etiology is primarily 
linked to abnormal protein accumulation, gene mutation, increased reactive oxygen species, 
neuroinflammation, mitochondrial dysfunction, and apoptosis (Perry et al., 2010; Gómez-
Gómez and Zapico, 2019; Hou et al., 2019; Irwin and Vitiello, 2019; Wu et al., 2019; Madore 
et al., 2020). ND primarily affects individuals over the age of 65, and symptoms generally worsen 
over time (Qiu and Fratiglioni, 2018). More than 10 million people worldwide now suffer from 
ND annually, and this number is rising each year along with the world’s aging population (Behl 
et al., 2021). While ND poses a great threat to human health, it also increases the burden on the 
healthcare system. There is currently no means to completely cure ND in clinical practice, and 
most drugs can only slow the rate of ND decline and improve the quality of patient survival. The 
possibility of traditional TCM non-drug therapy for ND is being studied in an increasing 
number of research studies as TCM gains popularity (Liu et al., 2022).
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MT includes qigong, Tai Chi, meditation, yoga, and other forms 
of physical and mental activities. Even 5,000 years ago, the ancient 
Chinese had mastered the self-exercise method for optimizing body 
and mind fitness through meditation and breath regulation. Tai Chi, 
meditation, yoga, and other forms of alternative medicine have 
progressively emerged. In a broad sense, mindfulness has been defined 
as a type of present-centered awareness that is unelaborate, 
nonjudgmental, and accepts every thought, feeling, or sensation as it 
arises in the attentional field (Bishop et  al., 2004). The MT 
recommends that practitioners cultivate this awareness through 
meditation, actively and objectively attend to the present moment with 
an attitude of acceptance (not over-identification) rather than a 
reaction attitude, and concurrently collaborate with specific operations 
to achieve body and mind in order to achieve physical and mental 
balance. MT has been widely employed in the treatment of depression, 
anxiety, chronic pain, and sleep disturbances (Figure 1). Research 
conducted in 2013 by Gao and Xu discovered that long-term regular 
practice of Qigong exercise by the elderly may slow the rate of mental 
decline (Gao and Xu, 2013) and that MT has significant efficacy in the 
treatment of cognitive disorders (Rawtaer et al., 2015; Fam et al., 2020; 
Jin et al., 2020).

In recent years, the significance of MT in the prevention and 
treatment of ND has gotten a lot of attention (Dong et al., 2016; Song 
et al., 2017; Brasure et al., 2018; Kwok et al., 2019; Deuel and Seeberger, 
2020; Guzman-Martinez et al., 2021), but its molecular mechanism 
has not been systematically summarized. Therefore, this paper begins 
with the proven molecular mechanism of MT and the risk factors for 
ND in order to investigate the potential molecular mechanism of MT 
to prevent ND.

2. Brief overview of ND

The term “ND” refers to a broad range of disabling and frequently 
unpredictable disease groupings that are all caused by neuronal loss 
and degeneration (Behl et al., 2021).

AD is the most common form of progressive ND, which is usually 
characterized by physical dysfunction, cognitive dysfunction, memory 
loss, and a progressive loss of self-care capacity. AD is the most 
common cause of dementia, accounting for 50–75% of all dementia 
patients (Yoshiyama et al., 2013). In the world, there are approximately 
50 million people who have AD, and the frequency of the disease is 

increasing due to an aging population, according to a 2018 report 
from the Alzheimer’s Association. There will be 152 million people 
living with dementia (Livingston et al., 2020). Extracellular β-amyloid 
(Aβ) deposition and intracellular neurofibrillary tangles are the two 
pathologically distinctive abnormalities in AD (Yin et  al., 2017). 
Among them, Aβ begins to build up nearly 20 years before dementia 
manifests, and the ensuing hard plaques interact with acetylcholine to 
cause inflammatory reactions and impair synaptic transmission, 
which may further cause the particular protein (tau) to degrade and 
exacerbate AD.

