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Introduction: Prenatal maternal stress (PNMS), including exposure to natural

disasters, has been shown to serve as a risk factor for future child psychopathology

and suboptimal brain development, particularly among brain regions shown to be

sensitive to stress and trauma exposure. However, statistical approaches deployed in

most studies are usually constrained by a limited number of variables for the sake

of statistical power. Explainable machine learning, on the other hand, enables the

study of high data dimension and offers novel insights into the prominent subset of

behavioral phenotypes and brain regions most susceptible to PNMS. In the present

study, we aimed to identify the most important child neurobehavioral and brain

features associated with in utero exposure to Superstorm Sandy (SS).

Methods: By leveraging an explainable machine learning technique, the Shapley

additive explanations method, we tested the marginal feature effect on SS exposures

and examined the individual variable effects on disaster exposure.

Results: Results show that certain brain regions are especially sensitive to in utero

exposure to SS. Specifically, in utero SS exposure was associated with larger gray

matter volume (GMV) in the right caudate, right hippocampus, and left amygdala

and smaller GMV in the right parahippocampal gyrus. Additionally, higher aggression

scores at age 5 distinctly correlated with SS exposure.

Discussion: These findings suggest in utero SS exposure may be associated with

greater aggression and suboptimal developmental alterations among various limbic

and basal ganglia brain regions.

KEYWORDS

machine learning, explainable AI, prenatal maternal stress, Superstorm Sandy, brain volume,
child behavior

1. Introduction

The prevalence of prenatal maternal stress (PNMS) has increased alarmingly; a recent
large-scale study reported approximately 30% of pregnant women reported one or more types of
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stressors [Loomans et al., 2013; reviewed in Van den Bergh
et al. (2020)]. Further, climate change events, in the form of
hurricanes, tropical storms, wildfires, flooding, and droughts, are
increasing in frequency and becoming more extreme in nature. These
weather events cause serious disruptions in people’s lives and pose
important threats to the mental health of individuals, especially
among vulnerable populations such as pregnant women (Clemens
et al., 2020; Zakrison et al., 2020). Considering the prevalence
rate of PNMS, it is imperative to investigate its impact on early
neurobehavioral development in their offspring (Monk et al., 2019).

An accumulating number of studies have established that various
forms of PNMS serve as a risk factor for future child psychopathology
(Monk et al., 2019; Lautarescu et al., 2020; Van den Bergh et al.,
2020; Nomura et al., 2022). This included in utero maternal stress
due to exposure to weather-related disasters, such as the Quebec Ice
Storm, which led to greater externalizing and internalizing clinical
behaviors (King et al., 2012) and Superstorm Sandy (SS), which led
to greater clinical and adaptive behaviors (Nomura et al., 2022).
Other studies have investigated the biophysiological consequences of
suboptimal neurobehavioral development using magnetic resonance
imaging (MRI) (Buss et al., 2010; El Marroun et al., 2016; Lebel et al.,
2016; Davis et al., 2017; Wen et al., 2017; Mareckova et al., 2022,
reviewed in Lautarescu et al., 2020). MRI serves as an unparalleled
technology to pinpoint the structural and functional brain changes
in various brain regions of the limbic system, such as the amygdala
and hippocampus, and frontal lobe, such as the prefrontal cortex,
among offspring exposed to PNMS and how those changes underlie
the consequent neurobehavioral, emotional, and cognitive changes
observed.

Machine learning (ML), a rapidly developing technique in data
science, is defined as a robust data-driven approach to automatically
detect underlying patterns in high-dimensional data with high
accuracy (Bi et al., 2019). Several studies have adopted ML algorithms
and identified an enlarged amygdala as an important risk factor for
early childhood anxiety (Qin et al., 2014), while other studies have
discovered a wide range of biopsychosocial causal features using a
predictive classification model (Saxe et al., 2017). However, research
on the application of ML onto both neurobehavioral and brain
volumetric data has been very limited in pediatric populations (Oskar
and Stingone, 2020).

