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EXODUS: Stable and e�cient
training of spiking neural networks

Felix C. Bauer*, Gregor Lenz, Saeid Haghighatshoar and

Sadique Sheik

SynSense AG, Zurich, Switzerland

Introduction: Spiking Neural Networks (SNNs) are gaining significant traction in

machine learning tasks where energy-e�ciency is of utmost importance. Training

such networks using the state-of-the-art back-propagation through time (BPTT) is,

however, very time-consuming. Previous work employs an e�cient GPU-accelerated

backpropagation algorithm called SLAYER, which speeds up training considerably.

SLAYER, however, does not take into account the neuron reset mechanism while

computing the gradients, which we argue to be the source of numerical instability.

To counteract this, SLAYER introduces a gradient scale hyper parameter across layers,

which needs manual tuning.

Methods: In this paper, we modify SLAYER and design an algorithm called EXODUS,

that accounts for the neuron reset mechanism and applies the Implicit Function

Theorem (IFT) to calculate the correct gradients (equivalent to those computed by

BPTT). We furthermore eliminate the need for ad-hoc scaling of gradients, thus,

reducing the training complexity tremendously.

Results: We demonstrate, via computer simulations, that EXODUS is numerically

stable and achieves comparable or better performance than SLAYER especially in

various tasks with SNNs that rely on temporal features.

KEYWORDS

spiking neural network (SNN), backpropagation (BP) algorithm, supervised learning,

neuromorphic computing, neuromorphic algorithms, learning algorithm, computational

e�ciency, neuromorphic engineering

1. Introduction

Spiking Neural Networks (SNNs) are a class of biologically-inspired networks with single bit

activations, fine-grained temporal resolution and highly sparse outputs. Their memory makes

them especially suitable for sequence tasks and their sparse output promises extremely low

power consumption, especially when combined with an event-based sensor and asynchronous

hardware (Göltz et al., 1995; Davies et al., 2021). SNNs have thus garnered considerable attention

for machine learning tasks that aim to achieve low power consumption and/or biological

realism (Cao et al., 2015; Diehl and Cook, 2015; Roy et al., 2019; Panda et al., 2020; Comşa et al.,

2021).

SNNs are notoriously difficult to train due to the highly non-linear neuron dynamics,

extreme output quantization and potential internal state resets, even for relatively simple

neuron models such as Integrate-and-Fire (IF) or Leaky-Integrate-and-Fire (LIF) (Burkitt, 2006;

Gerstner, 2021). Different approaches and learning rules have thus emerged to train SNNs.

Biologically-inspired local learning rules (Choe, 2013; Lee et al., 2018; Lobov et al., 2020) do not

rely on a global error signal, but often fail to scale to larger architectures (Bartunov et al., 2018).

Methods that work directly with spike timings to calculate gradients bypass the issue of non-

differentiable spikes, but are typically limited to time-to-first spike encoding (Göltz et al., 1995;

Bohte et al., 2000; Mostafa, 2017). A notable exception to this has been proposed by Wunderlich

and Pehle (2021), where gradients of threshold crossings are determined in continuous-time on

an event-by-event basis, which results in reduced memory footprint. A parallelized, GPU-based

implementation has been proposed recently (Nowotny et al., 2022).
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Fueled by the success of deep learning, surrogate gradient

methodsmore recently have paved the way for flexible gradient-based

optimization in SNNs with the aim to close the accuracy gap to ANN

counterparts (Esser et al., 2016; Bellec et al., 2018; Neftci et al., 2019;

Safa et al., 2021).

Surrogate gradient methods make use of a smoothed output

activation (usually a function of internal state variables) during the

backward pass to approximate the discontinuous activation. This

is well-supported in modern deep learning frameworks and allows

the direct application of back-propagation through time (BPTT)

to train SNNs. This alone would make it feasible to train SNNs

successfully were it not for the high temporal resolution needed

in SNNs. Activation is typically very sparse across time because

data from an event-based sensor has a native time resolution of

micro-seconds. This makes it necessary to simulate input using a

lot of time steps on today’s von Neumann machines, which work

in discrete time. A naive implementation of BPTT with T discrete-

time steps and N fully connected neurons incurs a computational

complexity of order O(N2T) and a memory overhead of O(NT)

on such architectures (Martín-Sánchez et al., 2022), which makes

training SNNs tremendously slow and computationally expensive.

