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Background: Parkinson’s disease (PD) is the second most common 
neurodegeneration disease worldwide. Necroptosis, which is a new form of 
programmed cell death with high relationship with inflammation, plays a vital role 
in the progression of PD. However, the key necroptosis related genes in PD are 
not fully elucidated.

Purpose: Identification of key necroptosis-related genes in PD.

Method: The PD associated datasets and necroptosis related genes were 
downloaded from the GEO Database and GeneCards platform, respectively. 
The DEGs associated with necroptosis in PD were obtained by gap analysis, and 
followed by cluster analysis, enrichment analysis and WGCNA analysis. Moreover, 
the key necroptosis related genes were generated by PPI network analysis and 
their relationship by spearman correlation analysis. Immune infiltration analysis 
was used for explore the immune state of PD brain accompanied with the 
expression levels of these genes in various types of immune cells. Finally, the 
gene expression levels of these key necroptosis related genes were validated by 
an external dataset, blood samples from PD patients and toxin-induced PD cell 
model using real-time PCR analysis.

Result: Twelve key necroptosis-related genes including ASGR2, CCNA1, FGF10, 
FGF19, HJURP, NTF3, OIP5, RRM2, SLC22A1, SLC28A3, WNT1 and WNT10B were 
identified by integrated bioinformatics analysis of PD related dataset GSE7621. 
According to the correlation analysis of these genes, RRM2 and WNT1 were 
positively and negatively correlated with SLC22A1 respectively, while WNT10B 
was positively correlated with both OIF5 and FGF19. As the results from immune 
infiltration analysis, M2 macrophage was the highest population of immune 
cell in analyzed PD brain samples. Moreover, we  found that 3 genes (CCNA1, 
OIP5 and WNT10B) and 9 genes (ASGR2, FGF10, FGF19, HJURP, NTF3, RRM2, 
SLC22A1, SLC28A3 and WNT1) were down- and up- regulated in an external 
dataset GSE20141, respectively. All the mRNA expression levels of these 12 genes 
were obviously upregulated in 6-OHDA-induced SH-SY5Y cell PD model while 
CCNA1 and OIP5 were up- and down- regulated, respectively, in peripheral blood 
lymphocytes of PD patients.
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Conclusion: Necroptosis and its associated inflammation play fundamental roles 
in the progression of PD and these identified 12 key genes might be served as new 
diagnostic markers and therapeutic targets for PD.
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1. Introduction

Parkinson’s disease (PD) is a common degenerative disease of 
the central nervous system along with multisystem disorder in 
middle-aged and elderly people (Chong et al., 2013; Costa et al., 
2023) and is the second most common neurodegenerative disease 
after Alzheimer’s disease (AD) in the world (Mansour et al., 2023). 
PD’s main clinical manifestations include static tremors, rigidity, 
bradykinesia and parkinsonian gait and so on (Marino et al., 2020). 
According to the epidemiological studies, the prevalence of PD 
increases with the rise of aging populations. The incidence of PD is 
1.5–2% among people over 60 years old and up to 4% in people over 
80 years old (Marino et al., 2020), and the global PD patients has 
increased from 2.5 to 6.1 million since the 1990s (Rajan and Kaas, 
2022). In China, the prevalence of PD was 1.37% in people over 
60 years old, and the number of people suffering from the disease 
has exceeded 3.62 million indicated by a community-based study 
(Qi et al., 2021). Recent studies have found that dyssomnia, sleep 
disorder, mental disorder, cognitive disorder, and somatoform 
autonomic dysfunction are commonly exist in PD patients and 
occur among different stages of motor symptoms, affecting the life 
quality of patients (Suzuki et al., 2022). Due to the high rate of 
disability and a long therapeutic procedure, PD brings heavy 
burden and troubles to patients and their families (Zhang et al., 
2005; Kumar et  al., 2010; Seol, 2010; Rajan and Kaas, 2022). 
Therefore, it is extremely important to study the etiology and 
pathogenesis of PD nowadays.

