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Background: Previous studies have suggested that the DRD2/ANKK1 rs1800497C

> T polymorphism plays a critical role in the risk of post-traumatic stress disorder

(PTSD). However, published data are inconsistent or even contradictory. Therefore,

we conducted a meta-analysis to explore the underlying correlation between the

rs1800497C > T polymorphism and PTSD risk.

Materials and methods: A total of five online databases were searched, and

all related studies were reviewed up to 1 October 2022. Critical information

was extracted, and quality assessment was conducted for all included studies.

Multivariate meta-analyses were performed for the genetic model choice, and

the odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were

calculated to examine the statistical power of the genetic models. In addition,

heterogeneity, sensitivity, cumulative analysis, and publication bias were analyzed

to guarantee statistical power.

Result: Overall, 12 observational studies involving 5,515 subjects were included

and analyzed in this meta-analysis. Multivariate analysis indicated that a

co-dominant genetic model was most likely the best choice. Pooled results

revealed an elevated PTSD risk in mutated homozygote TT carriers in the general

population (TT vs. CC: OR = 1.73, 95% CI = 1.14–2.62, P = 0.01, I2 = 58.9%) and

other specific subgroups. Moreover, similar results were observed in other genetic

models using univariate analysis.

Conclusion: Current evidence suggests that the DRD2/ANKK1 rs1800497C > T

polymorphism may contribute to PTSD susceptibility.
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1. Introduction

Post-traumatic stress disorder (PTSD) is one of the most

important and severe mental disorders occurring in people who

have been exposed to a series of traumatic events such as natural

disasters, traffic accidents, war, or violent injuries (Javidi and

Yadollahie, 2012; Lewis et al., 2019). This disorder shows complex

symptoms involving flashbacks, nightmares, and severe anxiety, as

well as uncontrollable thoughts about the traumatic event, which

can last for months or even years and interfere with daily life and

work (Shalev et al., 2017). In the United States, the prevalence

of PTSD among adults is 6%, and it is more common among

women (9.7%) than among men (3.6%) (Harvard Medical School,

2007). As a serious psychological disorder, PTSD is not only an

individual catastrophe but can also lead to serious psychological

and financial burdens to the family and society (Hoppen et al.,

2021). Although comprehensive etiological research has been

conducted on PTSD, the underlying mechanisms of this disorder

remain unclear.

Human dopaminergic neurons secrete a variety of hormones

that regulate emotional behavior and are correlated with

neuropsychiatric disorders (Grandy et al., 1989). Recent

evidence had indicated a strong relationship between abnormal

dopamine (DA) expression and mental or central nervous

system diseases (Frankle et al., 2022; Joshi et al., 2022;

Wenceslau et al., 2022). The dysregulation of dopaminergic

function and signaling has been found to participate in several

psychiatric disorders, such as attention-deficit hyperactivity

disorder (ADHD) (Kim et al., 2018), alcohol dependence

(Gorwood et al., 2000), schizophrenia (Hussain et al., 2020), and

anxiety (Lawford et al., 2006).

Dopamine receptor D2 (DRD2) is a G protein-coupled receptor

(GPCR) and is one of the most important intermediate transmitters

of the dopaminergic system (Ford, 2014). This receptor is

involved in dopamine signaling in presynaptic and postsynaptic

neurons and is considered a key gene for PTSD (Yin and Chen,

2020). The current research suggests that DRD2 can activate the

self-regulated synaptic pruning mechanism through the mTOR

signaling pathway, and the deficiency of synaptic pruning in

adolescents results in hyperglutamate function and anxiety-like

behavior in adulthood (Yin and Chen, 2020; Zhang and Lin, 2021).

Abnormal DRD2 expression and dopamine signaling dysfunction

in several mental disorders have become critical therapeutic targets

of antipsychotic drugs.