To alleviate this issue, Shrestha and Orchard (2018) propose

SLAYER, an algorithm in which gradients are back-propagated

across layers as usual, but they are computed jointly in time such

that the complexity due to sequential back-propagation in time is

fairly eliminated by highly parallelized and GPU-accelerated joint

gradient computation. Mathematically speaking, SLAYER can be

seen as gradient computation for a modified forward computation

graph underlying the chain rule, in which all the time dynamics are

contracted into a single node (see Section 2.3 for further details).

However, this comes at the cost of creating a loop in the computation

graph where the gradients cannot be back-propagated via chain rule.

To solve this issue, SLAYER ignores a term, known as reset kernel,

which models the effect of output spike generation on the internal

neuron potential. In e-prop (Bellec et al., 2020), a learning algorithm

for recurrent SNNs, the same term among others is omitted in the

gradient computaion for reasons of biological plausibility.

As a result, SLAYER yields a considerable speed-up for training

SNNs at the cost of the deviation of gradients from what would be

computed by BPTT, as well as some numerical instability. SLAYER

typically deals with this instability by tweaking a hyperparameter

which scales the gradient magnitude. This needs considerable hand-

tuning and scales unfavorably to deeper architectures and longer time

sequences. For completeness, it is possible to reduce computational

complexity of gradient compuation in SNNs in other specialized

implementations by optimizing the forward call (Knight et al., 2021),

computing sparse gradients (Perez-Nieves and Goodman, 2021) or

taking advantage of CUDA graph replay.

In this paper we propose EXODUS (EXact computation Of

Derivatives as Update to SLAYER), in which we address numerical

issues induced by SLAYER and compute gradients equivalently to

what BPTT computes, while at the same time achieving a significant

speedup of one order ofmagnitude in comparison to a non-optimized

implementation. We achieve this by applying the Implicit Function

Theorem (IFT) in a similar approach as Blondel et al. (2021), hence

resolving the loopy structure in each layer’s computation graph.

Examples of other work that make use of the IFT to find gradients

in the context of machine learning include (Scellier and Bengio,

2017; Bai et al., 2019), which formulate optimization processes for

deep learning models as fixed point problems, as well as above

mentioned (Wunderlich and Pehle, 2021).

In summary, our contributions are as follows:

(i) We improve the SLAYER algorithm by taking into account the

reset response of neurons during the backward pass.

(ii) We compute gradients that are equivalent to BPTT and can be

back-propagated through each layer.

(iii) We eliminate the need for ad-hoc scaling of gradients, needed

for solving the numerical instability of SLAYER, thus, reducing the

training complexity tremendously.

(iv) We demonstrate, via numerical simulations, that EXODUS is

robust to changes in gradient scaling and achieves comparable or

better performance than SLAYER in various tasks using snn that rely

on temporal features.

2. Preliminaries and background

2.1. Implicit Function Theorem

In many problems in statistics, mathematics, control theory,

machine learning, etc. the state of a problem is represented in terms of

a collection of variables. However, in many cases, these variables are

correlated due to existence of constraints. Here, we are interested in a

setting where one may have a collection of m + n variables and a set

ofm equations (equality constraints) connecting them together. Since

there arem equations, one may hope to solve form variables, at least

locally, as a function of the remaining n variables. It is conventional

to call the first m variables dependent and the remaining n variables

independent as the latter may vary (at least locally) independently of

one another while the values of the former depend on the specific

choice of those n independent variables.

The Implicit Function Theorem (IFT) provides rigorous

conditions under which this is possible and specifies when

the m dependent variables are differentiable with respect to n

independent ones.

Theorem 2.1 (Implicit Function Theorem). Let φ :R
n × R

m → R
m

be a differentiable function, let Z = {(x, y) ∈ R
n × R

m
:φ(x, y) =

0} be the zero-set of φ, and let (x0, y0) ∈ Z be an arbitrary

point in Z . If the m × m matrix ∂φ
∂y (x0, y0) is non-singular, i.e.,

det
(

∂φ
∂y (x0, y0)

)

6= 0, then,

• there is an open neighborhood Nx around x0 and an open

neighborhood Ny around y0 such that ∂φ
∂y (x, y) is non-singular

for all (x, y) ∈ N : = Nx ×Ny [including of course the original

point (x0, y0)].