The main pathological characteristic of PD is the degeneration 
and necrosis of dopaminergic neurons in the substantia nigra 
(Mollenhauer and von Arnim, 2022), which results in the decrease of 
neurotransmitter dopamine (DA) synthesis as well as its amount in 
the synaptic cleft (Tysnes and Storstein, 2017; Marino et al., 2020). But 
the specific underlying mechanisms that cause the necrosis of 
dopaminergic neurons are not yet fully known. Necroptosis, which is 
a type of cellular necrosis initiated by death receptor ligands, has been 
discovered that might be co-related with the progression of PD (Kim 
et al., 2023). Moreover, necroptosis is a unique caspase-independent 
programed cell death with distinctive morphological features of 
necrosis, which is regulated by receptor interaction proteins (RIP) 
including RIP1 and RIP3 and their downstream signaling molecules 
mixed-lineage kinase domain-like protein (MLKL), and specifically 
blocked by the small molecule compound, necrostatin-1 (Nec-1) 
(Zhang and Liu, 2013; Fayaz et al., 2014; Zhang et al., 2022; Kim et al., 
2023). Inflammation and immune dysregulation are fundamental 
pathophysiological features of PD and contribute to its progression 
(Tansey et al., 2022). However, the pathological role of necroptosis in 
the etiology of PD still needs to be clarified.

In the current study, we downloaded PD related datasets from the 
GEO database and analyzed the associate of necroptosis-related genes 
between PD and control brain samples by gap analysis, cluster 
analysis, enrichment analysis, weighted gene co-expression network 
analysis (WGCNA), protein–protein interaction (PPI) networks 
analysis and correlation analysis according to previous studies (Zhou 
et al., 2020a,b; Zhao et al., 2021). Finally, several key necroptosis-
related differentially expression genes (DEGs) are identified, and their 
interaction with immune cells was also analyzed. In addition, the 
mRNA expression of these key genes were verified by external dataset 
and real-time PCR analysis both in blood samples from control and 
PD patients and toxin-induced neuroblast cell PD model. The current 
research strategy is referred as Figure 1, and this study might provide 
a meaningful basis for exploring the molecular pathogenesis, 
diagnostic markers and drug development of PD.

2. Materials and methods

2.1. Source of data

The gene expression data were extracted from the GEO 
Database  via the GEO query package (Davis and Meltzer, 2007). 
We downloaded the Parkinson’s disease-related datasets GSE7621 
(Lesnick et al., 2007) and GSE20141 (Zheng et al., 2010), which are 
all from Home sapiens and generated from GPL570 data platform. 
GSE7621 contains 25 samples with 9 and 16 samples in the control 
and PD groups, respectively. GSE20141 contains 18 samples with 8 
and 10 samples in the control and PD groups, respectively. All 
samples were employed in the current study, and we normalized 
and standardized the data by limma package (Ritchie et al., 2015). 
In addition, necroptosis-related gene sets were obtained from the 
GeneCards database.1

2.2. Gap analysis

Gap analysis of genes in different groups was performed using the 
limma R package (Ritchie et al., 2015). This research set |log FC| > 1 
and p value <0.05 as the threshold for DEGs, where DEGs were 
upregulated in the disease group with logFC >0 and DEGs were 
downregulated in the disease group with logFC <0. The results of the 

1 https://www.genecards.org/
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gap analysis were presented by the heatmaps and volcano plots drawn 
by gglot2 in R package (Li et al., 2022).

2.3. Cluster analysis

Consensus Clustering is a method for determining the number 
and membership of possible clusters in a dataset (microarray gene 
expression). We  used the “Consensus Cluster Plus” R package 
(Wilkerson and Hayes, 2010) to perform consensus clustering on 
samples from the disease group of PD in the GSE7621 dataset using 
differentially expressed necroptosis-related genes to facilitate better 
differentiation between different subtypes of PD. In this process, the 
number of clusters was set between 2 to 9, and 80% of the total samples 
were drawn in 1000 replicates, clusterAlg = “pam,” distance = “euclidean.” 
The t-Distributed Stochastic Neighbor Embedding (tSNE) technique 
was used for visualized and analyzed efficiently (Pezzotti et al., 2017).

2.4. Enrichment analysis (GO/KEGG/GSEA/
GSVA)

Gene Ontology (GO) analysis is a common method for 
conducting large-scale functional enrichment studies, including 

biological process (BP), molecular function (MF) and cellular 
component (CC). Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is a widely used database for storing information about 
genomes, biological pathways, diseases and drugs (Kanehisa and 
Goto, 2000). GO annotation analysis and enrichment analysis of the 
KEGG pathway of DEGs were performed by using the Database for 
Annotation, Visualization and Integrated Discovery (DAVID),2 with 
a critical value of the false discovery rate (FDR) <0.05 considered to 
be statistically significant (Sherman et al., 2022). The results of the 
enrichment analysis were visualized by using the ggplot2 in R package.