The DRD2 gene is located on human chromosome 11q23

and contains nine exons, several introns, and a short nucleotide

repeat (STR) (Eubanks et al., 1992). To date, several single-

nucleotide polymorphism (SNP) loci have been shown to be

associated with PTSD susceptibility. Among these, rs1800497C

> T is the most common polymorphism locus, which is located

10.5 kb downstream of DRD2 and adjacent to the ankyrin repeat

and kinase domain containing one gene (ANKK1) (Yin and Chen,

2020). This polymorphism encompasses a substitution of cytosine

to thymine, and the minor T allele (the same as the A1 allele)

always combines with the reduced number of dopamine-binding

sites in the brain, resulting in a reduced level of dopaminergic

activity (Pohjalainen et al., 1998). A recent neuroimaging study

showed an association between the rs1800497 polymorphism and

hippocampal function and volume, as well as PTSD severity. This

was more specifically observed in TC carriers with reduced left CA3

volume and severe PTSD symptomatology (Yuan et al., 2022). In

1991, Comings et al. (1991) conducted the first case–control study

on the association between the rs1800497C > T polymorphism

and PTSD susceptibility and reported a negative result in the US

population. Since then, numerous studies have been published,

but the results have been inconsistent or conflicting. Considering

the uncertainty of the current results among published studies, we

conducted a meta-analysis to assess the association between the

rs1800497C > T polymorphism and PTSD susceptibility.

2. Materials and methods

The review and meta-analysis were performed in accordance

with the guidelines of the Preferred Reporting Items for Systematic

Reviews and Meta-Analyses (PRISMA) statement (Moher et al.,

2009). All collected information was extracted from publications,

and no ethical issues were involved.

2.1. Literature search

A total of five electronic databases were searched from

inception to 1 October 2022 to identify studies focusing on

the association between the rs1800497 polymorphism and PTSD

susceptibility. The reference lists of the included studies were

manually searched to identify additional relevant studies. The

retrieval strategy is as follows (e.g., in PubMed):

#1 Dopamine receptor D2;

#2 DRD2;

#3 rs1800497;

#4 Taq1A;

#5 #1 OR #2 OR #3 OR #4;

#6 Polymorphism;

#7 Variant;

#8 Mutation;

#9 #6 OR #7 OR #8;

#10 Post-traumatic stress disorder;

#11 PTSD;

#12 #10 OR #11;

#13 #5 AND #9 AND #12;

2.2. Inclusion and exclusion criteria

All retrieved studies were screened with the following criteria

for inclusion in this meta-analysis: (1) observational studies on

the association between rs1800497 polymorphism and PTSD

susceptibility; (2) sufficient genotype data for case and control

groups; (3) published studies in English or Chinese; (4) studies

with the latest or largest sample size were retained with multiple

publications having similar data; and (5) subgroup analyses were

conducted only when two or more studies were excluded. The

exclusion criteria were as follows: (1) case report and review

studies; (2) biological fundamental studies; and (3) studies without

sufficient information on genotypes.
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2.3. Data extraction

Dr. Niu and Zhang reviewed all selected studies and

extracted information independently: the surname of the

author, year of publication, country and ethnic distribution,

control design (population-based control, PB and trauma

exposure without PTSD, TEWOP), genotyping method,

sample sizes of case and control groups, frequencies of the

genotype distribution in both case and control groups, causes of

trauma, different crowds, diagnostic criteria, the p-value of the

Hardy–Weinberg equilibrium (HWE) test in the control group,

and NOS scores.

2.4. Quality assessment

A total of six departments of representativeness of

cases, control design, HWE status in controls, genotyping

methods, subject size, and association assessment were

independently evaluated by two authors according to the

modified Newcastle–Ottawa quality scale (NOS) (Niu et al.,

2015). The scores ranged from 0 to 11, and studies with

more than 8 points were considered to have high quality

(Supplementary Table 1).

2.5. Statistical analysis

Crude odds ratios (ORs) and 95% confidence intervals (CIs)

were calculated to determine the association between the rs1800497

polymorphism and PTSD susceptibility. The two pooled logORs

of log (CT vs. CC) and logOR (TT vs. CC) were first calculated;

then, the ratio λ was calculated using the following formula: λ =

log(AG vs. AA)/log(GG vs. AA). The genetic model was inferred

and calculated according to the ratio λ when the value of λ was

equal to 0, 0.5, and 1, which corresponded to the recessive, co-

dominant, and dominant models, respectively. An over-dominant

model was adopted when the ratio λ was <0 or >1. Furthermore,

the statistical power of the other genetic models was determined

using univariate analysis regarding allele contrast (T vs. C), the co-

dominant model (CT vs. CC and TT vs. CC), the dominant model

(CT + TT vs. CC), and the recessive model (TT vs. CC + CT).