• there is a function ψ :Nx → Ny such that (x,ψ(x)) belongs to

the zero-set Z , i.e., φ(x,ψ(x)) = 0, for all x ∈ Nx. Therefore,

y = ψ(x) can be written as function of x.

• (Chain rule) ψ is a differentiable function of x inNx and

∂φ

∂y
·
∂ψ

∂x
+
∂φ

∂x
= 0, (1)

which from the non-singularity of ∂φ
∂y yields

∂ψ

∂x
= −

(∂φ

∂y

)−1
·
∂φ

∂x
. (2)
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Remark 2.2. Note that here, for simplicity, we denoted

the independent and dependent variables with x ∈ R
n

and y ∈ R
m. In general, one may choose any disjoint

subsets of the variables of size m and n as dependent

and independent variables and verify the conditions of

the IFT.

In Appendix 1, we provide examples to illustrate how IFT is

applied for computing the derivative of the dependent variables

with respect to independent ones. In particular, we show that

intuitive ad-hoc application of the chain rule in a loopy computation

graph and neglecting the conditions of ift may indeed yield wrong

results.

2.2. Spike Response Model

Neuron dynamics in SNNs can be described by a state-space

model where the internal state of each neuron depends on both its

current input and its previous states.When applying the conventional

back-propagation algorithm, therefore, the gradients need to be

back-propagated not only through layers of the network but also

through time. This paper builds upon SLAYER (Spike LAYer Error

Reassignment) (Shrestha and Orchard, 2018), an algorithm for

training feedforward SNNs. SLAYER is based on the spike response

model (SRM) (Gerstner, 2021), where the state of a spiking neuron at

each time instant n is described by its membrane potential u[n], given

by

u[n] =
∑

i

wi(ǫ ∗ s
in
i )[n]+ (ν ∗ sout)[n− 1], (3)

sout[n] = fs(u[n]). (4)

Here sini [n] and wi denote the input spikes received from the i-th

pre-synaptic neuron and the corresponding weight. Furthermore, ǫ

and ν denote the spike response and reset kernel of the neuron (with

∗ denoting the convolution operation in time) to the incoming and

outgoing spikes, where a discrete delay of size 1 is introduced for

the reset kernel ν to defer the effect of outgoing spikes to the next

time instant.

Outgoing spikes are obtained from the membrane potential

through a memory-less binary spike generating function fs :R →

{0, 1} where fs(u[n]) = 1 when the membrane potential u[n] reaches

or exceeds the neuron firing threshold θ > 0, and is 0 otherwise. Since

fs is not differentiable, a common solution for obtaining well-defined

gradients for training SNNs is to use fs in the forward pass to produce

outgoing spikes but replace it with a differentiable function in the

backward pass, where the gradients are computed through back-

propagation. This is known as the surrogate gradient method in SNN

literature. Different surrogate gradients have been proposed such as

piecewise linear (Bohte, 2011; Esser et al., 2016; Bellec et al., 2018,

2020), tanh (Woźniak et al., 2020), fast sigmoids (Zenke and Ganguli,

2018), or exponential functions (Shrestha and Orchard, 2018). In this

paper, with some abuse of notation, we denote the surrogate gradient

by f ′s (.). Our derivations are valid for any f
′
s as long as f

′
s (u[n]) is well-

defined for all feasible values of the membrane potential u[n] at all

time instants n.

2.3. Vectorized network model

As in Shrestha and Orchard (2018), we focus on a feedforward

network architecture with L layers. Using Equations (3, 4) and

applying vectorization, we may write the forward dynamics of a

layer l with Nl neurons and input weights W(l−1) ∈ R
Nl×Nl−1

equivalently as:

a(l)[n] = W(l−1)s(l−1)[n], (5)

z(l)[n] = (ǫ ∗ a(l))[n], (6)

u(l)[n] = z(l)[n]+ (ν ∗ s(l))[n− 1], (7)

s(l)[n] = fs(u
(l)[n]), (8)

Here, a(l−1)[n] represents the weighted input spikes (output

spikes of previous layer) s(l−1). Filtering/smoothing out by the neuron

spike response ǫ yields the post-synaptic response z(l).