To investigate the differences in biological processes between 
different groups, we performed a gene set enrichment analysis (GSEA) 
(Subramanian et  al., 2005) based on datasets of gene expression 
profiling from PD samples in the GSE7621 dataset. GSEA is a 
computational method for analyzing whether a particular gene set is 
statistically different between two biological states and is commonly 
used to estimate changes in the pathway and biological process activity 
in samples of expression data sets. The “c2.cp.kegg.v6.2.-symbols” 
gene set was downloaded from the MSigDB (Liberzon et al., 2015) for 
GSEA, and FDR < 0.25 was considered significantly enriched.

2 https://david.ncifcrf.gov/

FIGURE 1

Research strategy of the current study.
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In addition, we use the R package to perform gene set variation 
analysis (GSVA) (Hänzelmann et al., 2013). The single sample gene set 
enrichment analysis (ssGSEA) method was used to calculate the 
scores of the relevant pathways based on the gene expression matrix 
of each sample separately, and we performed differential screening on 
the enrichment functions (or pathways) by using the limma package 
(Ritchie et al., 2015).

2.5. WGCNA analysis

Weighted Gene Correlation Network Analysis (WGCNA) is used 
for identifying correlative gene modules, exploring the relationship 
between gene networks and phenotypes, and studying the core genes 
in the network (Langfelder and Horvath, 2008). A soft threshold is 
calculated by the pick Soft Treshold function, with 5 being the best soft 
threshold, followed by the construction of a scale-free network based 
on the soft threshold and the construction of a topological matrix, and 
finally the hierarchical clustering. Eigengenes were calculated by 
dynamically cutting the identified gene modules with the minimum 
number of genes 50 in the module. Inter-module correlations were 
constructed based on module eigengenes, and hierarchical clustering 
was performed to merge modules with correlations above 0.4 (Zhao 
et al., 2015). The generation of modules and correlations between 
modules and clinical features were known through spearman 
correlation analysis (Wang et al., 2020).

2.6. PPI network construction

The STRING database3 is a database for searching known proteins 
and predicted protein–protein interactions for 2031 species, containing 
9.6 million proteins and 138 million protein–protein interactions 
(Szklarczyk et al., 2017). It contains results obtained from experimental 
data, text mining of PubMed abstracts, and other database data as well 
as results predicted by using bioinformatics methods. We constructed 
a protein–protein interaction (PPI) network of differentially expressed 
necroptosis-related genes using the STRING database with the 
parameter of a factor = 0.4 by default software execution. And spearman 
correlation analysis was employed for the relation between identified 
key necroptosis related genes (Wang et al., 2020).

2.7. Immune infiltration analysis

CIBERSORT is based on the principle of linear support vector 
regression to deconvolute the transcriptome expression matrix to 
estimate the composition and abundance of immune cells in a mixture 
of cells (Chen et al., 2018). We uploaded the gene expression matrix 
data to CIBERSORT and combined it with the LM22 eigengene matrix 
to screen samples with the criteria of p < 0.05, and finally generated the 
immune cell infiltration matrix. The R programming ggplot2 package 
was used to plot bar graphs to show the distribution of the 22 kinds of 
immune cells infiltrating in each sample.

3 https://string-db.org/

2.8. Quantitative real-time PCR analysis

Twelve venous blood samples from clinical PD patients (n = 6) and 
healthy adults (n = 6) were collected. Peripheral blood lymphocytes were 
separated from a lymphocyte separation medium cushion (Ficoll-
Paquplus, GE). Besides, toxin-induced cell model was employed for gene 
expression verification. The neuroblast SH-SY5Y cells (ATCC) were 
treated with or without 200 μM 6-Hydroxydopamine (6-OHDA) 
(Sigma) for 24 h, then the cells were harvested for further analysis. Total 
RNA was extracted using TRIZOL (Roche). The RNA concentration was 
determined by a UV-spectrophotometer (M200, Tecan). Reverse 
transcription was performed following the reverse transcript kit 
(Transcriptor First Strand cDNA Synthesis Kit, Roche). Quantitative 
PCR was performed using SYBR Green (LightCycler 480 SYBR Green 
I Master, Roche) based on the LightCycle 96 platform (Roche). The PCR 
conditions were as follows: 95°C for 30 s, followed by 45 cycles of 95°C 
for 5 s, 60°C for 10 s and 72°C for 60s according to our previous study 
(Zhou et al., 2020a, 2023). GAPDH was used as an internal reference and 
gene expression changes were counted by the 2−ΔΔCt method. The specific 
primer sequences of interest genes are shown in Table 1.