Potential heterogeneity among the collected studies was examined

using I2 tests. A random-effects model was used when I2 > 50%;

otherwise, a fixed-effects model was employed.Moreover, subgroup

analyses were conducted based on HWE status, ethnic distribution,

control design, and trauma source. Cumulative meta-analysis

and sensitivity analysis were conducted to identify the changing

tendency and stability of the results over time. Potential publication

biases were assessed using Egger’s linear regression test and

Begg’s funnel plots. All statistical analyses were conducted using

STATA (version 14.0; Stata Corporation, College Station, TX, USA)

and OpenBUGS 3.2 (http://www.openbugs.net/w/Downloads),

and a p-value of <0.05 was considered to be statistically

significant (two-sided).

3. Results

3.1. Study characteristics

The screening process for the included studies is shown in

Figure 1. A total of 161 studies were initially identified using

the aforementioned search strategy. Thereafter, 90 studies were

excluded due to duplicate data. After screening the titles and

abstracts, 54 studies were excluded. Then, full-text screening was

performed, and six studies were excluded to irrelevant topics. An

additional 11 studies were excluded from the review due to lacking

complete genotype information. Ultimately, 11 publications with

12 observational studies were included (Comings et al., 1991;

Gelernter et al., 1999; Young et al., 2002; Voisey et al., 2009; Li and

Wen, 2012; Duan et al., 2015; Tian et al., 2015; Dretsch et al., 2016;

Zhang et al., 2018; Hoxha et al., 2019; Xiao et al., 2019).

Among the included studies, six were conducted on Caucasian

populations and six on Asian populations. A total of five studies

used the polymerase chain reaction-restriction fragment length

polymorphism (PCR-RFLP) method, whereas the others used the

PCR-ligase detection reaction (PCR-LDR), TaqMan, SnaPShot, and

SNPscan methods for polymorphism detection. As control sources,

three studies obtained controls from the PB groups, and seven

studies used controls from the TEWOP groups. Regarding PTSD

causes, war and earthquakes were the most common traumatic

factors (Table 1). The p-value of HWE of the genotype distributions

in the control groups was found to be statistically significant in

three studies (Tian et al., 2015; Zhang et al., 2018; Hoxha et al.,

2019). In total, four studies hadNOS scores of 8 or higher according

to the quality assessment criteria. All the information on the

included studies is presented in Table 1.

3.2. Meta-analysis

A total of twelve studies involving 1,733 patients and 3,782

controls were included in our meta-analysis. The estimated λ

= 0.512 (95% CI: 0.081–0.954) was close to 0.5, suggesting that

a co-dominant genetic model (CT vs. CC and TT vs. CC) of

inheritance was more appropriate. Statistical analysis indicated that

TT carriers (homozygote model) were associated with elevated

PTSD susceptibility in the general population (TT vs. CC: OR =

1.73, 95% CI = 1.14–2.62, P = 0.01, I2 = 58.9%, Figure 2, Table 2).

Moreover, many significantly increased risks were found in the co-

dominant model in the subgroup analysis based on HWE status

(HWE−yes: CT vs. CC: OR = 1.38, 95% CI = 1.05–1.82, P = 0.02,

I2 = 62.5%; HWE−no TT vs. CC: OR = 4.01, 95% CI = 2.01–7.99,

P < 0.01, I2 = 18.9%), Asian groups (TT vs. CC, OR = 1.86, 95%

CI = 1.06–2.36, P = 0.03, I2 = 78.9%), control design of TEWOP

groups (TT vs. CC, OR= 2.11, 95% CI= 1.33–3.35, P < 0.01, I2 =

55.0%), groups with earthquake experience (TT vs. CC, OR= 2.65,

95% CI = 1.33–5.31, P = 0.01, I2 = 72.7%), and specific crowds of

civilians (TT vs. CC, OR = 1.99, 95% CI = 1.20–3.30, P = 0.01, I2

= 72.9%) (Table 2).

