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Introduction: Automated diagnosis of intracranial hemorrhage on head computed

tomography (CT) plays a decisive role in clinical management. This paper presents a

prior knowledge-based precise diagnosis of blend sign network from head CT scans.

Method: We employ the object detection task as an auxiliary task in addition to

the classification task, which could incorporate the hemorrhage location as prior

knowledge into the detection framework. The auxiliary task could help the model pay

more attention to the regions with hemorrhage, which is beneficial for distinguishing

the blend sign. Furthermore, we propose a self-knowledge distillation strategy to deal

with inaccuracy annotations.

Results: In the experiment, we retrospectively collected 1749 anonymous

non-contrast head CT scans from the First A�liated Hospital of China Medical

University. The dataset contains three categories: no intracranial hemorrhage (non-

ICH), normal intracranial hemorrhage (normal ICH), and blend sign. The experimental

results demonstrate that our method performs better than other methods.

Discussion: Our method has the potential to assist less-experienced head CT

interpreters, reduce radiologists’ workload, and improve e�ciency in natural clinical

settings.

KEYWORDS

blend sign, intracranial hemorrhage, hemorrhage expansion, prior knowledge,

self-knowledge distillation, convolutional neural network

Introduction

Intracranial hemorrhage (ICH) is a serious neurological disorder. It accounts for about

30% of the whole number of patients with stroke (Qureshi et al., 2009). Many factors such

as congenital development, vascular disease, and head injury could lead to ICH (Heit et al.,

2017). According to the hemorrhage location, some recent studies (Qureshi et al., 2001)

subdivide ICH into intraparenchymal hemorrhage (IPH), intraventricular hemorrhage (IVH),

epidural hemorrhage (EDH), subdural hemorrhage (SDH), and subarachnoid hemorrhage

(SAH) (Qureshi et al., 2001). Recently, some researchers have paid much attention to the blend

sign and black hole sign, two new types of ICH (Li et al., 2015, 2016). Blend sign (Li et al., 2015) is

composed of two parts with apparently different CT attenuation. There is a well-defined margin

(Li et al., 2017) between the hyperattenuated and relatively hypoattenuated regions, as shown

in Figure 1. Some recent studies (Yagi et al., 2019; Zhang et al., 2020; Li et al., 2021; Yang et al.,

2021) have shown that blend sign and black hole sign are closely associated with hemorrhage

expansion in ICH.

Non-contrast head computed tomography (CT) is a well-known and practical imaging

approach for the diagnosis of intracranial hemorrhage (Heit et al., 2017). In the non-contrast CT

slices, regions with intracranial hemorrhage appear highlighted since blood has a slightly higher
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density than other brain tissues (Nguyen et al., 2016). Patients in

emergency departments usually need an evaluation of head CT. In

general, the precise diagnosis of intracranial hemorrhage is crucial

in patients to assess the need for clinical treatment (Chilamkurthy

et al., 2018). Most hospitals usually provide CT scan interpretations

by junior radiologists or emergency physicians. Then some senior

radiologists will review the initial interpretations. The CT scan

interpretation is time-consuming, of low quality, and is unreliable.

Several studies have confirmed that some misinterpretations may

even lead to clinical consequences (Alfaro et al., 1995; Strub et al.,

2007). A precise diagnosis system for intracranial hemorrhage from

head CT scans is desirable.

Artificial intelligence and deep learning have recently shown

great performance in medically assisted diagnosis (Shin et al., 2016;

Havaei et al., 2017; Kamnitsas et al., 2017; Chen et al., 2018).