2.9. Statistical analysis

All data calculations and statistical analyses were performed by 
using R programming4 (version 4.1.2). For the comparison of two 
groups of continuous variables, the statistical significance of normally 
distributed variables was estimated by independent Student t tests, 
and differences between non-normally distributed variables were 
analyzed by the Mann–Whitney U test (i.e., Wilcoxon rank sum test). 
Correlation analysis was performed on the two data sets by using 
Spearman’s rank correlation test. All statistical p-values were 
two-sided, with p < 0.05 considered statistically significance.

3. Results

3.1. Identification of DEGs and 
necroptosis-related genes by gap analysis

A total of 290 DEGs were obtained from the bioinformatic 
analysis of Parkinson’s disease-related dataset GSE7621 with the 
criterias of |logFC| > 1 and p value <0.05, in which 151 genes were 
up-regulated and 139 genes were down-regulated in PD group 
(Figure 2A). These up- and down- regulated genes were visualized by 
a heatmap (Figure 2B) and a volcano plot (Figure 2D). Moreover, 614 
necroptosis-related gene sets were obtained from the GeneCards 
database, in which 4 genes, including ubiquitin like with PHD and 
ring finger domains 1 (UHRF1), 1,4-alpha-glucan branching enzyme 
1 (GBE1), transient receptor potential cation channel subfamily C 
member 6 (TRPC6) and TNFAIP3 interacting protein 3 (TNIP3), 
overlayed with above DEGs (Figure 2C). And these 4 necroptosis-
related genes were also marked with arrows in the volcano plot 
(Figure 2D).

4 https://www.r-project.org/
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TABLE 1 Sequences of the required primers in real-time PCR analysis.

Gene Forward primer Reverse primer

HJURP 5’-GTCCTGGGAGCCGATTCAAA-3′ 5’-CAAAGGGCTTTGAGGCACTG −3′

ASGR2 5’-TGCTCCATGGTCTGCTTCAG-3′ 5’-TCACACAGATGACCACCAGC-3′

CCNA1 5’-GATAACGACGGGAAGAGCGG-3′ 5’-CGGTCTCCATCCCAAGTGAC-3′

FGF10 5’-TTGTAGAAGTGGCTCGCAGG-3′ 5’-GGTGGGGAATAGGGGGAGAT-3′

FGF19 5’-GAACTGACTGGAGCAGGCAT-3′ 5’-GACACCGGGACAGCAAGTTA-3′

NTF3 5’-TGCCAGAGCCTGCTCTTAAC-3′ 5’-GATGCCACGGAGATAAGCGA-3’

OIP5 5’-CGCCCTTCCTAGTTGGCATT-3’ 5’-CGGGAATCCCACAAGAACCA-3’

RRM2 5’-GCGCGGGAGATTTAAAGGC-3’ 5’-ACACGGAGGGAGAGCATAGT-3’

SLC22A1 5’-CATTTTGTTTGCGGTGTTGGG-3’ 5’-TTTCTCCCAAGGTTCTCGGC-3’

SLC28A3 5’-AAACGGAGTCTCCACTGCTG-3’ 5’-CAAGTGGGAGGATGGAACCC-3’

WNT1 5’-TACCTCCAGTCACACTCCCC-3’ 5’-TTGAGGAGTCCCCAGGTAGG-3’

WNT10B 5’-GGGTGGCTGTAACCATGACA-3’ 5’-TTGTGGATTCGCATTCGTGC-3’

GAPDH 5’-CACCATCTTCCAGGAGCGAG-3’ 5’-GACTCCACGACGTACTCAGC-3’