In addition, some significantly increased PTSD risks were

also observed in the general population and subgroup analyses in

different genetic models via univariate analyses (Table 2).
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FIGURE 1

Flow diagram of the study selection process.

3.3. Cumulative analysis and sensitivity
analysis

Cumulative analysis showed no fluctuation in the results of

recent studies, which showed a progressive increase in PTSD risk

(Figure 3 for TT vs. CC model). Sensitivity analyses provided

results consistent with the removal of each study according to its

publication date (Figure 4 for TT vs. CC model).

3.4. Publication bias

The publication bias test was assessed, and no significant

asymmetry was observed in the funnel plots (Figure 5 for TT vs.

CCmodel). The results were checked with Egger’s test (T vs. C, P=

0.14; TT vs. CC, P = 0.43; CT+ TT vs. CC, P = 0.26; CT+ TT vs.

CC, P = 0.29; TT vs. CC+ CT, P = 0.22).

4. Discussion

Post-traumatic stress disorder is a common mental disease,

and its incidence rate is gradually increasing. It is estimated

that 7–8% of the global population suffers from PTSD at some

point in their lives (Keane et al., 2006). PTSD always develops

after exposure to a highly traumatic stress event. Violent personal

assaults, natural or human-caused disasters, accidents, combat,

and other forms of violence may be the most important triggers

for PTSD. Many people often experience the impact of highly

traumatic events, but only a small number eventually experience

PTSD. Beyond intrinsic and environmental factors, increasing

evidence suggests that genetic factors play a major role in the

development and pathogenesis of PTSD. As a member of GPCR,

DRD2 can inhibit the activity of adenylate cyclase, regulate the

calcium potassium channel activity in neurons, and affect neuronal

excitability and function. DRD2 belongs to the family of inhibitory

D2-like receptors, which aremainly expressed at the synaptic end of

dopaminergic neurons (Zhang and Lin, 2021). Tabano et al. (2022)

found that DRD2 methylation levels can be modulated by stress

conditions and are positively correlated with PTSD occurrence.

SNPs are the most common type of gene mutation in

humans and contribute to individual susceptibility to several

diseases through altered gene transcription, expression, and

spatial structure. Some studies have suggested that the rs1800497

polymorphism is always accompanied by an abnormal expression

of the DRD2 gene in the brain tissue and is associated with several

psychiatric disorders, such as anxiety, depression, schizophrenia

(Zhou et al., 2022), bipolar disorder (Zhang et al., 2021), and
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TABLE 1 Characteristics of included studies on DRD2/ANKK1 rs1800497C > T polymorphism and PTSD risk.

First
author

Year Country/
region

Ethnicity Source
of
controls

Case Control Genotype distribution Genotyping
methods

P

for
HWE

Causes
of
trauma

Crowd Diagnostic
criteria

NOS

Case Control

CC CT TT CC CT TT

Comings 1991 US Caucasian Mixed 35 314 19 14 2 237 70 7 DNA-digest 0.50 NA Civilian MDRTE 7

Gelernter 1999 US Caucasian PB 52 87 37 14 1 56 29 2 PCR-RFLP 0.43 War Veterans SCID 7

Young 2002 Australian Caucasian HB 91 51 56 34 1 45 5 1 PCR-RFLP 0.10 War Veterans DSM-IV 7

Voisey 2009 Australian Caucasian PB 127 223 75 47 5 154 61 8 PCR-RFLP 0.53 War Veterans DSM-IV 8

Ning 2012 China Asian TEWOP 147 200 51 70 26 82 88 30 Snapshot 0.43 NA Civilian PCL-C 7

Duan 2015 China Asian PB 337 497 128 166 43 174 246 77 PCR-LDR 0.52 Mixed Civilian PTSD-RI 11

Tian 2015 China Asian TEWOP 64 119 21 26 17 40 70 9 PCR-RFLP <0.01 Earthquake Civilian PCL-C 6