We take {s(l−1)[n] : n ∈ [T]} and {s(l)[n] : n ∈ [T]} as the input

and output of a specific layer l ∈ [L] across T time instants, where

we used the short-hand notation [N] = {1, 2, . . . ,N}. The model

output is given by {s(L)[n] : n ∈ [T]}. We also define the loss as

L(s(L)[0], ..., s(L)[T − 1]) in terms of the network output over all time

instants [T].

The computational graph of the described network model has a

directed acyclic graph structure in spatio-temporal dimensions, as

illustrated in Figure 1. Therefore, the gradients can be propagated

from the loss L to the trainable weights backward across the layers

(spatial) and also time instants (temporal). However, as explained

above, this approach is computationally slow.

The SLAYER algorithm introduced by Shrestha and Orchard

(2018) avoids this by vectorizing the variables over time, as illustrated

in Figure 1. Instead of assigning to each state variable at each point

in time an individual node in the computational graph, here every

node corresponds to a state across all time instants. This, however,

introduces loops in the computational graph due to the mutual

dependence of the vectorized variables u(l)[.] and s(l)[.] in Equations

(7, 8). This prohibits back-propagating through these variables. To

solve this issue, SLAYER ignores the reset kernel ν [effect of output

spikes on neuron potential in Equation (7)] in the calculation of its

gradients. Apart from this omission, the algorithm is equivalent to

ours, as described in detail below.

3. Derivation of EXODUS gradients

3.1. Vector back-propagation

We calculate gradients precisely by taking into account the reset

kernel neglected by SLAYER. To do so, we apply the ift to back-

propagate the gradients through the loopy computation graph. As

the loops occur only between the variables ul[.] and s(l)[.] within

the same layer, we apply IFT to each layer l ∈ [L] individually.

More specifically, by applying the chain rule, we back-propagate

the gradients from the last layer to compute ∂L

∂s(l)[.]
. We show that,

although there is a loop between u(l)[.] and s(l)[.], we are still able to

compute ∂s(l)[.]
∂a(l)[.]

(see Figure 1). Multiplying this gradient with ∂L

∂s(l)[.]

enables us to compute ∂L

∂a(l)[.]
, which is the gradient back-propagated

to the previous layer.
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FIGURE 1

(Upper) Directed acyclic computation graph along temporal and spatial dimension. (Middle) Loopy computation graph after vectorization along the

temporal dimension. The loop is introduced by the reset kernel and is ignored in the backward path of SLAYER. (Lower) Vectorized backward path,

applying IFT to back-propagate the gradients through the loopy computation graph.

3.2. Derivations for a generic model

To apply IFT, we need to specify the underlying equations

and also the dependent and independent variables. Let us consider

(Equations 7, 8) for all n ∈ [T]:

φ(l)u [n] : = u(l)[n]− z(l)[n]− (ν ∗ s(l))[n− 1] = 0,

φ(l)s [n] : = s(l)[n]− fs(u
(l)[n]) = 0.

This is a system of 2NlT equations in terms of three vectorized

variables u(l)[.], s(l)[.], z(l)[.], each of dimension NlT. Therefore, by a

simple dimensionality check, we can see that we may write two of

these variables (dependent) as a differentiable function of the other

variable (independent) provided that the conditions of IFT hold.

To pass the chain rule through the loopy computation graph at

layer l, we need to compute ∂s(l)[.]
∂z(l)[.]

(see, e.g., Figure 1). This implies

that we need to treat z(l)[.] as the independent and (s(l)[.], u(l)[.])

as the dependent variables. For simplicity of notation, we denote

these independent and dependent variables and the corresponding

equations by

x(l) : =
{

z(l)[n] : n ∈ [T]
}

, ψ (l)
: =

{

u(l)[n], s(l)[n] : n ∈ [T]
}

,

φ(l) : =
{

φ(l)u [n],φ(l)s [n] : n ∈ [T]
}

.

Let Jψ
(l)

=
∂φ(l)

∂ψ (l) ∈ R
2NlT×2NlT and Jx

(l)
=

∂φ(l)

∂x(l)
∈ R

2NlT×NlT

be the Jacobian matrices of the equations φ(l) with respect to the

dependent and independent variables, respectively. Let us also define

G(l) =
∂ψ (l)

∂x(l)
∈ R

2NlT×NlT as the gradients of dependent variables

with respect to the independent ones.