Chen et al. (2018) presented a 3D U-Net to segment cranial

vasculature in CTA volume without manual annotations. Havaei

et al. (2017) proposed a brain tumor segmentation model with

deep neural networks. Kamnitsas et al. (2017) provided an efficient

multi-scale 3D CNN with fully connected CRF for accurate brain

lesion segmentation. Shin et al. (2016) utilized convolutional neural

networks for computer-aided detection problems. Recently, some

researchers have introduced generative learning into brain disease

diagnosis (Wang et al., 2018, 2022; Hu et al., 2019, 2021; Yu

et al., 2021, 2022; You et al., 2022). Wang et al. (2018) presented

a convolutional neural network-based framework for bone age

assessment. Hu et al. (2019) proposed one adversarial U-Net with

different normalizations for cross-modality synthesis from MRI to

PET. Yu et al. (2021) applied GAN with high-order pooling for

Alzheimer’s disease. Yu et al. (2022) introduced a novel multi-

directional perception generative adversarial network to visualize

the morphological features of Alzheimer’s disease. Hu et al. (2021)

introduced bidirectional mapping generative adversarial networks

for brain MRI to PET synthesis. You et al. (2022) designed a fine

perceptive generative adversarial network to produce high-resolution

MR images from low-resolution counterparts in the wavelet domain.

Wang et al. (2022) proposed a segmentation model for brain stroke

lesions with consistent perception generative adversarial networks.

Some researchers have explored the detection of abnormalities in

head CT with machine learning and deep learning methods (Xiao

et al., 2010; Li et al., 2012; Chang et al., 2018; Titano et al., 2018).

Classification-based approach is the conventional approach. Li et al.

(2012) reported a machine-learning algorithm with high diagnostic

value for SAH detection. Prevedello et al. (2017) proposed one small

deep-learning model to detect critical test findings for head CT.

Chilamkurthy et al. (2018) proposed a deep-learning algorithm for

detecting critical findings in head CT scans. They retrospectively

collected 4,304 scans for evaluation. Ye et al. (2019) introduced a

three-dimensional (3D) joint convolutional neural network for the

classification of five subcategories of ICH. Lee et al. (2019) presented

an explainable deep-learning algorithm for ICH classification with a

small dataset. One disadvantage of these classification-basedmethods

is that the model may fit some unimportant features, such as the

background. Moreover, some researchers (Grewal et al., 2018; Liu

et al., 2021) introduced the segmentation into the diagnosis of head

CT. Grewal et al. (2018) applied three segmentation tasks as auxiliary

tasks to guide the classification model’s attention to the regions with

hemorrhage. Kuo et al. (2019) proposed an expert-level detection

model for acute intracranial hemorrhage, which performed joint

classification tasks and segmentation tasks. Liu et al. (2021) presented

a few short-learningmodel for intracranial hemorrhage segmentation

model with classification task as the auxiliary task. These studies

show that segmentation tasks can help highlight the regions with

hemorrhage and extract more discriminative features (Xie et al.,

2020). However, the segmentation task relies on highly accurate pixel-

level annotations, which are time-consuming and challenging for

large scale datasets. Furthermore, some researchers directly applied

the object detection models for the diagnosis of hemorrhage. Chang

et al. (2018) collected 11,021 CT scans from a single institution

and proposed a hybrid convolutional neural network (CNN) with

mask RCNN (He et al., 2017) for ICH detection and quantification.

However, the regions with hemorrhage are fewer in the CT scans, and

most CT scans have no hemorrhage. These anchor-based detection

methods face the imbalance problem of samples and are always

difficult for model optimization.

In fact, the region with hemorrhage is the most important basis

for distinguishing blend sign from normal ICH. Radiologists mainly

make evaluations based on the region with hemorrhage (Li et al.,

2017). Then we employ the region with hemorrhage as a prior

knowledge, and hope to add this prior knowledge to the model.

This study proposes a prior knowledge-based model for the precise

diagnosis of blend sign from head CT scans. We apply object

detection to replace segmentation as the auxiliary task to reduce

the annotation difficulty. Object detection only needs region-level

annotation, e.g., center and bounding box, which are simpler and

more robust than segmentation. Furthermore, there are inevitably

some inaccuracies in the annotations. We propose a self-knowledge

distillation strategy to deal with the inaccuracy annotations. We train

a model as the teacher model and generate the pseudo labels for the

training images. The pseudo labels contain much information about

the negative categories. Using the pseudo labels as the supervision

can gradually reduce the impact of inaccuracy annotations. Finally,

we evaluated the proposed model on the collected dataset. Extensive

results show that our method achieves better performance than the

baseline model.