Neuroinflammation, neuronal loss and death, gliosis, synaptic 
loss, and impaired main synaptic function are pathogenic features of 
AD (Tönnies and Trushina, 2017). Along with atrophy in areas like the 
hippocampus, temporal lobe, parietal lobe, frontal cortex, and 
thalamus (Knight et al., 2016). AD is also linked to increased oxidative 
stress, which is considered to be a central factor in AD (Bai et al., 
2022), dysregulated gene expression, cytokines, neurotrophins, and 
stress markers Telomere shortening and deterioration of brain 
connectivity are also linked to the disease’s pathophysiology (Ng 
et al., 2021).

After AD, PD is the most common ND and the most common 
severe mobility disability globally (de Lau and Breteler, 2006). It 
primarily affects older persons and affects 8–18 per 100,000 people 
annually (de Lau and Breteler, 2006). The prevalence of PD increases 
with age (Pringsheim et  al., 2014). Dyskinesia, with progressive 
bradykinesia, rigidity, resting tremor, and abnormal posture and gait 
as its main manifestations, as well as non-motor disorders like 
hyposmia, constipation, sleep disturbance, depression, and cognitive 
impairment, are the main clinical characteristics of Parkinson’s 
disease (Greenamyre and Hastings, 2004). PD is a form of 
multisystem alpha-synucleinopathies characterized by selective loss 
of dopaminergic neurons and deposition of Lewy bodies in the 
substantia nigra, resulting in extensive involvement of other central 
nervous system structures and peripheral tissues (Cacabelos, 2017). 
Aging appears to be  the only significant risk factor for PD 
development (Rokad et  al., 2017). In addition, α-synuclein 
accumulation, mitochondrial dysfunction, autophagy impairment, 
and oxidative stress are common factors in PD pathogenesis. Factors 
such as oxidative stress play a central role in PD (de Lau and Breteler, 
2006; Cacabelos, 2017).

ALS is a specific form of ND, but the etiology still remains 
unclear. ALS impacts the muscles and central nervous system (van 
Es et al., 2017). The majority of ALS patients, are middle-aged or 
elderly and above the age of 40. It is a deadly and somewhat 
uncommon ND. Approximately 3–6 persons out of every 100,000 
people have ALS (Chiò et al., 2013). Motor neurons in the spinal 
cord, brain stem, and motor cortex are the main targets of ALS 
(Heiman-Patterson et al., 2015). Memory loss, cognitive decline, 
and decreased speech, swallowing, and respiratory function are all 
caused by neuronal death (Brown and Al-Chalabi, 2017). Statistics 
show that Cu/Zn superoxide dismutase gene mutations account for 
20% of familial ALS cases (Heiman-Patterson et  al., 2015). 
Aggregation and buildup of the ubiquitinated protein inclusion 
body TDP-43 in motor neurons are the neuropathological signs of 
ALS (van Es et al., 2017). The pathogenesis of ALS is also tightly 
linked to aging, oxidative stress (Aborode et  al., 2022), RNA 
damage repair and axonal development, mitochondrial 
malfunction and autophagy, and acquired living conditions. And 

FIGURE 1

Diseases for which MT is currently used to treat.
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Oxidative stress is one major contributor to ALS pathogenesis. The 
result is an increased intracellular level of highly reactive free 
radicals, combined with defective antioxidant compensation 
systems that produce oxidative stress.

The aberrant buildup of cytoplasmic or nuclear proteins in the 
brain is the common pathogenic mechanism for various disorders, 
despite the fact that their etiologies and sites of lesions differ. Common 
risk factors include aging, genetic mutations, inflammation, and stress. 
Early treatment of these risk factors may lower the likelihood of 
developing ND and/or postpone the disease’s onset.