With this, we verify the IFT conditions: (i) All the equations

are differentiable, provided that fs is a differentiable function.

(ii) By bringing Jψ
(l)

into a row-echelon form, we can prove

that Jψ
(l)

is non-singular. We refer to Appendix 2 for a detailed

derivation. The gradients G(l) are then found by solving IFT

Equation (1) Jψ
(l)
· G(l) = −Jx

(l)
.

Applying a forward substitution method (see Appendix 2) yields

the desired gradients:

σ (l)
m [n] : =

( ∂s(l)[.]

∂z(l)[.]

)

n,m
=
∂s(l)[n]

∂z(l)[m]

=















0 n < m

f′(l)[n] n = m

f′(l)[n]
(

ν ∗ σ
(l)
m

)

[n− 1] n > m,

(9)

where f′(l)[n] is the diagonal matrix holding the surrogate gradients

(f′(l)[n])ii = f ′s (u
(l)
i [n]).

As we explained before, computing ∂s(l)[.]
∂z(l)[.]

via IFT allows us

to push the back-propagation (chain rule) through loops in the

computational graph.

The remaining steps needed for back-propagation are quite

straightforward and are obtained from Equations (5, 6) as follows:

∂z(l)[m]

∂a(l)[n]
=
∂(ǫ ∗ a(l))[m]

∂a(l)[n]
=
∂

∑m
k=1 ǫm−k · a

(l)[k]

∂a(l)[n]
= ǫm−n · I

(10)

∂a(l)[m]

∂s(l−1)[n]
= δm,n ·W

(l−1) (11)

∂a(l)[m]

∂W(l−1)
= s(l−1)[m]⊤, (12)
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where I denotes the identity matrix and ⊤ the transpose operation.

Similar to Shrestha and Orchard (2018), we define e(l)[n] and d(l)[n]

as the derivative of the loss L with respect to the spike output and

the weighted input, respectively, of layer l at time n. Making use of

Equations (10, 11) we obtain:

e(l)[n] : =
∂L

∂s(l)[n]
=

T
∑

m=n

∂L

∂a(l+1)[m]

∂a(l+1)[m]

∂s(l)[n]
= d(l+1)[n]W(l)

(13)

d(l)[n] : =
∂L

∂a(l)[n]
=

T
∑

m=n

T
∑

k=m

∂L

∂s(l)[k]

∂s(l)[k]

∂z(l)[m]

∂z(l)[m]

∂a(l)[n]

=

T
∑

m=n

T
∑

k=m

e(l)[k]σ (l)
m [k]ǫm−n. (14)

These equations are solved for e(l)[.] and d(l)[.] iteratively starting

from e(L)[.] = ∂L

∂s(L)[.]
at the last layer. Using Equation (12), we arrive

at the gradients of the loss with respect to weight matrixW(l):

∂L

∂W(l)
=

T
∑

n=1

∂L

∂a(l+1)[n]

∂a(l+1)[n]

∂W(l)
=

T
∑

n=1

d(l+1)[n] · s(l)[n]⊤ (15)

3.3. Simplification for LIF and IF neurons

Our derivation of the gradients in the previous section applies

to an arbitrary Spike Response Model (SRM). Since many SNNs are

based on the Leaky Integrate-and-Fire (LIF) neuron model, in this

section, we derive a more compact expression for this special case.

Using the same notation as in Section 2.2, LIF dynamics can be

expressed in terms of the SRM (Gerstner, 2021) by choosing spike

response and reset kernels ǫn = αn1{n≥0} and νn = −αnθ1{n≥0},

respectively. Here, α : = exp −1
τ

∈ (0, 1) is the decay factor in the LIF

model determined by the membrane time constant τ and simulation

time step 1. Furthermore, 1 denotes the indicator function and θ

the firing threshold. This analysis can be applied equivalently to if

neurons without leak by setting the decay factor α ≡ 1.

The derivatives of s(l)[.] in Equation (9) can be expressed in

closed-form as follows

σ (l)
m [n] =















0 n < m

f′(l)[n] n = m

−θ f′(l)[n]f′(l)[m]χ
(l)
m [n] n > m

(16)

χ (l)
m [n] : =

{

I n = m+ 1
∏n−1

k=m+1(αI − θ f
′(l)[k]) n > m+ 1

(17)

where I denotes the identity matrix. We refer to Appendix 3 for

further details.