To date, there are a small number of ML studies pertaining
to the association between prenatal stress or trauma exposure and
altered neurobehavioral development and brain volumetric changes
of offspring. One study demonstrated detection and classification
of prenatal alcohol exposure (Rodriguez et al., 2021) and another
identified the most affected regions of the brain (volumes) in
children exposed to alcohol prenatally (Little and Beaulieu, 2020).
However, a gold-standard of randomization is not possible among
human populations, nor had any other work investigated disaster
related PNMS in a quasi-experiment model in a human population.
Quasi-experimental designs make it possible to pseudo-randomize
prenatal stress independent of confounding personal attributes, such
as genetic makeups and maternal psychological disorders status
(Lafortune et al., 2021). SS, which hit a wide region in New York City
(NYC), randomly “assigned” stressful conditions to pregnant women
and their offspring, constructing an objective measure of stress
independent of the mothers’ genetic background, psychopathology,
and socioeconomic status. Thus, the Stress in Pregnancy (SIP) study,
with its uniform exposure to a stressor, SS, enabled us to address
the inherent bias that traditionally plagues studies assessing the
impact of stress in a human population. As such, by leveraging

the technique of explainable ML, this study attempts to identify
important child neurobehavioral, and brain volumetric features
associated with natural disaster-related PNMS; explainable ML makes
it possible to uncover patterns of high-dimensional neurobehavioral
and brain data of children exposed to such disasters.

2. Methodology

The study capitalized on a longitudinal study that followed
mother/child dyads from in utero to age 11, who were exposed, or not
exposed, to Superstorm Sandy (SS) that hit metropolitan New York
in 2012. An ML classifier was built to identify neurobehavioral and
brain volumetric features that set a child with in utero exposure to SS
apart from those without. The binary in utero exposure to a natural
disaster was formulated as the target of the classification problem. ML
can facilitate identification of features that dominate the classification
process leading to high prediction accuracy. These features can be
understood as the phenotypes most affected by natural disaster-
related PNMS and studying them helps understand which behaviors
and brain volumetric data in the selected brain regions are most
affected as a result of SS exposure in utero. To this end, we trained
a classification ML algorithm for features associated with SS exposure
on a given participant and applied explainable artificial intelligence
(AI) to identify features that can more accurately contribute to
predicting structural changes in brain volume from the exposure.

2.1. Study population

Established in 2009, participants were drawn from the SIP study,
a longitudinal study that follows mother/child dyads (from in utero
to age 11) who were exposed, or not exposed, to SS (Finik and
Nomura, 2017). Mothers of the current study cohort were originally
recruited from antenatal OB/GYN clinics in New York City in efforts
to understand how in utero exposure to adversity may alter fetal
growth and development (Finik and Nomura, 2017). In 2013, a
subsample of the SIP cohort, who were exposed or not exposed to
SS in utero (N = 350), was analyzed to explore the trajectories of
neurobehavioral development in offspring prospectively. Reflecting
metropolitan New York, the children of the SIP study represent
an urban population encompassing a diverse range of ethnic/racial
backgrounds and socioeconomic strata; the majority of the cohort
includes underrepresented races (Black, Hispanic, and/or Asian) and
financial minorities (low socioeconomic status (SES), living below
the poverty line) (Finik and Nomura, 2017). As a pilot study, a
subsample of 30 were contacted for enrollment in MRI procedures.
The MRI sample consisted of thirty school-aged children (n = 30)
with a mean (SD) age of 8.50 (1.98). From the total sample, 21
(7 males and 14 females) were unexposed and 9 (1 male and 8
females) were exposed to SS in utero. All participants provided
written consent and the protocol was approved by the Institutional
Review Boards at the City University of New York (CUNY). Inclusion
criteria for the original SIP study included being pregnant at the
time of recruitment and planning to deliver the baby. Exclusion
criteria for original participation included HIV infection, maternal
psychosis, maternal age <15 years, life-threatening maternal medical
complications, and congenital or chromosomal abnormalities in the
fetus. Further details of the study can be found elsewhere (Finik
and Nomura, 2017). Additionally, in this pilot, exclusion criteria for
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MRI participation included metal implants, devices, and/or objects
in the body. Information on the handedness of the children was not
collected. All participants provided written consent; the protocol was
approved by the Institutional Review Boards at the City University of
New York.