3. Molecular mechanism of MT

3.1. MT lengthens telomeres

MT appears to be a telomere-protective agent. Qigong (Baduanjin) 
(Tiwari et al., 2014), mindfulness meditation, and yoga (Schutte and 
Malouff, 2014; Rathore and Abraham, 2018; Dasanayaka et al., 2022) 
can lengthen telomeres and boost telomerase activity in both white 
blood cells and peripheral blood mononuclear cells (BPMC). 
Telomeres are eukaryotic chromosome ends that have repeated DNA 
sequences and unique cap-like structures that support chromosomal 
integrity. Telomeres are not fully reproduced because DNA 
polymerases are unable to complete the replication of the ends of 
linear molecules. As a result, telomeres shorten with each replication 
(Shay, 2018), and when they are sufficiently shortened, cells stall until 
senescence. Despite the fact that short telomeres are a pathogenic 
cause of senescence, telomerase re-expression can prevent premature 
senescence caused by telomerase deficiency and the specificity of short 
telomeres (Bär and Blasco, 2016).

Telomerase is the fundamental nuclear protein reverse 
transcriptase. Telomerase increases the amount of telomeric DNA 
at the ends of eukaryotic chromosomes to maintain the length of 
the telomeres (Epel et  al., 2009). MT promotes telomeric DNA 
synthesis and cell division, counteracts telomere depletion due to 
cell division, and interrupts the telomere shortening process or 
lengthens telomeres by increasing telomerase activity and causing 
telomerase re-expression (Smith et  al., 2020). Telomerase 
re-expression lengthens telomeres, guards against fusion and 
degeneration of chromosome ends, and is crucial for chromosome 
placement, replication, and protection, as well as for the regulation 
of cell growth and lifespan (Anitha et al., 2019).

3.2. MT and DNA methylation

One of the most well researched epigenetic processes, DNA 
methylation modifies chromatin structure without changing 
nucleotide base sequences. Particularly in the human brain and blood 
(García-Campayo et  al., 2018), DNA methylation is crucial for 
controlling the expression of genes (Martínez-González et al., 2020). 
Long-term MT can methylate genes including FKBP5 (Bishop et al., 
2018), SCL6A4 (Stoffel et al., 2019), NR4A2 (García-Campayo et al., 
2018), and CLU (Huang et al., 2016), influencing the proteins encoded 
by these genes, controlling the dynamic process of methylation and 
demethylation, and enhancing the organism’s benefit from the 
epigenetic process.

3.3. MT and inflammation

Numerous trials have demonstrated that yoga, Tai Chi, and 
meditation practices can prevent the accumulation of ROS in cells by 
upregulating the activity of ROS-degrading enzymes through 
meditation with rhythmic breathing exercises and reducing oxidative 
stress markers such as ROS and 8-hydroxy-2-deoxyguanosine (Huang 
et al., 2014; Kumar et al., 2015; Gagrani et al., 2018) and maintaining 
brain homeostasis. Furthermore, meditation (Wetherell et al., 2017), 
Tai Chi and qigong (Campo et al., 2015; Klein et al., 2016; Larkey et al., 
2016) can reduce stress and lower salivary cortisol levels in people 
with high baseline levels (Moraes et al., 2018), while having no effect 
on baseline levels in the normal population. A randomized clinical 
trial also confirmed that long-term mindfulness training can reduce 
the accumulation of cortisol and saliva in the hair (Puhlmann et al., 
2021), resulting in increased immune responsiveness (Tang et  al., 
2009; Svetlov et al., 2019). In addition, short-term meditation has been 
shown to increase side-sympathetic nerve tension and decrease the 
activity of the sympathetic nervous system. While the reaction of the 
sympathetic nervous system can drive inflammation, the side 
neurosympathetic system can inhibit NF-κB and inflammatory 
reactions by activating acetylcholine (Haroon et al., 2012).