Dretsch 2015 US Caucasian TEWOP 41 189 25 14 2 110 68 10 PCR-RFLP 0.90 War Veterans PCL-M 6

Zhang-1 2018 China Asian TEWOP 156 978 48 82 26 364 460 154 SNPscan 0.67 Earthquake Civilian PCL-5 7

Zhang-2 2018 China Asian TEWOP 32 497 14 13 5 227 262 8 SNPscan <0.01 Earthquake Civilian PCL-5 7

Xiao 2019 China Asian TEWOP 287 280 103 132 52 139 108 33 PCR-RFLP 0.10 Earthquake Civilian PCL-C 8

Hoxha 2019 Prishtina Caucasian TEWOP 364 348 248 107 9 233 112 3 PCR-RFLP 0.01 War Civilian M.I.N.I. 8

HWE in control.

PB, population-based control; NA, not available; PCR-LDR, polymerase chain reaction-ligase detection reaction; DSM-IV, diagnostic and statistical manual of mental disorders criteria; PTSD-RI, UCLA posttraumatic stress disorder reaction index criteria; PCL-5, PTSD

checklist for DSM-5; PCL-C, PTSD checklist–civilian version; M.I.N.I., mini-international neuropsychiatric interview; PCL-M, PTSD checklist—military version; TEWOP, trauma exposure without PTSD; SCID, structured clinical interviews; PB, population-based

control; MDRTE, mental disorders, revised third edition; NA, not available.
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FIGURE 2

OR and 95% CIs of the associations between DRD2/ANKK1 rs1800497C > T polymorphism and PTSD susceptibility in the TT vs. CC model.

autism spectrum disorder (Liu, 2020). Rs1800497 was originally

considered the DRD2 polymorphism locus in most published

studies since it could regulate the synthesis of dopamine and

reduce D2 receptor expression (Munaf et al., 2009). Thompson

et al. (1997) and Jönsson et al. (1999) proved that individuals

with the T allele show a decrease of 30–40% in DRD2 density

in the striatum compared to wild-type genotype carriers, which

is consistent with PTSD patients with dopamine hypoactivity

(Lawford et al., 2006). Moreover, Klein et al. (2007) suggested

that the replacement of an acidic amino acid (C allele) by a basic

amino acid (T allele) was associated with decreased dopamine D2

receptor density/availability in the brain, resulting in decreased

sensitivity to traumatic actions. However, the mechanism by

which the rs1800497 polymorphism affects or regulates phenotypic

expression remains unclear (Thompson et al., 1997). The rs1800497

locus is far from the RD2 gene and cannot affect the expression

of the DRD2 gene directly. Therefore, linkage disequilibrium with

other functional loci may be a reasonable explanation for the

potential mechanism of lower DRD2 density (Pohjalainen et al.,

1998). The TaqIA polymorphism has been speculated to be in

linkage disequilibrium with mutations in the DRD2 gene or other

adjacent genes, such as the rs6276 or rs6277 locus, which is also

associated with a decreased expression of DRD2mRNA (Jiang et al.,

2014).

To date, several studies have been conducted to explore the

association between the rs1800497 polymorphism and PTSD risk;

however, the results remain inconsistent. Gelernter et al. (1999)

conducted an early case-control study in 1999 and suggested that

the rs1800497 mutation is unlikely to contribute to PTSD risk

in US combat veterans. Voisey et al. (2009) and Dretsch et al.

(2016) also reported similar results in Australian and US subjects.

In contrast, Ning et al. reported an increased PTSD risk in Chinese

individuals with mutated genotypes (homozygote contrast: OR =

1.43, 95% CI = 1.17–3.21; heterozygote contrast: OR = 1.77, 95%

CI = 1.52–2.10). Tian et al. (2015) suggested that PTSD patients

with earthquake experience in the Wenchuan earthquake in China

presented a significantly higher TT homozygote rate than controls.

Xiao et al. (2019) also reported increased PTSD risk in individuals

with the TT genotype (OR = 2.39, 95% CI = 1.39–4.12). The

inconsistent results may result from the following: (1) different

PSTD causes; (2) different ethnicities and origin countries; (3)

deviations of HWE; (4) different genotype assessmentmethods; and

(5) quality differences in the included studies.