2.2. Measures

2.2.1. Neurobehavioral functioning
Child neurobehaviors were measured at age five (mean = 4.51,

SD = 0.77) using the 2nd edition of the Behavioral Assessment for
Children Parent-version (BASC-2P, Reynolds and Kamphaus, 2004).
The BASC-2P produces eight clinical and four adaptive profiles.
Based on the age and sex of the child, scores were standardized with
a mean of 50 and a SD of 10 (Reynolds and Kamphaus, 2004). The
eight clinical dimensions were Hyperactivity, Aggression, Anxiety,
Depression, Somatization, Atypicality, Withdrawal, and Attention
Problems. The four adaptive dimensions were Adaptability, Social
Skills, Activities of Daily Living, and Functional Communication.
Internal consistency in all 12 sub-dimensions were acceptable

(α > 0.80) (Reynolds, 2010). The mean clinical and adaptive
neurobehavioral scores by SS exposure status are shown in Table 1.

2.2.2. MRI neuroimaging
Magnetic resonance imaging images were acquired using a

Siemens 3 Tesla Prisma MRI Scanner. 3D high-resolution T1-
weighted images were collected using a magnetization with the
following parameters: inversion time (TI)/repetition time (TR)/echo
time (TE) = 1,070/2,500/2.9 msec, flip angle = 8.0 degrees, field
of view = 256 mm × 256 mm, matrix = 256 × 256, and slice
thickness = 1 mm without gap. The number of slices is 176. Real-time
motion detection and correction was implemented using Volumetric
Navigators (vNav) (Tisdall et al., 2012).

The FreeSurfer pipeline was used to generate cortical and
subcortical volumetric measures (Dale et al., 1999). The skull was
stripped from the T1 images and the interface between the white
and gray matter was estimate and further refined to obtain the
thickness of gray matter. Cortical surfaces were inflated and Talairach
transformation was performed. The cortex was parcellated into
different anatomical regions using Destrieux atlas. The brain regional
volumes were normalized by the total intracranial volume. The

TABLE 1 Mean clinical and adaptive neurobehavioral scores by SS exposure.

Superstorm Sandy statusa

Behavior Total sample (n = 30) Not exposed (n = 21) Exposed (n = 9)

Clinical scales Mean (SD) Mean (SD) Mean (SD)

Hyperactivity 47 (9.33) 46 (8.15) 50 (11.50)

Aggression 45 (8.83) 43 (5.92) 50 (12.44)

Anxiety 52 (8.95) 51 (8.87) 53 (9.59)

Depression 46 (12.20) 45 (10.41) 50 (15.77)

Somatization 47 (8.45) 47 (9.55) 47 (5.55)

Atypicality 51 (10.57) 50 (10.56) 52 (11.04)

Withdrawn behavior 49 (8.58) 49 (7.70) 50 (10.85)

Attention problems 51 (10.85) 49 (10.89) 53 (10.84)

Adaptive skills

Adaptability 45 (10.92) 45 (10.93) 46 (11.47)

Social skills 54 (10.85) 54 (12.56) 54 (5.69)

Activity of daily living 54 (9.17) 56 (6.82) 52 (13.27)

Functional communication 51 (8.95) 50 (9.11) 53 (8.69)

SD, standard deviation. Values represent T-scores (Mean = 50; SD = 10); Greater scores on clinical values and lower scores on adaptive values indicate greater impairment.
aPrenatal exposure to Superstorm Sandy.

TABLE 2 Mean gray matter volume of brain regions associated with Superstorm Sandy exposure.

Superstorm Sandy statusa

Brain region Total (n = 30) Not exposed (n = 21) Exposed (n = 9)

Left hemi. mean
(SD)

Right hemi.
mean (SD)

Left hemi. mean
(SD)

Right hemi.
mean (SD)

Left hemi. mean
(SD)

Right hemi.
mean (SD)

Caudate vol. 0.33 (0.04) 0.34 (0.04) 0.32 (0.04) 0.33 (0.04) 0.35 (0.05) 0.37 (0.04)

Hippocampus vol. 0.33 (0.03) 0.34 (0.03) 0.32 (0.02) 0.33 (0.03) 0.34 (0.04) 0.36 (0.04)

Amygdala vol. 0.13 (0.01) 0.14 (0.01) 0.12 (0.01) 0.13 (0.01) 0.13 (0.01) 0.14 (0.01)

PHG vol. 0.21 (0.03) 0.20 (0.02) 0.21 (0.03) 0.20 (0.01) 0.21 (0.03) 0.19 (0.03)

Brain Vol. = % volume normalized by intracranial volume.
PHG, parahippocampal gyrus; Hemi, hemisphere.
aPrenatal exposure to Superstorm Sandy.
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mean gray matter volumes of the four brain regions most strongly
associated with SS exposure are shown in Table 2.