The contributions of this study are 3-fold:

• We retrospectively collected 1,749 anonymous non-contrast

head CT scans from the First Affiliated Hospital of China

Medical University and annotated 13,276 slices for evaluation.

These slices are divided into three categories: no intracranial

hemorrhage (non-ICH), normal intracranial hemorrhage

(normal ICH), and blend sign.

• We present a prior knowledge-based diagnosis of blend sign

from head CT scans. We apply an object detection task as the

auxiliary task to reduce the annotation difficulty. The auxiliary

task can help the model pay more attention to the regions

with hemorrhage.

• We propose a self-knowledge distillation strategy to deal

with incorrect annotations. The soft predictions contain much

information about the negative categories and can gradually

reduce the impact of inaccuracy annotations.
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FIGURE 1

Examples of slices in our dataset: (A) non-ICH, (B) normal ICH, (C) blend sign, and (D) blend sign mimic (Normal ICH).

FIGURE 2

Dataset collection and selection process.

Materials and methods

Data collection and labeling

We retrospectively collected 1,749 anonymous non-contrast head

CT scans from the Department of Neurosurgery, the First Hospital

of China Medical University, Shenyang, China. The time of data

collection is from 19 September 2018 to 24 December 2020. All scans

were from the Asian population. CT scanners used in our dataset had

slices per rotation varying from 16 to 128. All of the CT scans in our

dataset were independently annotated at scan level and slice level by

three radiologists. These radiologists had corresponding experiences

of 6, 11, and 15 years in interpreting head CT scans. None of them

was involved in the clinical care of the enrolled patients. After careful

review and annotation, 125 CT scans were then excluded from further

analysis due to the following reasons: postoperative patients (65);

absence of non-contrast axial series (33); and patients were younger

than 7 years (27). The remaining 1,614 available CT scans were finally

used in our study. The dataset collection and selection process is

shown in Figure 2.

Each of the experienced radiologists independently evaluated

the scans and slices in our dataset. For the classification task,

experienced radiologists recorded the following findings for each

slice (Chilamkurthy et al., 2018): (1) normal head CT (non-ICH),

(2) normal ICH (including EDH, SDH, SAH, IPH, and IVH), (3)

blend sign. In some slices, both normal ICH and blend sign may

occur in the same slices, and we consider these slices as blend sign

slices. For the detection task, each radiologist records whether one

slice contains hemorrhage or not. For each hemorrhage region, the

experienced radiologists annotate the center point and its bounding

box (left, right, top, and bottom).

We apply the majority vote of these three radiologists’

interpretations as the gold standard (Chilamkurthy et al., 2018). By

slice-level annotation, there were 8,864 slices with non-ICH, 3,965

slices with normal ICH, and 447 slices with blend sign. The ratio of

blend sign: normal ICH:non-ICH is approximately equal to 1 : 9 : 22.

To effectively evaluate our algorithm as well as benefit the learning

process, we intentionally kept such a high prevalence of blend sign in

our dataset to ensure that there were enough positive samples.

Data pre-processing and augmentation

To highlight and emphasize specific pixels, we choose three

different windows and encode them into the following RGB images:

tissue window (WL = 40, WW = 40) for the red channel; brain

window (WL = 50, WW = 100) for the green channel; and blood

window (WL = 60, WW = 40) for the blue channel. Before being fed

into the model, we reshape all CT slices to size 512×512 to reduce

GPU memory usage. Then we convert all pixels from CT slices into

floating point tensors and rescale the pixels values (between 0 and

255) into the [0, 1] interval.

Considering that our dataset is relatively small, we apply data

augmentation to mitigate over-fitting in our task. In this article,

we choose five forms of data augmentation operations, left-right

flipping, left-right shifting, up-down shifting, random rotations (up

to 10 degrees), and random scaling (0.9 to 1.1). The augmentation

operations are shown in Figure 3. During the training process,

the data generator will randomly choose the above augmentation

operations for each slice, which means that the input to the model

is different at each epoch. We find that data augmentation could

largely enrich the training dataset and improves the performance of

our model on the task of blend sign and normal ICH detection.