FIGURE 2

Identification of DEGs and necroptosis-related genes. (A) The number of up- and down- regulated genes in PD vs. control groups. (B) The heatmap of 
differentially expressed genes (DEGs) in PD vs. control groups. (C) Venn diagram presented 4 overlayed differentially expressed necroptosis-related 
genes. (D) Volcano plot of differentially expressed genes, in which red means up-regulated genes in the PD vs. control group while blue means down-
regulated and grey means non-differentially expressed genes. The blue horizontal dotted line represents the threshold of p value <0.05 and the red 
vertical dotted line represents the threshold of |fold change| > 1. Four differentially expressed necroptosis genes, including UHRF1, GBE1, TRPC6 and 
TNIP3, were marked with arrows.
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3.2. Molecular classification of PD samples 
and DEGs based on necroptosis-related 
genes by cluster analysis

Concordance clustering of expressed genes in 16 PD samples 
was performed using above 4 differentially expressed necroptosis-
related genes by the Consensus Cluster Plus package. The expressed 
genes were re-divided into two categories of cluster 1 and cluster 2 
according to the necroptosis phenotype (Figure 3A). The tSNE plot 

shows that the two classes of PD samples can be  significantly 
distinguished (Figure 3B). Visualization of differentially expressed 
necroptosis related genes in both patient groups revealed that 
patients in cluster 1 presented low necroptosis phenotype and in 
cluster 2 presented high necroptosis phenotype (Figure 3C). Further 
gap analysis was performed for these two types of PD samples with 
the criterias of |logFC| > 1 and p value <0.05. A total of 271 DEGs 
associated with the necroptosis phenotype were obtained and 
visualized using a heatmap (Figure  3D) and a volcano plot 
(Figure 3E).

FIGURE 3

Molecular classification of PD samples and DEGs based on 4 identified differentially expressed necroptosis-related genes. (A) According to the 
guidance of four above differentially expressed necroptosis-related genes in molecular classification, Parkinson’s patients can be significantly divided 
into two categories. (B) The tSNE plot shown a clear separation of low and high necroptosis types of patients. (C) The heatmap shown that the patients 
presented low and high necroptosis phenotypes in cluster1 and cluster 2, respectively. (E) The volcano map shown the expression levels and 
connections of DEGs in these two types of Parkinson’s patients. (D) The heatmap shown the DEGs and their connections  in these two phenotypes of 
Parkinson’s patients.
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3.3. Identification of both function and 
pathway of necroptosis-related genes in 
PD samples by GO, KEGG, GSEA, and GSVA 
enrichment analysis

We performed an enrichment analysis of DEGs in these two clusters 
of PD samples to elucidate functional differences by GO and KEGG 

analysis. According to GO analysis, the related biological processes are 
significantly enriched in entries such as positive regulation of cell 
proliferation, cell–cell signaling, lipid metabolic process, wound healing 
and negative regulation of endopeptidase activity (Figure  4A; 
Supplementary Table S1), while the results of KEGG analysis suggested 
that neuroactive ligand-receptor interaction, calcium signaling pathway, 
regulation of actin cytoskeleton, Rap1 signaling pathway and glycerolipid 

FIGURE 4

Enrichment analysis of necroptosis-related genes in PD samples. (A) GO enrichment analysis. (B) KEGG enrichment analysis. (C–G) Five up-regulated 
pathways were significantly enriched in cluster2 vs. cluster1. (H–L) Five down-regulated pathways were significantly enriched in cluster2 vs. cluster1 by 
GSEA enrichment analysis. (M) Pathway entries were significantly enriched in cluster1 and cluster2 by GSVA enrichment analysis.
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metabolism were close association (Figure 4B; Supplementary Table S2). 
In addition, as the result from GSEA enrichment analysis of these DEGs, 
five up-regulated pathways were significantly enriched in high 
necroptosis phenotype cluster 2 (Figures 4C–G) and five pathways were 
down-regulation (Figures 4H–J) respectively (Supplementary Table S3). 
As the results from GSVA analysis, ten selected pathways significantly 
enriched in both cluster 1 and cluster 2 (Figure  4M; 
Supplementary Table S4).

3.4. Generation of positive and negative 
modules involved in necroptosis by 
WGCNA analysis

In order to further identification of genes significantly associated 
with the necroptosis-related phenotype, we performed WGCNA with 
the criteria of 5 as the optimal soft threshold (Figures  5A,B). 
We performed hierarchical clustering after constructing scale-free 
networks and topological matrices and finally obtained 25 modules as 
well as correlations between modules and clinical features 
(Figures  5C,D). We  obtained 3,091 genes in the violet module 
(Figure 5E), which positively regulated necroptosis, and 383 genes in 
the brown4 module (Figure  5F), which negatively regulated 
necroptosis, consequently identification of a total of 3,474 genes which 
were significantly associated with necroptosis.