Several studies using gene expression analysis MT have identified 
downregulation of NF-κB target genes, which can be interpreted as a 
reversal of the molecular signature of chronic stress effects (Buric 
et al., 2017). Several randomized controlled trials have confirmed that 
the expression of the pro-inflammatory genes RIPK2 and COX2 
(Kaliman et  al., 2014), as well as NF-κB activity, are significantly 
reduced in PBMC in long-term meditators (Creswell et al., 2012; Black 
et al., 2015; Bower et al., 2015). In addition, Tai Chi (Irwin et al., 2014; 
Buric et al., 2017), and yoga (Bower et al., 2015) also reduced levels of 
the inflammatory markers C-reactive protein (CRP), tumor necrosis 
factor (TNF-α), and interleukin 6 (IL-6), and had downregulation of 
several genes involved in leukocyte production and inflammation 
(Buric et al., 2017).

4. Possible therapeutic mechanisms of 
MT against ND

4.1. MT delays aging and has the potential 
to combat ND cognitive impairment

The largest risk factor for the majority of ND is aging. Each lower 
motor unit cell type is prone to its own unique collection of aging-
related phenotypes that may exacerbate the course of the ND disease 
(Guo and Yu, 2019; Hou et al., 2019; Pandya and Patani, 2020; Liu, 
2022). The physiological process of aging produces a multitude of 
molecular and cellular abnormalities. DNA damage, mitochondrial 
dysfunction, telomere length loss, and oxidative stress are the four 
main causes of aging (Wyss-Coray, 2016; Hernandez-Segura et al., 
2018), and telomere loss is thought to be the primary cause of aging. 
Age-related cognitive decline is also linked to shorter telomeres (Bär 
and Blasco, 2016), and Mendelian randomization research also found 
a causal link between shorter telomeres and increased risk of AD (Guo 
and Yu, 2019).

MT delays cellular senescence by increasing telomerase activity to 
extend telomeres (Campisi and d'Adda di Fagagna, 2007; Blackburn 
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et  al., 2015). Genetically or pharmacologically, the reduction of 
senescent cells improves Aβ peptide and tau protein-induced 
neuropathology and improves memory in AD model mice (Bussian 
et al., 2018; Zhang et al., 2019), thus achieving a counteracting effect 
on cognitive impairment (Hou et al., 2019). Notably, studies have 
confirmed increased gray matter volume and significantly reduced 
brain atrophy in the hippocampus and prefrontal cortex in expert 
meditators (aged 22–77) (Chételat et al., 2017), and Wolkowitz et al. 
hypothesized that BPMC telomerase activity may correlate with 
hippocampal enzyme activity and hippocampal volume (Wolkowitz 
et al., 2015; Deng et al., 2016). Then we can venture to speculate that 
meditation may have the effect of treating cognitive impairment and 
promoting memory by increasing telomerase activity and increasing 
prefrontal cortex gray matter volume as well as hippocampal volume 
(Cheng et al., 2013), thus reducing the risk of developing AD and/or 
delaying disease onset. However, this hypothesis is currently 
controversial and needs further validation.

4.2. The epigenetic potential of ND is 
controlled by MT

Epigenetic dysregulation can lead to cognitive impairment and 
neuronal death associated with ND (Hwang et al., 2017).

Long-term meditators’ genome-wide alterations in DNA 
methylation were examined by García-Campayo et al. (2018). The 64 
differently methylated areas that meditators produced compared to 
non-meditators belong to 43 genes, and 48.4% of these regions were 
determined to be directly related to common human disorders, of 
which 9 (14%) were in genes linked to ND (AD, PD, and ALS) 
(García-Campayo et  al., 2018). And among these related genes, 
nuclear receptor family 4 group A member 2 (Nr4a2) is the most 
differentially methylated. This gene encodes a nuclear transcriptional 
regulator that has been identified as a key regulator of dopaminergic 
(DA) neuronal differentiation, survival, and maintenance and as being 
essential for neuronal development, particularly for the maintenance 
of the DA system (Jakaria et al., 2019).