3.3.1. Computational e�ciency
In the following we show how the gradients can be computed

efficiently for LIF and IF neurons. We first note that the gradient

terms e(l) and ∂L

∂W(l) (Equations 13, 14) are matrix products, for which

efficient GPU-accelerated implementations are commonly available.

The remaining complexity arises from the terms d(l) (Equation 14),

which can be simplified drastically for the given neuron dynamics.

To this end, we introduce an auxiliary variable ζ
(l)
n [k], defined for

n ∈ [T], l ∈ [L] and k ≥ n, as

ζ (l)n [k] : =

{

I k = n
∏k−1

m=n(αI − θ f
′(l)[m]) k > n.

(18)

As demonstrated in Appendix 3.1, for LIF and IF neurons, Equation

14 can be expressed as

d(l)[n] =

T
∑

k=n

e(l)[k]f′(l)[k]ζ (l)n [k], (19)

which can be computed in O(T) time. Furthermore, the vector

components of d(l) are independent of each other, allowing for a

highly parallelized, GPU-accelerated gradient computation. From

this analysis we expect EXODUS to reach similar computational

efficiency as SLAYER (Shrestha and Orchard, 2018). The

experimental results in Section 4.5 show that this is indeed

the case.

3.4. Comparison with SLAYER gradients

By comparing the gradients computed in Section 3 with those in

SLAYER (Shrestha and Orchard, 2018), we find that the expressions

for e(l)[.] and ∂L

∂W(l) (see Equations 13, 15) match. The difference lies

mainly in d(l) (Equation 14) and more specifically in the derivatives
∂s(l)[n]
∂z(l)[m]

, which are set to 0 for m 6= n in SLAYER. In particular, we

would obtain the gradients in SLAYER by setting the reset kernel to

0, in which case σ
(l)
m [n] is only nonzero for m = n. In the concrete

case of LIF neuron dynamics (cf. Section 3.3), we may indeed notice

that the quality of the approximation of the gradients in SLAYER

depends on how thematrixχ
(l)
m (see Equation 17) decays as a function

of index-difference |n − m − 1|. This decay, in general, can be

characterized in terms of singular values of f′(l)[n]. However, since the

matrix of surrogate gradients f′(l)[n] are all diagonal, this boils down

to how the diagonal elements

(

χ (l)
m [n]

)

i,i
=

n
∏

k=m+1

(α − θ f ′s (u
(l)
i [k]))

decay as a function of n − m − 1 (for n ≥ m + 1). We may study

several interesting scenarios:

(i) In the usual case where fs is an increasing function, f ′s (u) is

positive for all u ∈ [0, θ]. If in addition, one designs the surrogate

gradient f ′s such that f ′s (u) ∈ [0, α−µ
θ

] for some µ ∈ [0,α] for

all u ∈ [0, θ], one may obtain the bounds 0 ≤
(

χ
(l)
m [n]

)

i,i
≤

µn−m−1, which implies that
(

χ
(l)
m [n]

)

i,i
is quite small if n ≥

m + 1 + O(log 1
µ
). As a result, compared with SLAYER, which

assumes χ
(l)
m [n] ≡ 0 for allm, n, l, our method takes into account

additionalO(log 1
µ
) correction terms.

(ii) If the surrogate gradient is not designed properly such that it is

larger than α
θ
for some range of u within [0, θ], the term χ

(l)
m [n]

may become significantly large as n ≫ m + 1. In such a case,

we may expect a large deviation between the corrected gradients

derived from our method and the approximate gradients in
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TABLE 1 Validation accuracy and backward pass speedup per epoch for di�erent datasets.

Validation accuracy [%] Mean backward pass speedup compared to BPTT

EXODUS SLAYER EXODUS SLAYER

CIFAR10-DVS 72.28 ± 0.13 71.53± 0.18 – –

DVS gesture (5 layers) 92.8 ± 2.2 87.8± 3.0 16.57× 14.09×

DVS gesture (8 layers) 94.54 ± 0.8 93.64± 0.49 – –

SHD 78.01 ± 0.2 70.58± 1.9 9.1× 11.22×

SSC 55.41 ± 0.4 40.1± 0.8 17.3× 14.59×

Average for 3 datasets 14.3× 13.3×

Validation accuracy is mean and standard deviation of maximum accuracies across three runs with a gradient scale of 1. Backward pass speedup is measured across three epochs on a NVIDIA

GeForce 1,080 Ti. Bold indicate best value for each category (accuracy, speedup) and dataset.