Therefore, how can we obtain a more precise result in the

current situation? Meta-analysis may be the best choice to resolve

the current inconsistencies among studies with larger pooled

samples. In 2016, Li et al. (2016) conducted the first meta-

analysis on this subject and suggested a significant association

between the rs1800497 polymorphism and PTSD susceptibility.

The pooled results were derived from six case-control studies

involving only 597 patients with PTSD and 1,155 controls, without

any subgroup analysis or other quality assessment. To date, more

evidence has emerged, and therefore, we conduct this meta-

analysis to more precisely assess the association between the

rs1800497 polymorphism and PTSD susceptibility based on more

eligible data.

In our meta-analysis, 12 observational studies (from 11

publications) involving 5,515 subjects were included. Scientific
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TABLE 2 Summary ORs and 95% CI of DRD2/ANKK1 rs1800497C > T polymorphisms and PTSD risk.

Locus N
∗ T vs. C CT vs. CC TT vs. CC CT + TT vs. CC TT vs. CC + CT

OR 95% CI P I
2 (%)a OR 95% CI P I

2 (%)a OR 95% CI P I
2 (%)a OR 95% CI P I

2 (%)a OR 95% CI P I
2 (%)a

Total 12 1.25 1.06–1.49 0.01 61.9 1.22 0.96–1.54 0.10 61.6 1.73 1.14–2.62 0.01 58.9 1.28 1.02–1.60 0.03 61.2 1.63 1.07–2.48 0.02 64.3

HWE-yes 9 1.26 1.01–1.57 0.04 69.2 1.38 1.05–1.82 0.02 62.5 1.24 0.97–1.57 0.08 29.8 1.39 1.05–1.85 0.02 67.7 1.10 0.89–1.37 0.38 0

HWE-no 3 1.18 0.95–1.46 0.13 30.8 0.85 0.65–1.12 0.26 0 4.01 2.01–7.99 <0.01 18.9 0.98 0.75–1.27 0.87 0 4.55 2.36–8.77 <0.01 26.5

Ethnicity

Caucasian 6 1.32 0.93–1.87 0.12 65.4 1.41 0.87–2.29 0.16 73.7 1.56 0.84–2.93 0.16 0 1.41 0.89–2.22 0.14 72.4 1.46 0.77–2.77 0.25 0

Asian 6 1.23 1.00–1.51 0.05 65.0 1.16 0.98–1.38 0.09 47.9 1.86 1.06–2.36 0.03 78.9 1.22 0.95–1.57 0.11 51.2 1.78 1.02–3.10 0.04 82.0

Control design

PB 3 1.00 0.72–1.39 0.98 55.8 1.06 0.70–1.60 0.80 56.1 0.81 0.54–1.21 0.30 0 1.03 0.67–1.57 0.90 60.0 0.83 0.57–1.20 0.32 9

TEWOP 7 1.25 1.11–1.41 <0.01 20.9 1.15 0.97–1.36 0.11 41.0 2.11 1.33–3.35 <0.01 55.0 1.24 1.05–1.45 0.01 29.0 2.05 1.20–3.52 0.01 71.3

Causes of trauma

War 5 1.18 0.84–1.67 0.34 58.8 1.27 0.76–2.10 0.36 73.0 1.42 0.73–2.78 0.31 0 1.25 0.79–2.00 0.34 70.2 1.35 0.70–2.63 0.37 0

Earthquake 4 1.37 1.18–1.59 <0.01 0 1.19 0.83–1.71 0.35 51.2 2.65 1.33–5.31 0.01 72.7 1.43 1.15–1.78 <0.01 4.7 2.65 1.17–6.01 0.02 83.8

Other 3 1.24 0.81–90 0.34 80.0 1.30 0.79–2.14 0.30 69.2 1.18 0.60–2.29 0.63 59.2 1.33 0.77–2.28 0.31 76.4 0.94 0.68–1.30 0.73 33.6

Crowds

Veterans 4 1.28 0.78–2.11 0.33 65.1 1.45 0.73–2.91 0.29 73.7 1.04 0.45–2.37 0.93 0 1.41 0.73–2.70 0.30 72.4 0,95 0.42–2.17 0.91 0

Civilians 8 1.25 1.04–1.51 0.02 65.2 1.16 0.91–1.47 0.24 56.4 1.99 1.20–3.30 0.01 72.9 1.24 0.98–1.57 0.07 58.5 1.89 1.14–3.11 0.01 76.6

∗Numbers of comparisons.
aTest for heterogeneity.