3.5. Identification of 12 key necroptosis 
related genes in PD and their correlation 
analysis

The DEGs between cluster 1 and cluster 2 were intersected 
with the relevant module genes in WGCNA, and we obtained 53 
differentially expressed necroptosis-related genes that may 
contribute to the different phenotypes of these two clusters of PD 
samples (Figure 6A). The PPI network was construct based on 
these 53 overlayed genes using STRING database with the criteria 
of coefficient = 0.4, and finally we obtained three subnetworks 
which contained a total of 12 key upregulated genes (Figure 6B) 
including asialoglycoprotein receptor 2 (ASGR2), cyclin A1 
(CCNA1), fibroblast growth factor 10 (FGF10), fibroblast growth 
factor 19 (FGF19), holliday junction recognition protein 
(HJURP), neurotrophin 3 (NTF3), opa interacting protein 5 
(OIP5), ribonucleotide reductase regulatory subunit M2 (RRM2), 
solute carrier family 22 member 1 (SLC22A1), solute carrier 
family 28 member 3 (SLC28A3), wnt family member 1 (WNT1) 
and wnt family member 10B (WNT10B). As the results from 
correlation analysis of these 12 key necroptosis related genes in 
Figures  6C–G, we  found that RRM2 and WNT1 were  
dramatically positively and negatively correlated with SLC22A1, 
while WNT10B was positively correlation with both OIF5 
and FGF19.

FIGURE 5

Generation of positive and negative modules involved in necroptosis by WGCNA Analysis. (A,B) Soft threshold screening. (C) Identification of gene 
modules by dynamic shearing tree. (D) Correlation analysis between modules and phenotypes. (E) Scatterplot of violet modules. (F) Scatterplot of 
brown4 modules.
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3.6. The M2 macrophage was the highest 
population among immune cells by the 
immuno-infiltration analysis

We conducted an immuno-infiltration analysis using the expression 
matrix of PD samples in the GSE7621 dataset. The correlation between 
different species of immune cells and the proportion of different 
immune cells in all samples were presented in Figures 7A,B, respectively. 
These results suggested that the proportion of M2 macrophages was the 
highest. Besides, we further analyzed the correlations between the 12 
above key necroptosis related genes in various types of immune cells, 
and the correlation coefficients and p-values were presented in the form 
of lollipop plots (Figures 7C–N). We could find that the expression of 9 
genes (ASGR2, CCNA1, FGF19, NTF3, OIP5, RRM2, SLC22A1, 
WNT1, and WNT10B) were positively co-related to the function of M2 
macrophage while 3 genes (FGF10, HJURP and SLC28A3) were 
negatively co-related to the function of M2 macrophage.

3.7. Validation the expression levels of 12 
key necroptosis related genes by external 
dataset, toxin-induced injury of neuroblast 
model, and peripheral blood lymphocytes 
of PD patients

As the gap analysis results from the external dataset GSE20141, 
the expression of ASGR2, FGF10, FGF19, HJURP, NTF3, RRM2, 

SLC22A1, SLC28A3 and WNT1 genes were significantly increased in 
PD samples, whereas the genes CCNA1, OIP5, and WNT10B were 
significantly decreased (Figure  8A). All these 12 genes were 
significantly upregulated in 6-OHDA treated SH-SY5Y cells 
(Figure  8B). However, CCNA1 was upregulated and OIP5 was 
downregulated in peripheral blood lymphocytes of PD patients 
(Figure 8C). All the above results were summarized in Table 2.

4. Discussion

Parkinson’s disease (PD) has a widespread and significant 
negative impact on the motor function and life quality of patients. 
The current treatment methods significantly ameliorate its 
symptoms, but they cannot prevent its deterioration (Brocker et al., 
2017). Although there are many studies focused on PD in recent 
decades, its pathogenesis is still not fully understood, which limited 
the development of its specific drugs. Necroptosis, which is a new 
form of regulated cell death and also exists in dopaminergic 
neurons, has been proved that it contributed to the pathological 
progression of PD (Liu et al., 2014). Conventionally, necrosis and 
apoptosis are two well-known forms of programmed death in 
injured neuronal cells. Recently, many researchers found that 
necroptosis is also a typical mode of neuronal cell death with the 
feathers of morphological changes in necrotic cells, activation of 
autophagy and energy-depleting (Imre, 2020). In addition, 
necroptosis is not the same as the traditional sense of necrosis 