2.3. Machine learning

The primary goal of the study is to evaluate whether certain
features in behavioral and brain indices contribute to detecting
in utero exposure to SS. The classification model of ML was
implemented to identify which category (SS or non-SS exposure)
the participant belonged to. Three common machine learning
algorithms Random Forest (RF), XGBoost, and AdaBoost were
evaluated for their ability to predict disaster exposure and identify
the independent features that significantly contribute to the model’s
decision. The evaluation can be found in Appendix. RF classifier
was selected for this study due to its superior performance in
prediction accuracy. RF classifier consists of multiple decision trees
trained with different sub-portions of the trained dataset to ensure
generalizability. The predictions from each subset are then voted for
final classification result.

Our data suffers from the curse of dimensionality, where the
sample size (n = 30) is relatively small compared to the number
of variables (45 predictors). In ML implementations, dimensionality
increases with each variable in the data. High dimensionality on a
very small sample size leads to model overfitting. To avoid overfitting
data, we applied a feature selection approach, Recursive Feature
Elimination (RFE), to reduce dimensionality (Sartori et al., 2018).
RFE starts with all features and eliminates the least important ones
until the classifier reaches the best subset for the desired number of
features. Reducing the number of features also helps the model to
be more generalizable when used in independent data (Watts et al.,
2021).

Our sample also suffers from class imbalance with a ratio of
30/70 with a disaster exposed minority group. With imbalance data,
classifier models are prone to predict the majority class. We avoided
such a problem by creating augmented data to balance both classes
using the Synthetic Minority Oversampling Technique (SMOTE)
(Chawla et al., 2002). SMOTE randomly perturbs a sample of the
minority class based on its k-nearest neighbors to augment a new
synthetic sample. Such operation is repeated until the data is balanced
in target value classes.

The process of our classification model is summarized in
Figure 1. Brain volumetric data and behavioral data were combined
to form our dataset with a total of 45 features. The RF classifier was
first trained with all features on the dataset for feature ranking. RFE
was applied to extract the most important subset of features based
on the ranking and RF was trained again with only these important
predictors. We studied four settings with different combinations
of data augmentation and feature selection for the best prediction
outcome. The four settings are: Model 1.a without SMOTE using all
features, Model 1.b with SMOTE using all features, Model 2.a without
SMOTE using best feature subset, and Model 2.b with SMOTE using
best feature subset. For the models with data oversampling, SMOTE
was only applied to the training set.

To facilitate interpretation of our classification model output,
an explainable AI approach, Shapley additive explanations (SHAP),
was used. Explainability in machine learning refers to the ability
to understand and interpret the output of a complicated model. It
is an important consideration when developing a machine learning
model to ensure transparency to experts in the application domain.

Specifically, Shapley Additive exPlanations (SHAP) is a method
for explaining the output of machine learning models. It is a
game-theoretic approach that assigns each feature of a model a
“contribution” value, which represents the magnitude of the effect
that the feature has on the model’s output. In other words, SHAP
explains the correlation between a given feature and the prediction.
In this way, we may call the result explainable ML. SHAP calculates
the contribution of any given feature on the target value. For each
individual feature x, a calculated SHAP value gives the direction of
likelihood of the target value. We can also derive dependence plots
from SHAP to show the effect of a single predictor on the prediction
made by the model. The visualization of partial dependence plot
helps to detect the point where the target value changes from 0 to
1 (or vice versa).

2.4. Model validation

Given a small training dataset, the almost unbiased estimate
of the true error can be obtained using Leave-One-Out Cross
Validation (LOOCV). With a data size of n, LOOCV leaves 1
sample for testing and uses the other n-1 samples for training
in each run, and the average accuracy of n runs is reported
as the final evaluation score. It is important to note that, for
Models 1.a and 2.a, SMOTE was applied only in the training set–
there is no synthetic sample in our test data for the purpose of
evaluation. We measured the model performance for each setting
with balanced accuracy and F1 score results. Balanced accuracy
was calculated as the average of sensitivity and specificity, where
sensitivity = TP ÷ (TP + FN) and specificity = TN ÷ (TN + FP).
The F1 score was calculated with the harmonic mean of
precision and recall, where precision = TP ÷ (TP + FP) and
recall = TP ÷ (TP + FN). TP = true positives, TN = true negatives,
FP = false positives, and FN = false negatives. Here our TP is
correctly predicted SS exposure and TN correctly predicted non-
SS exposure. F1 score is preferred over balanced accuracy because
the true negative correctly predicting non-Sandy exposure is not
considered in the computation. Every case where SS exposure was not
predicted correctly is penalized. For this reason, our RFE also applied
F1-score to decide the best subset of features for feature selection.