Nr4a2 prevents inflammation-mediated DA neuron death and 
is crucial for hippocampus synaptic plasticity and memory 
formation (Català-Solsona et al., 2021). It may be possible to treat 
DA dysfunction-related disorders like PD by promoting the 
methylation of this gene through meditation. It’s interesting to note 
that new research has discovered that altered Nr4a2 expression is 
likewise linked to the course of AD, and Nr4a2 agonists can speed 
up the degradation of Aβ by considerably reducing γ-secretase 
activity by upregulating an Aβ-degrading enzyme (insulin-
degrading enzyme). The characteristic AD symptoms were 
significantly reduced in the agonist-treated mouse model of AD, 
and cognitive performance was significantly enhanced (Jakaria 
et al., 2019; Moon et al., 2019).

Additionally, the CpG sites of FKBP5 GREs in intron 7 and the 
promoter region speed up age-related demethylation in AD patients, 
increasing the expression of FKBP51 mRNA and protein with aging. 
Tau cannot be  separated into less toxic tangles due to FKBP51’s 
interference with tau degradation and promotion of tau oligomer 
formation. This increases neurotoxic tau, which advances AD (Blair 
et  al., 2013). Long-term meditation increases FKBP5 DNA 
methylation and decreases FKBP51 expression, which reduces tau 

neurotoxicity and slows the course of AD. In contrast, decreased 
FKBP5 DNA methylation increases FKBP51 expression.

Epel et al. also discovered that CLU gene expression and PSEN1 
gene expression were both decreased following meditation (Epel 
et al., 2016; Huang et al., 2016). Reduced CLU gene expression can 
lower the risk of AD and PD, according to genome-wide correlation 
studies that have identified the CLU gene as a well-established risk 
gene related to AD and PD (Karch and Goate, 2015; Lin et al., 2021). 
Although PSEN1 encodes the -secretase necessary for the synthesis 
of Aβ peptides, PSEN1’s decreased expression leads to insufficient 
synthesis of the γ-secretase complex, which may be  caused by a 
decrease in the synthesis of Aβ peptides as a result of meditation and 
a relative decrease in the γ-secretase needed for the hydrolysis of 
Aβ peptides.

By examining blood markers after meditation, Epel et al. also 
discovered that the level of Aβ40 in the blood of meditators decreased 
(Epel et al., 2016). Since CLU induces the deposition and removal of 
Aβ (Maturana-Candelas et al., 2021), meditation may lower the level 
of Aβ40 by reducing the expression of the CLU gene, thereby lowering 
the Aβ42 /Aβ40 ratio and lowering the risk of AD (Chouraki et al., 
2015). The epigenetic modifications in subtelomeric areas may 
be  related to telomere length, and DNA methylation may also 
be  implicated in the stability of telomere length in long-term 
meditators’ specific subtelomeric regions (Mendioroz et al., 2020).

Long-term meditators, compared to non-meditators, have 
different areas that are methylated in pathways related to cellular 
senescence, neurotransmission, lipid and glucose metabolism, 
immunology, and inflammation (Kaliman, 2019). These genes’ 
methylation may affect ND directly or indirectly. Reduced Aβ 
deposition has a protective or mitigating effect on cognitive 
impairment caused by AD and PD. This effect is due to the methylation 
of ND-related genes resulting from MT, such as the Nr4a2 gene and 
the CLU gene, whose expression is strongly associated with the 
deposition and clearance of Aβ and tau.

Through the epigenetic process of DNA methylation, meditation 
may control the expression of ND-related genes, alleviating symptoms 
and slowing the course of the disease. However, long-term meditation 
accumulation might be necessary to regulate gene expression, which 
short-term meditation cannot do. This hypothesis has to be proven in 
trials using larger sample sizes.