Overview of the proposed method

The proposed method consists of three parts: the pre-trained

DCNN, the classification branch, and the detection branch. The

pipeline of the proposed method is shown in Figure 4. The input
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FIGURE 3

Random augmentations for CT slices: (A) original slice, (B) left-right flipping, (C) rotation (10◦, (D) rotation (−10◦, (E) scaling (0.9), (F) scaling (1.1), (G)

shifting (right), and (H) shifting (down).

image is fed into the pre-trained DCNN to extract the feature maps.

Then the feature maps from the last convolutional block (Block L)

are fed into two branches, the classification branch and the detection

branch. The classification branch gets the predictions with global

average pooling (GAP) layer and linear layers. Then detection branch

gets the locations with convolutional layers. In this way, the detection

branch could transfer the hemorrhage localization information to

boost the classification branch.

Pre-trained networks
Considering that our dataset is relatively small, we decided to use

some pre-trained deep convolutional neural networks (DCNNs) as

the backbones. Following (Lee et al., 2019), we choose one widely

applied architecture, VGG16 (Simonyan and Zisserman, 2015),

ResNet-50 (He et al., 2016), and Inception v3 (Szegedy et al., 2016), as

the pre-trained networks. These architectures are pre-trained on one

subset of ImageNet dataset (Deng et al., 2009). For the classification

branch, we add one GAP layer and one linear layer after the last

convolutional block (block L). We add two convolutional layers

for the detection branch after the last convolutional block ( Block

L). Then we fine-tune the pre-trained backbone, the classification

branch, and the detection branch with our dataset.

Classification branch
Automatic blend sign classification is a multi-class classification

problem. Each input image can be labeled as three mutually exclusive

types. For each input slice, the classification branch will produce

a three-dimensional output vector, where outputi is the probability

that the input slice belongs to class i. The conventional loss is

cross-entropy (CE) loss as follows:

Lce = −

3
∑

i=1

yi ln ŷi (1)

Where yi is the ground truth and ŷi is the probability of class i our

model predicts given an input slice x.

Considering the class-imbalanced problem in our dataset, models

trained on these samples are biased toward dominate classes, non-

ICH and normal ICH. To deal with the class-imbalanced problem,

we try to use weighted cross-entropy (WCE) loss function as:

Lwce = −

3
∑

i=1

wiy
i ln ŷi (2)

Where wi is the corresponding loss weight for class i. The weights

are to reduce the effects of imbalanced data distribution. The weights

can be fixed or automatically adjusted during the training process.

Through conductive experiment, we set the weights as w1,2,3 =

1, 2, 20, respectively. In the experiments, we find that WCE loss

could partially solve the class-imbalanced problem and improve the

performance of our algorithm.

Detection branch
The detection branch is inspired by the famous anchor-free

detection frameworks, such as FCOS (Tian et al., 2019) and

CenterNet (Duan et al., 2019). The detection branch aims to predict

the localization of the hemorrhage region for the input image. In

this branch, we consider the normal ICH and blend sign as the

foreground, and consider the non-ICH as the background. The

output of the detection branch is one of the key-point maps with

five channels. The first channel indicates the probability of the center

point of the hemorrhage region. The other four channels are the

bounding box (left, right, top, and bottom) of the hemorrhage region.

The loss function for the detection branch is defined as:

Ldet =
1

N

N
∑

j=1

Lcls(pj, p̂j)+
1

N

N
∑

j=1

pjLreg(bj, b
∗
j ), (3)

Lcls(pj, p̂j) = pj ln p̂j + (1− pj) ln p̂j, (4)
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FIGURE 4

Overview of the precise diagnosis of the blend sign system. Given one CT slice, we first use a pre-trained CNN (trained on the ImageNet dataset) to

extract feature maps, then put the feature maps into the classification branch and the segmentation branch, respectively.