3. Results

Figure 2 shows the plots of ranked feature importance scores for
different categories of features: neurobehavioral and brain volumetric
data. The most relevant neurobehavioral feature that distinguished
SS exposure was aggression. Moreover, the left amygdala, left
hippocampus, and the right parahippocampal gyrus (PHG) were the
three brain regions that distinguished SS exposure.

3.1. Performance analysis

The best subset of six features chosen by RFE include aggression,
the right caudate, right and left hippocampus, left amygdala, and right
PHG. It is clear from the RFE selected features that brain volumetric
data contributed more toward the prediction of the ML model.
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FIGURE 1

The classification model. Each block represents the implementation component, and the bullet of items is the outcome of that block. Hatch blocks are
optional, depending on the model setting.

FIGURE 2

Ranked feature importance according to different variable categories.

Table 3 shows each model’s evaluation score. The best result was
reached with an F1 score of 0.78 (see model 2.a), developed with the
six features chosen by RFE. In Figure 3, the confusion matrix for
model 2.a reveals that our model is fairly accurate at detecting both
SS exposed and unexposed groups. Of note, when issues related to
overfitting is controlled for, SMOTE is no longer effective.

3.2. Feature analysis

Figure 4 shows SHAP values of the top 15 features from
the model trained with all features to demonstrate the model
explainability. With the exception of aggression and adaptability,
the features that were identified as important were brain regions.

The top features included the right superior frontal gyrus, right
caudate, right PHG, left PHG, left amygdala, right caudal middle
frontal gyrus, right amygdala, right hippocampus, left superior
frontal gyrus, left caudal anterior cingulate, aggression, adaptability,
right caudal anterior cingulate, right lateral orbitofrontal gyrus, and
the left caudal middle frontal gyrus. The features are ordered by
their importance score. Five of the six features selected by RFE were
also included and ranked in the same order. They are the caudate,
right PHG, left amygdala, right hippocampus, and aggression. For
the selected features from the RFE method, the SHAP plot revealed
that higher aggression, a larger right caudate, smaller right PHG,
larger right hippocampus, and a larger left amygdala distinctly
showed higher likelihood of SS exposure. In contrast, we see that
a larger left and right PHG have a higher chance of predicting
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TABLE 3 Machine learning approach results.

Feature
selection

Smote Balanced
accuracy

F1-score

1.a All features (45) No 0.7333 0.3333

1.b All features (45) Yes 0.7333 0.4286

2.a RFE selection (6) No 0.8667 0.7778

2.b RFE selection (6) Yes 0.8333 0.7058

FIGURE 3

Confusion matrix for the best result (model 2.a).

non-SS exposure. Furthermore, lower aggression distinctly shows
non-SS exposure.

In Figure 5, the dependence plots for the left and right
hemispheres of both the amygdala and PHG (in volume) were given.
For the right and left amygdala (top left and right), as the volume
increases, the chance for SS exposure also increases. In contrast, for
the right and left PHG (Figure 5, bottom left and right), the chance
for SS exposure increases as the brain volume decreases. Aggression
and adaptability dependence plots are shown in Figure 6. In both
features, SS exposure is associated with a higher T score. Notably, for
aggression scores, a more explicit difference is found between the SS
exposed and unexposed groups.

4. Discussion

To the best of our knowledge, the current study is the first to show
that the implementation of a machine learning model was predictive
in identifying children exposed in utero to natural disasters based
on various neurobehavioral phenotypes and brain regions, shown to
be sensitive to stress and trauma exposure (Lautarescu et al., 2020;
National Scientific Council on the Developing Child, 2020; Van den
Bergh et al., 2020).

Our results showed distinctly higher aggression and adaptability
scores among our SS exposed group, which, consistent with the
work of King et al. (2012) and Nomura et al. (2022), suggests in
utero maternal stress, from exposure to a weather-related disaster,
is strongly associated with child neurobehavioral phenotypes. Our
results demonstrate the stress a child experiences in utero increases
the risk for future psychopathology but may also impact a child’s
potential to acquire and express certain adaptive skills in their
postnatal environment (Nomura et al., 2022).