4.3. MT’s potential to combat ND-related 
neuroinflammation

Chronic oxidative stress results in the accumulation of reactive 
oxygen species, which damages target molecules like DNA, proteins, 
and lipid structures. An imbalance in the antioxidant system is one of 
the key mechanisms causing ND (Tönnies and Trushina, 2017). The 
antioxidant system may become unbalanced, the brain’s equilibrium 
may be lost, and ND may result if the balance between the production 
and consumption of reactive oxygen species is upset (Radi et al., 2014; 
Nissanka and Moraes, 2018; Stefanatos and Sanz, 2018; Collin, 2019; 
Yeung et al., 2021).

Chronic stress may promote the loss of nigrostriatal cells in PD, 
hastening the disease’s course (van der Heide et al., 2021), and stressful 
conditions may intensify the condition’s motor symptoms, such 
as tremor.
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Additionally, in human ALS fibroblasts and pluripotent stem cell 
iPSC-motoneurons, prolonged stress stimulates the production of 
stress granules and pathogenic TDP-43 aggregates, accelerating the 
course of ALS (Ratti et al., 2020).

Stress also leads to a reduction in hippocampal volume and a 
decrease in the number of glucocorticoid receptors (GR) in the 
hippocampus (Frodl and O’Keane, 2013), as well as stimulation of the 
hypothalamic–pituitary–adrenal (HPA) axis and sympathetic nervous 
system, which promotes the release of glucocorticoids (GC) and 
catecholamines. The decrease in the number of GR and increased GC 
release leads to elevated GC levels and brain atrophy, such as in the 
hippocampus, due to prolonged high levels of GC stimulation, which 
puts the person in a state of extreme stress and anxiety and exacerbates 
the progression of AD (Boutrup et al., 2019).

In addition, high levels of GC initiate an immune response in 
brain microglia, making them pro-inflammatory and promoting a 
neurotoxic response (Milligan Armstrong et al., 2021). In an AD rat 
experiment, it was demonstrated that Aβ25-35 amyloid toxicity affects 
the adaptive response of the HPA axis to stress (Brureau et al., 2013), 
resulting in chronically high levels of cortisol in patients (Vyas and 
Maatouk, 2013).

The HPA axis is a crucial neuroendocrine signaling system that 
regulates physiological homeostasis and stress reactions. It is a well-
known characteristic of AD to have a very active HPA axis (Notarianni, 
2013), which is indicated by excessive cortisol output. The HPA axis’s 
overproduction of cortisol affects somatic tissues through blood flow, and 
elevated levels of GC, including cortisol, lead to hemodynamic, 
endocrine, and immune system problems as well as increased 
accumulation of Aβ and tau, which cause increased brain atrophy, 
behavioral deficits, mood disorders (Du and Pang, 2015), and/or 
cognitive decline (Milligan Armstrong et al., 2021), all of which accelerate 
the progression of AD and PD (de Pablos et al., 2014; Ennis et al., 2017).

Additionally, it has been demonstrated that chronic inflammation 
raises the risk of ND (Buric et al., 2017). It is well established that the 
nuclear factor NF-κB, a transcription factor that promotes 
inflammation, can be  inhibited by the cortisol-GR complex, 
preventing the transcription of genes that promote inflammation. 
NF-κB can transcriptionally regulate the expression of cytokines. The 
transcription factor is closely linked to mammalian aging, 
inflammation, and stress. As a molecular indicator of chronic stress 
(Buric et al., 2017), the upregulation of pro-inflammatory genes is 
thought to cause dysregulation of GC secretion, decreased sensitivity 
to GR in the brain and immune cells, and a lack of suppression of 
NF-κB-mediated inflammation (Boutrup et al., 2019). This vicious 
cycle ultimately increases the risk of developing ND.

Neuroinflammation is associated with ND and is one of the 
important mechanisms in the development of ND (Kwon and 
Koh, 2020), and both central inflammation and systemic 
inflammation can accelerate the progression of ND (Perry et al., 
2010; Shih et al., 2015). MT delays aging due to DNA damage by 
inhibiting NF-κB activity (Tilstra et  al., 2012), which in turn 
delays aging-related neurodegeneration (Tilstra et  al., 2012; 
Álvarez-López et al., 2022).