Lreg(bj, b̂j) =
∣

∣

∣

bj − b̂j

∣

∣

∣

, (5)

Where pj and p̂j are the ground truth and probability of the j-

th position being the center point of one hemorrhage region. The

ground truth pj is equal to 1 if the j-th position is the center point

of one hemorrhage region, and pj is equal to 0 if the j-th position

is not the center point of one hemorrhage region. bj represents the

ground truth bounding box (bj,left , bj,right , bj,top, and bj,bottom) for the

hemorrhage region, b̂j is the predicted bounding box.N is the number

of pixels in an input image. Lcls is log loss over two classes (center

point vs. not center point). Lreg is the smooth L1 loss following (Tian

et al., 2019). Following Duan et al. (2019), we perform Gaussian

rendering for all ground truth p for faster training.

Self-knowledge distillation
For some slices, it is difficult to distinguish blend sign and normal

ICH. Thus, it will inevitably lead to some inaccurate labels. The

inaccurate annotations may bring a certain degree of challenges

for the training process and the model would be misled by these

inaccurate labels. We applied a self-knowledge distillation (Zhang

et al., 2021) strategy to solve this problem. In addition to the positive

category, the predictions also contain a lot of information about the

negative category. The information on the negative category can be

transferred to the student by self-knowledge distillation. Thus, the

inaccuracy annotations can be changed gradually. Figure 5 shows

the training process of self-knowledge distillation. We first train a

model with the training images as the teacher model. Then we use

the teacher model to generate predictions (pseudo labels) for each

training image. Next, we train a student model by minimizing the

distance between the predictions from the teacher and the student

as follows:

Lskd = KL(ŷt‖ŷs), (6)

Where KL is the Kullback–Leibler divergence to measure the distance

between two predictions. ŷt and ŷs are the predictions of the

classification branch from the teacher and the student, respectively.

Since inaccurate labels mainly affect the classification branch, we

apply self-knowledge distillation for the classification task. We apply

the student model as the teacher model in the next iteration of the

training process.

Optimization
The whole loss function for the proposed method is as follows:

L = Lwce + λ1Ldet + λ2Lskd, (7)

Where λ1 and λ2 are the hyper-parameters to balance the effect of

different losses. Through conductive experiment, we set λ1 = 1 and

λ2 = 10 for our experiments.

Experiments and results

Implementation details

Training details
We carry out all experiments on the PyTorch framework (version

1.7.1) with a single Nvidia GTX 1080Ti GPU card of 11 GB memory.

We choose stochastic gradient descent (SGD) with the momentum

(0.9) and the weight decay (0.0005) as the optimizer. We apply

the “ploy” learning rate decay, in which the learning rate equals to

base−lr ∗ (1 − iter
total−iter

)power . We set the base learning rate (base−lr)

as 0.01 and the power as 0.9. The mini-batch size is 16, the input

size is 512 × 512, and the training epoch number is 50. Data

augmentation operations include random flipping, re-scaling (from

2 to 0.5), and rotation.

Evaluation metric
Considering that our dataset is with a class-imbalanced problem,

we would like to choose Sensitivity, Specificity, F1 score, and AUC

(area under the receiver operating characteristic (ROC) curve) as the

statistical evaluation metrics. We define TP as the number of true
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FIGURE 5

Illustration of self-knowledge distillation.

positives, FP as the number of false positives, TN as the number of

true negatives, and FN as the number of false negatives. The definition

of sensitivity, specificity, and F1 score are as follows:

Sensitivity =
TP

TP + FN
, (8)

Specificity =
TN

TN + FP
, (9)

F1 =
2× TP

2× TP + FN + FP
. (10)

ROC curves were obtained by varying the threshold and plotting

the true positive rate (i.e., sensitivity) and false positive rate (i.e., 1-

specificity) at each threshold. We performed all statistical analyzes

with the python package scikit-learn, and generated all statistical

plots with Matplotlib.

Evaluation protocol
Considering that our dataset is relatively small, we may have

insufficient samples for validation and test set if we use simple

hold-out validation. The evaluation results may also be not reliable.

To address this problem, we apply K-fold cross-validation as the

evaluation protocol. It will split the dataset into K partitions

with equal size. For each fold, we choose one partition as the

validation set and train a model on the remaining K-1 partitions.

The final score would then be the average of K validation scores.