PB, population-based control; TEWOP, trauma exposure without PTSD.
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FIGURE 3

Cumulative meta-analyses according to publication year in the TT vs. CC model of DRD2/ANKK1 rs1800497C > T polymorphism.

FIGURE 4

Sensitivity analysis through deleting each study to reflect the influence of the individual dataset on the pooled ORs in the TT vs. CC model of

DRD2/ANKK1 rs1800497C > T polymorphism.

statistical methods with multiple analyses were employed, and

the co-dominant genetic model was suggested as the most

appropriate choice to examine the association between the

rs1800497 polymorphism and PTSD susceptibility. Overall, the

pooled results indicated a significant association between the

rs1800497 polymorphism and PTSD susceptibility in the general

population and several specific subgroups, such as control design,

causes of trauma, and crowds. For TEWOP controls, our results

indicate that the mutation of the rs1800497 polymorphism might

be a more dangerous triggering factor when PTSD patients and
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FIGURE 5

Funnel plot analysis to detect publication bias for the TT vs. CC model of DRD2/ANKK1 rs1800497C > T polymorphism. Circles represent the weight

of the studies.

TEWOP controls face the same traumatic exposures. Considering

the causes of trauma, the current results indicated that the

earthquake was more strongly correlated with PTSD risk than

other factors. This may be because the occurrence of earthquakes

is sudden and often unpredictable. In addition, earthquakes are

more destructive in depth and breadth, and this damage always

involves a wider range of people, and the personnel composition

is more complex. For different crowds, the stratified analysis

demonstrated that civilians were more vulnerable in the face of

traumatic events. This also means that the ability of civilians

to tolerate and resist high-intensity traumatic events is weaker

than that of military personnel who have systematic training.

Moreover, in co-dominant genetic models (heterozygote model

and mutant homozygote model), the pooled results revealed a

statistically significant difference in the general population and

subgroups, which also indicated that the rs1800497 TT genotype

could increase PTSD risk with a gene dosage effect compared

with the CC genotype and the CT genotype. In terms of

ethnic differences, six studies focused on Caucasian and Asian

descendants, and the results showed that the T allele may be an

independent trigger for PTSD risk in Asians but not in Caucasians.

Even so, these results should be interpreted with caution

because of the small sample size and obvious heterogeneity in

Asian populations.

Inevitably, there were some limitations that should be

addressed in our research. First, only one polymorphism locus

was analyzed in this meta-analysis, and the interactions with

other SNPs and the gene–gene or gene–environment synergistic

effects could not be assessed due to the lack of original

information. Second, moderate heterogeneity was observed in

several genetic models, which might have caused bias in the

current results. This heterogeneity was partially alleviated with

subsequent stratified analysis, and no significant contributing

factor was found in meta-regression analyses. Third, the current

studies were mostly conducted with Caucasian and Asian

descendants, and whether the results could be extended to the

general population remains to be demonstrated. Nevertheless,

some advantages of our meta-analysis should be highlighted: (1)

Multivariate meta-analyses were applied in this study as a scientific

statistical method to select a more appropriate genetic model,

(2) complete search strategies and rigorous criteria of inclusion

and quality assessment were employed, and (3) cumulative

analyses and sensitivity analyses were conducted to identify

potential interfering factors and to guarantee the credibility of

our results.

5. Conclusion

In summary, this meta-analysis suggests that the

DRD2/ANKK1 rs1800497 polymorphism may increase the

risk of PTSD susceptibility. Due to the insufficient quantity and

quality of published research, global, high-quality studies with

larger sample sizes should be conducted to further validate the

current results.
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