Long-term practice of meditation, yoga, Tai Chi, and qigong 
induces downregulation of NF-κB-related upstream and downstream 
targets, which may reduce stress and inflammatory responses by 
inhibiting the NF-κB pathway through the RIPK2 pathway (Bhasin 
et al., 2013), delaying the onset of ND. Animal studies have shown that 

acute activation of pro-inflammatory cytokine signaling in the brain 
in response to peripheral immune activation is associated with deficits 
in hippocampal-dependent memory (Dantzer et  al., 2008). MT 
reduction in stress can reduce the hyperactivity of the HPA axis, 
resulting in a decrease in the level of GC accumulated in the nuclei of 
neurons in different brain regions, especially the hippocampus, 
hypothalamus, and amygdala, which are rich in GR. Brain shrinkage 
and memory impairment may be delayed as a result of MT’s lowering 
of pro-inflammatory cytokines. Regular MT training can have 
beneficial effects on ND by improving neuroendocrine stress 
responses, improving HPA axis stress responses (Khalsa, 2015), and 
nuclear receptor-mediated transcriptional changes to reduce 
neuroinflammation (Figure 2).

5. Discussion

Current research finds that the mechanisms affecting the onset 
and development of diseases mainly include: incorrect folding and 
aggregation of proteins, neuropathy, cellular procedural death and 
aging. Circadian rhythm disorder, nutritional inadequacies, stress, 
inflammatory reactions, age, and gene mutations are typical risk 
factors for ND (Perry et al., 2010; Gómez-Gómez and Zapico, 2019; 
Hou et al., 2019; Irwin and Vitiello, 2019; Wu et al., 2019; Madore 
et al., 2020). MT can intervene in these risk variables to prevent and 
treat ND. By increasing telomerase activity to postpone aging, 
lowering anxiety and depression to regulate circadian rhythms 
(Yingwei et  al., 2019), lowering stress and NF-κB-induced 
neuroinflammatory responses, and changing DNA methylation 
relevant to ND to regulate gene expression, MT can prevent and 
reduce the progression of ND. In turn, these processes engage in 
mutually beneficial interactions. Telomerase, for instance, possesses 
antioxidant, anti-apoptotic, neurotrophic, and neurogenesis-
promoting properties that help restore brain cell suppleness and 
viability in addition to lengthening telomeres to delay aging. 
Additionally, oxidative stress and inflammation can shorten telomeres 
and speed up aging (Bär and Blasco, 2016). Antioxidants have 
neuroprotective effects (Hou et al., 2019), and MT can reduce the 
occurrence of neuroinflammation and slow down the aging process 
by reducing oxidative stress. Meanwhile, bioinformatic analysis 
predicted that epigenetic responses to MT exercises may regulate 
inflammatory pathways dependent on tumor necrosis factor α and 
NF-κB signaling. Through these mechanisms, MT can create a positive 
cycle that will improve the symptoms of ND and slow the ND process.

The clinical effects of MT on ND have demonstrated that MT can 
enhance patients’ quality of life, improve symptoms like anxiety and 
depression, and slow the progression of the disease. However, the 
majority of these trials evaluated the effectiveness using a scale. 
According to the current study of mind-based brain area research, 
inflammatory factor research, and the subjective score table (Newberg 
et al., 2014; Lou, 2017; Kwok et al., 2019), and less frequently with 
biological markers. Extensive experimental research is still needed to 
understand the mechanism of MT activity in ND. Future research 
should explore if MT intervention at a younger age would lower the 
incidence of ND. More clinical trials are also required to determine 
whether traditional Chinese medicine offers unique, superior benefits 
for ND prevention and treatment. Mind-based physical and mental 
therapy is an interesting and beneficial way, in the modern society, 
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where public health awareness is generally enhanced, early and 
continuous mind intervention will play a role in disease with age to 
prevent and delay illness, and it is worth our study.
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