Particularly, in this study, we use a 5-fold validation as the evaluation

protocol. We will randomly split the dataset into five partitions

of equal size, and then train and evaluate five different models.

Then the final evaluation score is the average of five different

evaluation scores.

Results

Table 1 presents the comprehensive comparisons with existing

datasets on five aspects: number of scans, five-type annotation, blend

TABLE 1 Comparison with other related datasets for the detection of

intracranial hemorrhage.

Dataset # Scans Five-type Pixel-wise Blend

annotation annotation sign

Chilamkurthy

et al. (2018)

491 X × ×

Grewal et al.

(2018)

252 × X ×

Lee et al.

(2019)

904 X × ×

Ye et al. (2019)

2,836 X × ×

Ours 1,614 × × X

#Scans: number of scans in the dataset. Five-type annotation: annotation for ICH, IPH, IVH,

EDH, and SDH.

sign, and pixel-wise annotation. We can find that most datasets focus

on the five-type (ICH, IPH, IVH, EDH, and SDH) detection tasks.

These datasets rarely provide the pixel-wise annotation except for

the dataset, as explained by in Grewal et al. (2018). This is because

the pixel-wise annotation is time-consuming, which is challenging

for large scale datasets. Our dataset is the only one to consider the

detection of blend sign.

Table 2 presents the inter-rater interpretation agreement among

the three radiologists. Concordance between the three radiologists

on our dataset was highers for non-ICH (All Fleiss’s κ = 0.91),

representing excellent agreement with these findings. Blend sign

has the lowest concordance with All Fleiss’s κ = 0.79, indicating

substantial agreement.

Table 3 summarizes the performance of the proposed method.

Our method achieved AUCs of 0.972 for blend sign, 0.978 for

normal ICH, and 0.999 for non-ICH. For Sensitivity, our method

achieved 0.845 for blend sign, 0.898 for normal ICH, and 0.984

for non-ICH. For Specificity, our method achieved 0.941 for
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TABLE 2 Reliability of the gold standards for our dataset.

R1 and R2 R2 and R3 R1 and R3 All Fleiss’s κ

p(%) κ p(%) κ p(%) κ

Non-ICH 97 0.91 98 0.92 98 0.91 0.91

Normal ICH 94 0.85 96 0.87 95 0.86 0.86

Blend sign 89 0.78 92 0.81 91 0.79 0.79

R, radiologist; p, percentage agreement rate; κ , Cohen’s κ coefficient, a statistic to measure inter-rater agreement; All Fleiss’s κ coefficient, a statistic to measure the agreements among multiple raters.

Values of κ and All Fleiss’s κ >0.80 indicate excellent agreement, and 0.60–0.80 indicate substantial agreement.

TABLE 3 Performance of the automated detection algorithm on our dataset with ResNet-50 as the backbone.

WCE AT SKD Sensitivity Specificity F1 score AUC

X 0.544 0.986 0.672 0.966

Blend Sign X X 0.716 0.977 0.768 0.972

X X X 0.845 0.941 0.781 0.977

X 0.929 0.842 0.913 0.964

Normal ICH X X 0.897 0.897 0.911 0.967

X X X 0.898 0.936 0.928 0.978

X 0.978 0.953 0.932 0.996

Non-ICH X X 0.982 0.945 0.929 0.994

X X X 0.984 0.986 0.968 0.999

WCE, weighted cross-entropy loss; AT, auxiliary task (detection task); SKD, self-knowledge distillation. The bold values indicate the best score.

blend sign, 0.936 for normal ICH, and 0.986 for non-ICH. Based

on these results, we have three significant findings. First, the

performance of normal ICH was consistently higher than that of

the blend sign. This may be because, compared with the blend

sign, slices with normal ICH are much easier to be discriminated.

Second, auxiliary task (detection task) and self-knowledge distillation

method could boost the performance, especially for the sensitivity

of blend sign (from 0.544 to 0.845). This demonstrated the

effectiveness of auxiliary task (detection task) and self-knowledge

distillation method. Third, the sensitivity of normal ICH was

slightly decreased from 0.929 to 0.898. This is because the model

would predict some slices with normal ICH into blend sign.