SLAYER. We speculate that this may be the reason SLAYER

gradients are more sensitive to the scaling of the surrogate

gradients, as shown in our results.

4. Simulation results

We show that EXODUS leads to faster convergence than

SLAYER when applied to different tasks, as our method computes

the same gradients as BPTT. We benchmark both algorithms on

four neuromorphic tasks with increasingly temporal features. To

compare numerical stability, experiments are repeated over different

gradient scaling factors, incorporated in the surrogate gradients f ′s
(see Section 2.2). It is worthwhile to mention that in our experiments

we do not aim to illustrate superior classification performance

of our algorithm compared with other state-of-the-art algorithms,

but the achievable performance improvement over SLAYER. We

make a conscious decision not to use any training tricks that

improve accuracy (learning rate schedulers, data augmentation,

etc.) as this would harm a direct comparison. In brief, any results

in literature that have been obtained by using BPTT can be

recreated using EXODUS if the neuron model supports it, because

we compute the same gradients (see Section 5 in the Appendix

for a numerical demonstration). When comparing EXODUS and

SLAYER, we make sure that forward pass neuron dynamics,

random seed and initial weights are the same. We used SLAYER’s

official PyTorch implementation available on Github. Detailed

architecture and training parameters are described in the Table 1 in

Appendix.

4.1. CIFAR10-DVS

This dataset is a neuromorphic version of the original image

classification dataset (Li et al., 2017). For this experiment we used a

spiking ResNet Wide-7B architecture with 1.19M parameters (Fang

et al., 2021). The best previously published result using that

architecture achieves 70.2% accuracy for 8 time steps and LIF

neurons, which we beat with both EXODUS and SLAYER

(see Table 1). EXODUS achieves the highest accuracy overall

at 72.28%.

4.2. DVS Gesture

We also test the common classification dataset of 11 different

hand and arm gestures (Amir et al., 2017). Similar to Shrestha

and Orchard (2018), we only use the first 1.5 s of each sample,

binned to 300 time steps. To classify the gestures, we test two

different spiking convolutional architectures. The smaller version has

four convolutional layers as a feature extractor, followed by a fully

connected layer. The larger architecture uses seven convolutional

layers as feature extractor. Both versions use Integrate-and-Fire

neurons, Adam and sum-over-time cross entropy loss. The left-most

columns in Figure 2 and Table 1 show validation accuracies over the

course of 100 training epochs for the 5-layer architecture. EXODUS

reaches a higher accuracy at 92.8% than SLAYER at 87.8%. For

context, the state-of-the-art result using an optimized architecture

and different data pre-processing reports 98% accuracy (She et al.,

2021). The center column in Figure 2 shows how weight gradients

for individual layers scale under different surrogate gradient scales.

SLAYER is much more sensitive to the scale, with gradients often

taking excessive values for earlier layers.

4.3. Spiking Heidelberg Digits

This dataset is an event-based audio classification dataset with

highly temporal features, with samples recorded from a silicon

cochlea (Cramer et al., 2020). We used a 4-layer fully-connected

architecture with Integrate-and-Fire neurons and max-over-time loss

for 250 time steps. As shown in Figure 2 and Table 1, training

converges faster and reaches a significantly higher accuracy using

EXODUS at 78.01% compared to SLAYER at 70.58%. Gradients are

muchmore stable for earlier layers in EXODUS. The highest accuracy

result reported in the literature for this task is 83.2% using a recurrent

architecture (Cramer et al., 2020).

4.4. Spiking speech commands

For this task we used a neuromorphic version of Google’s

Speech Command dataset (Cramer et al., 2020). We use the

same 4-layer fully-connected architecture with Integrate-and-Fire

neurons and 250 time steps as for the SHD task. Here once

again our simulation results in Figure 2 and Table 1 show that
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FIGURE 2

Performance on DVS Gesture (Top row) with 5-layer architecture, Spiking Heidelberg Digits (Center row) and Spiking Speech Commands (Bottom row)

datasets. (Left column) Validation accuracy averaged over three runs for each algorithm using a gradient scale of 1. EXODUS (solid blue curves) generally

converges much faster and reaches a higher accuracy than SLAYER (dashed orange curves), in particular for tasks with strong temporal dependencies.