FIGURE 6

Identification of key genes by PPI network analysis and their correlation Analysis. (A) The 53 overlay genes between WGCNA analysis and differentially 
expressed necroptosis-related genes in cluster 2 were presented by Venn diagram. (B) Twelve key necroptosis-related genes were identified by a PPI 
network analysis of the 53 overlayed genes. (C) The heat map indicated the correlation between 12 genes by spearman correlation analysis. 
(D) Correlation analysis between SLC22A1 and RRM2. (E) Correlation analysis between SLC22A1 and WNT1. (F) Correlation analysis between WNT10B 
and OIP5. (G) Correlation analysis between WNT10B and FGF19.
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(Carnevale et  al., 2012). In the current study, we  designed a 
comprehensive bioinformatic analysis and experimental validation 
strategy for identification of key necroptosis related genes in PD 
(Figure 1).

DEGs were extracted by gap analysis of dataset GSE7621, and 
followed by overlay of necroptosis genes (Figure 2). Consequently, 4 
genes (UHRF1, GBE1, TRPC6 and TNIP3) were obtained and used 

for the guidance of cluster analysis (Figure 3) and enrichment analysis 
(Figure  4; Supplementary Tables S1–S4). In terms of molecular 
mechanisms, this study identified relevant molecular interactions 
through GO and KEGG enrichment analysis. GO enrichment analysis 
showed that positive regulation of cell proliferation, cell–cell signaling, 
lipid metabolic process, and wound healing are obvious in the 
biological participation processes (Figure 4A; Supplementary Table S1). 

FIGURE 7

Immune infiltration analysis of PD samples and the expression of 12 key necroptosis related genes in various kinds of immune cells. (A) Correlation 
analysis between different species of immune cells. (B) The proportion of different immune cells in all samples. (C–N) The Correlation analysis 
between 12 key necroptosis related genes, including ASGR2, CCNA1, FGF10,FGF19, HJURP, NTF3, OIP5, RRM2, SLC22A1, SLC28A3, WNT1, and 
WNT10B, and various types of immune cells. Red square and arrows indicated the M2 macrophage.
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KEGG enrichment analysis showed that neuroactive ligand-receptor 
interaction, calcium signaling pathway, and regulation of actin 
cytoskeleton are obvious (Figure 4B; Supplementary Table S2). Various 
related signaling pathways were also identified by both GSEA and 
GSAV enrichment analysis (Figures  4C-M; 
Supplementary Tables S3, S4). According to WGCNA analysis 

(Figure 5) and PPI network construction analysis (Figures 6A,B), 12 
key necroptosis-related genes were identified, for example FGF10 and 
FGF19 which are the members of the FGFs family. FGF is a cell family 
signaling proteins closely related to neurodegenerative diseases. FGF 
and its receptor FGFR, which dramatically enhance the survival of 
dopaminergic neurons, play important roles in the development and 

FIGURE 8

The mRNA expression levels of 12 key necroptosis related genes in external dataset, toxin-induced injury of neuroblast and peripheral blood 
lymphocytes of PD patients. (A) The expression matrix presented the expression of 12 key necroptosis related genes (ASGR2, CCNA1, FGF10, FGF19, 
HJURP, NTF3OIP5, RRM2, SLC22A1, SLC28A3, WNT1 and WNT10B) in both the control and PD groups from the dataset GSE20141. (B) The mRNA 
expression levels of above 12 key necroptosis related genes in toxin 6-OHDA-induced injury of neuroblast SH-SY5Y cell model. (C) The mRNA 
expression levels of above 12 key necroptosis related genes in peripheral blood lymphocytes of PD patients and health adults. *p < 0.05 vs. control 
group; **p < 0.01 vs. control group; ***p < 0.001 vs. control group.
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maintenance of the heath nervous system as well as neuroinflammation 
(Chen et al., 2020). In cellular models of PD, FGF provides effective 
protection against the loss of dopaminergic neurons, promotes the 
development and survival of the nervous system, relieves neurological 
symptoms, and exerts neurotrophic activity in DA neurons (Liu et al., 
2021). Despite to all these 12 key necroptosis related genes are 
positively related with the progression of PD, their internal 
relationship is not well known. We found that RRM2 and WNT1 were 
positively and negatively correlated with SLC22A1, while WNT10B 
presented positively correlation with both OIF5 and FGF19 
(Figures  6C–G). These results indicated that these 12 necroptosis 
related genes are vital in the death of neurons and progression of PD, 
and the regulation network of these 12 key necroptosis genes are also 
complicate. Furthermore, the immune state in the brain of PD patient, 
such as neuroinflammation, also affects the neurodegeneration. 
Consistently, we also found the immune-inflammation changes in PD 
brain samples. As the results from immune infiltration analysis, many 
kinds of immune cells were active in PD samples in which M2 
macrophage was the highest population of immune cell (Figures 7A,B). 
Moreover, the expression of 9 genes were positively correlated with 
differentiation and function of M2 macrophage while 3 genes were 
negative in these 12 key necroptosis genes (Figures  7C–N). M2 
macrophage is a kind of anti-inflammatory phenotype in 
cardiovascular disease (Ma et al., 2020) while it promotes progression 
of cancer (Liu et al., 2019). Whether M2 macrophage enhanced the 
neurodegeneration in PD is not well elucidated. Thus, the immune 
state is really disrupted in the brain of PD patients and the immune 
cells, such as M2 macrophage, might also affect the expression of these 
12 key necroptosis genes, resulting in the progression of neuron death.