Table 4 shows the performance with different pre-trained backbones.

We can observe that there are slight differences among different

pre-trained backbones.

Error analysis

We introduce the confusion matrix to evaluate the performance

and analyze the error. The row of the confusion matrix is the

predicted label, and the column is the true label. Figures 6A–C shows

the confusion matrix with different combinations. From Figure 6A,

we find that the classification of blend sign is terrible, 43% of slices

with blend signs were incorrectly predicted as non-ICH. Meanwhile,

only 2% of slices with normal ICH were incorrectly predicted as

blend sign. It is because the model is unable to distinguish the slices

with normal ICH and blend sign. The model tends to predict

the slice with a blend sign as normal ICH. In addition, we propose

TABLE 4 Performance of the automated detection algorithm with di�erent

pre-trained backbones.

Backbone F1 score AUC

VGG16 0.762 0.964

Blend sign ResNet-50 0.781 0.977

Inception V3 0.773 0.970

VGG16 0.932 0.981

Normal ICH ResNet-50 0.928 0.978

Inception V3 0.915 0.972

VGG16 0.949 0.995

Non-ICH ResNet-50 0.968 0.999

Inception V3 0.955 0.997

the auxiliary task (detection task) and find that only 28% of slices

with blend sign were incorrectly predicted as non-ICH. The results

indicate that the auxiliary task (detection task) can force the model to

pay more attention to the regions with hemorrhage and make more

accurate predictions. Moreover, when we apply the self-knowledge

distillation, 85% of slices with blend sign were correctly predicted,

and only 15% of slices were incorrectly predicted as non-ICH. The

improvement in prediction accuracy demonstrates the effectiveness

of the self-knowledge distillation method for inaccurate annotations.

The above-mentioned results indicate that the main challenge is to

distinguish blend sign from normal ICH. Our proposed auxiliary task
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FIGURE 6

Confusion matrix of the classification results. (A) WCE, (B) WCE+AT, and (C) WCE+AT+SKD. WCE, weighted cross-entropy loss; AT, auxiliary task

(detection task); SKD, self-knowledge distillation.

FIGURE 7

Examples of original slices with their corresponding class activation heatmaps. (A) Original slice of non-ICH, (B) original slice of normal ICH, (C) original

slice of blend sign, (D) class activation heatmaps of the original slice of non-ICH, (E) class activation heatmaps of the original slice of normal ICH, and (F)

class activation heatmaps of the original slice of blend sign. It is interesting to note that the regions with hemorrhage are strongly activated, and this is

probably how the network can make decisions.

(detection task) and self-knowledge distillation can partially solve

this challenge.

Visualizing what our model learns

To understand which parts of a given image lead to the final

classification decision, we apply “Class Activation Map” (CAM)

visualization as a powerful technique (Ye et al., 2019). The specific

method we choose is Grad-CAM (Selvaraju et al., 2017). CAM

visualization produces heatmaps of “class activation” over input

images. These heatmaps are 2D score grids, which indicate how

important each location is regarding the class considered. CAM

visualization is helpful to understand the decision process of our

model as well as analyze the classification errors. It also might

provide guidance for interpretation during clinical applications.

Three examples from our dataset are shown in Figure 7, where the

bright areas indicated high importance for decision marking and

gray areas indicated low importance. It was interesting to note that

the areas with bleeding attracted the most attention, while the areas
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without hemorrhage attracted less attention. In addition, we can

also observe some non-overlapping regions between the highlighted

regions and the bleeding regions. These results demonstrate that

our approach could partly guide the model to pay more attention

to the bleeding regions and misclassify some bleeding regions. The

constraints of the detection task may cause misclassification. The

detection task could only encourage the model to pay more attention

to some rectangular areas rather than the accurate pixels.

Discussion

This study focuses on the precise diagnosis of blend sign from

head CT scans with a deep learning approach. Our contributions

are summarized in the following aspects. First, we retrospectively

collected 1,749 anonymous non-contrast head CT scans and

annotated 13,276 slices for evaluation. Second, we present a prior

knowledge-basedmodel for blend sign from head CT scans.We apply

an object detection task as the auxiliary task to help the model pay

more attention to the regions with hemorrhage. Third, we propose a

self-knowledge distillation strategy to reduce the impact of incorrect

annotations. Results from Figure 6 and Table 3 confirm that the

proposed auxiliary task (object detection task) and self-knowledge

distillation indeed improved the performance of blend sign detection.