(Center column)Mean two-norms of weight gradients during training, for individual layers and di�erent scaling of surrogate gradient. When surrogate

gradients are not down-scaled, gradients for SLAYER explode toward the input layer, whereas for EXODUS they remain mostly stable. Only for very low

scaling, gradients vanish for both algorithms. (Right column) Backward pass speedup relative to BPTT. EXODUS is the fastest on average across the three

datasets.

gradients across layers in EXODUS are much more stable than

when using SLAYER. Validation accuracy is significantly higher

in this task using EXODUS with 55.4% vs 40.1% for SLAYER

averaged across 3 runs. The highest accuracy result reported in the

literature is 50.9% using a recurrent architecture (Cramer et al.,

2020).

4.5. Training speedup

The training speedup in comparison to an unoptimized

implementation of BPTT is shown in the right-most column in

Figure 2 and Table 1. It shows relative speedups of SLAYER and

EXODUS backward passes for three datasets, averaged over three
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runs each. We focus on the backward pass as forward passes

are mathematically equivalent for all three methods. Different

computation times in the forward passes are possible due to the

individual implementations of the algorithms. All speed tests are

executed on a NVIDIA GeForce 1,080 Ti. Our BPTT algorithm

is implemented in PyTorch 1.11 and makes use of the library’s

native automatic differentiation functionality and GPU backend, but

otherwise does not contain any custom CUDA code, which makes

it much more flexible. Across three datasets, SLAYER’s backward

pass is 13.3 times faster than BPTT on average, whereas EXODUS is

14.3 times faster. This shows that both algorithms achieve significant

speedup in comparison to a non-optimized implementation and that

taking into account the reset kernel in the backward pass in EXODUS

does not hurt performance at all. The minor difference between

SLAYER and EXODUS can be attributed to small differences in the

CUDA code implementation. Absolute backward pass timings are

provided in the Table 2 in Appendix.

5. Discussion

We have shown that while SLAYER enables training of spiking

neural networks at high computational efficiency, it does so at the

cost of omitting the effect of the neuron’s reset mechanism on the

gradients. With our newly proposed algorithm EXODUS, we present

a modification of SLAYER that computes the same gradients as

those in the original BPTT while maintaining the high computational

efficiency of SLAYER.

Tuning the surrogate gradient function is important when

training deeper architectures (Ledinauskas et al., 2020), which can

be a costly manual process when using SLAYER. EXODUS makes

training deep SNN architectures from scratch easier by providing less

sensitivity to the gradient scale hyperparameter. Not only does the

gradient magnitude scale in a stable manner, but also the gradient

direction leads to faster convergence as shown in our experiments.

To demonstrate this, we picked tasks that require both spatial and

temporal depth in the computational graph.

The difference between EXODUS and SLAYER is especially

noticeable for long time constants and Integrate-and-Fire neurons

(which do not have any leak) in the extreme case, but also persists

for shorter time constants (see Appendix 6). We argue that because

of the neuron’s longer memory the contribution of the neuron’s reset

mechanism increases, which is not taken into account in SLAYER’s

gradient computation.

For Integrate-and-Fire neurons, both with or without leak, the

terms that ensure correct representation of the reset mechanism in

the gradients with EXODUS allow for a computationally efficient

implementation, resulting in similar computation speeds as SLAYER.

It is possible that other GPU-accelerated spiking neural network

simulators, such as Norse (Pehle and Pedersen, 2021) or Spiking Jelly

(Fang et al., 2020) achieve higher computational speeds than our

baseline BPTT implementation. However, due to incompatibilities in

the supported neuron models, a direct comparison was not possible.

Similar to Shrestha and Orchard (2018), EXODUS works

exclusively with feedforward network architectures. In recurrent

architectures, dynamics of individual neurons are coupled more

strongly, which complicates a parallelized implementation. The

application of EXODUS to such types of SNNs might be an

interesting topic for future research. We hope that our method

of deriving gradients through the ift is of independent interest

for devising new learning strategies in a rigorous manner

when no explicit functional relation exists between two or

more variables.
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