In order to further verify the data, the mRNA expression levels 
of these 12 identified key necroptosis related genes were verified in 
both PD patients and 6-OHDA treated SH-SY5Y neuroblast model 
as well as another dataset GSE20141. Finally, we found that 3 genes 
were downregulated while 9 genes were upregulated in PD samples 
according to the DEGs analysis of dataset GSE20141 (Figure 8A). 
The mRNA expression of all these 12 genes were upregulated in 
6-OHDA-treated SH-SY5Y cell model (Figure  8B), which was 
consistent with our current analysis. Although we conducted the 

immune infiltration analysis of PD brain samples which 
contributed to explore the immune state and expression of these 
12 key necroptosis related genes in the brain of PD patients, the 
mRNA expression of these key necroptosis related genes in 
immune cells from peripheral blood were not known as well as 
their correlation. Thus, we  collected the peripheral blood 
lymphocytes from both PD patients and control people, and 
detected the mRNA expression levels of these genes, which might 
be  benefit for the clinical translation of our study. However, 
we only found that the mRNA expression level of CCNA1 was 
upregulated while OIP5 was downregulated in peripheral blood 
lymphocytes of PD patients (Figure 8C). As the summary of these 
genes expression listed in Table 2, the variability of gene expression 
results from peripheral blood lymphocytes of PD patients and the 
consistent of these genes expression in PD neuroblast cells 
indicated that neuron cell might mainly determine the genes 
expression levels of these 12 key necroptosis related genes in the 
brain. In addition, the total number of peripheral blood lymphocyte 
samples (6 PD + 6 control) might also limit the obtain of accurate 
result. Our study still needs further investigation in animal model, 
particularly the internal relationship of all these identified key 
necroptosis related genes.

Taken together, we  could conclude that necroptosis and its 
associated inflammation play fundamental roles in the progression of 
PD and these identified 12 key genes might be  served as new 
diagnostic markers and therapeutic targets for PD.
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TABLE 2 Expression levels of 12 key necroptosis related genes in multiple models.

Genes The full name of genes
GSE20141 

dataset
Peripheral blood lymphocytes 

of PD patients
6-OHDA treated 

SH-SY5Y cell model

ASGR2 Asialoglycoprotein Receptor 2 + n.s. +

CCNA1 Cyclin A1 − + +

FGF10 Fibroblast Growth Factor 10 + n.s. +

FGF19 Fibroblast Growth Factor 19 + n.s. +

HJURP Holliday Junction Recognition Protein + n.s. +

NTF3 Neurotrophin 3 + n.s. +

OIP5 Opa Interacting Protein 5 − − +

RRM2 Ribonucleotide Reductase Regulatory Subunit M2 + n.s. +

SLC22A1 Solute Carrier Family 22 Member 1 + n.s. +

SLC28A3 Solute Carrier Family 28 Member 3 + n.s. +

WNT1 Wnt Family Member 1 + n.s. +

WNT10B Wnt Family Member 10B − n.s. +

Remark: +, significantly upregulation vs. control group; −, significantly downregulation vs. control group; n.s., no significant difference vs. control group.
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