Coarse heatmaps in Figure 7 show that the regions with hemorrhage

attract more attention than the other regions. These heatmaps have

the potential to be employed as a coarse bleeding localization map. In

summary, our proposed algorithm assists the detection of blend sign

and normal ICH with high accuracy, which may be a useful tool for

the precise diagnosis of blend sign.

The proposed algorithm produces a pretty good performance in

our dataset. AUCs for all the findings were >0.97. The F1 score for

all the findings except the blend sign is >0.92. The Specificity for

all the findings is greater than or equal to 0.94. For the diagnosis of

blend sign, our algorithm achieves Sensitivity as 0.845, Specificity as

0.941, F1 score as 0.781, and AUC as 0.972. This may be because

of two reasons. First, we retrospectively collected a large amount

of anonymous non-contrast head CT scans from the First Affiliated

Hospital of China Medical University. We apply the majority vote of

three radiologists as the ground truth, which is a better gold standard

than one radiologist. The quality of annotation is relatively high.

Second, we apply an auxiliary task (object detection) and the self-

knowledge distillation strategy, which are suitable for our condition.

The auxiliary task could help the model to pay more attention to

the regions with hemorrhage and extract more discriminate features.

At the same time, self-knowledge distillation could vastly reduce the

impact of incorrect annotations.

Our study also has several limitations. First, all slices in our

dataset were from the Asian population, which may limit the

generalization of our algorithm. It is desirable to include information

on populations from other continents in the future. Second, to

enhance our algorithm’s performance and ensure there are enough

positive samples to train themodel. The prevalence of ICH (including

blend sign and normal ICH) in our dataset is much higher than

in some popular datasets and real clinical diagnoses. For example,

the reported incidence rate of ICH is 12% in the famous Quer25k

dataset (Chilamkurthy et al., 2018), while in our dataset, the incidence

rate of ICH is 32%. The performance of our algorithmmay change in

real clinical applications. Third, we only have 1,614 available cases

in our dataset, including 8,864 slices of non-ICH, 3,965 slices of

normal ICH, and 447 slices of blend sign. The number of blend

sign is quite limited. Performance may be adversely affected by the

lack of training examples. Although transfer learning, auxiliary task,

and self-knowledge distillation could boost the performance of our

algorithm, the performance may drop a lot in real clinical cases.

The next step is expanding our dataset and collecting more available

scans, especially with blend sign. Finally, Fleiss’s κ coefficient for

blend sign is just 0.79, which means there is some inconsistency in

the annotation of many slices with blend sign. The low blend sign

identification rate of junior radiologists may need more investigation

and may affect the training and generalization of our algorithm.

Although self-knowledge distillation could partially alleviate the

impact of inaccurate labeling, we also need to improve the reliability

of annotations in the future.

Conclusion

In this study, we propose a prior knowledge-based precise

diagnosis of blend sign from head CT scans. We constructed

a dataset with 1,614 available cases, 8,864 slices with non-ICH,

3,965 slices with normal ICH, and 447 slices with blend sign. To

better distinguish the slices with normal ICH and blend sign, we

propose the object detection task as an auxiliary task in addition

to the classification task. The auxiliary task can help the model

pay more attention to the region with hemorrhage. In addition,

we employ a self-knowledge distillation strategy to reduce the

influence of inaccurate annotations. Our precise diagnosis may

assist less-experienced head CT interpreters in reducing initial

misinterpretations. It also may reduce radiologists’ workload and

improve efficiency in a natural clinical setting. Experimental results

show that our method achieved AUCs of 0.972 for blend sign, 0.978

for normal ICH, and 0.999 for non-ICH, which is a pretty good

performance. In the future, we plan to collect more available scans

with high reliability of annotations and extend our algorithm to

clinical practice.
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