In agreement with the findings from numerous earlier studies,
our results suggest in utero stress exposure may be associated with
a larger amygdala volume (Buss et al., 2012; Wen et al., 2017; Acosta
et al., 2019; Jones et al., 2019) and a larger hippocampal volume (Cao-
Lei et al., 2021), although less supported. It has been further suggested
that prenatal stress exposure appears to accelerate the development
of these regions, particularly the amygdala, as a means of allowing
more rapid detection of incoming danger and threat (Lautarescu
et al., 2020). Our results are consistent with the evolutional model
of stress that suggests the exaggeration of automatic fear detection
programmed prenatally to better prepare for the likely at stake
environment postnatally (Glover, 2011).

Our results offer further, more novel, insights as in utero SS
exposure was found to be linked with both a larger caudate and
a smaller PHG. Enlargements in the caudate have been suggested
to underlie the pathophysiology of various neurobehavioral and
emotional disorders, characterized by repetitive and ritualistic
tendencies, such as obsessive-compulsive disorder (OCD) and autism
(Ring and Serra-Mestres, 2002). A reduced PHG was found to
be associated with elevated prenatal maternal anxiety (Buss et al.,
2010; Acosta et al., 2019). The caudate and PHG are two brain
regions shown to influence emotion regulation and the formation
of emotional memories (Bhatt et al., 2012; Zhu et al., 2019; Driscoll
et al., 2022). Our findings on a larger caudate and a smaller
PHG may extend the current literature and support the association
between prenatal natural disaster-related maternal stress and altered
child volumetric brain development, which may have long-term
implications on child neurodevelopment and emotion regulation
(Talge et al., 2007; Wu et al., 2022).

Of note, no notable sex differences were observed between the
assessed clinical and adaptive neurobehaviors nor between the GMV
of the SS sensitive brain regions. In efforts to explore the association
between the GMV of the SS sensitive brain regions and aggression
scores, a post hoc analysis was conducted. Upon stratification of
the sample by the SS exposure status, higher aggression scores
were negatively associated with left amygdala GMV [r(19) = −0.45,
p = 0.04] among the SS unexposed and marginally associated with
left amygdala GMV among the SS exposed [r(7) = −0.60, p = 0.09].
No other notable associations between aggression and the GMV of
SS sensitive brain regions were detected. We anticipated seeing a
strong correlation between amygdala GMV and aggression scores
as previous work among a sample of children, aged 6–9, found an
association between smaller amygdala GMV and higher aggression
scores (Thijssen et al., 2015). As validated by the aggression diathesis
model, we speculate this strong correlation may be due to increased
aggression leading to an imbalance between top down and bottom
up control systems (Siever, 2008). Greater acts of aggression may
lead top down systems, which are modulated by brain regions
that are highly interconnected with the amygdala, such as the
orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC),
to fail to suppress aggressive acts in the presence of anger inducing
stimuli (Siever, 2008). Moreover, increased aggression may induce
hyperresponsivity of limbic brain regions, such as the amygdala,
which provide the “drive” to respond to incoming danger and threat
(Siever, 2008).

We developed an ensemble ML model to find brain and
behavioral features that were associated with SS exposure on given
participants. Our main goal was to see whether certain features
contribute accurately to predicting structural changes in brain
morphometry from exposure using ML. We achieved the best
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FIGURE 4

Summary plot in SHAP generated from the model using all features. Only the top 15 features are shown. Features highlighted are those selected from
RFE method. To interpret the SHAP plot, the warmer color of the feature bars represents the higher feature values, and the cold color represents the
lower feature values. When the SHAP value is higher and >0 the model is more likely to predict 1 (Sandy exposure), and when the value is lower and <0
the model is more likely to predict 0 (non-Sandy exposure).

accuracy by using the feature selection method, RFE. We also
examined the effect of oversampling by using SMOTE on all
features. For high dimensional data, SMOTE generally performs
better by avoiding overfitting (Dessie et al., 2021; Park et al.,
2021). However, for data with a very small sample size (n = 30),
involving augmented (simulation) data provides little benefit if we
reduce feature dimensionality because overfitting is no longer a
problem and oversampling can lead to underperformance due to
a deteriorating sampling (Elreedy and Atiya, 2019). From our best
results, we see that with a small data set, with very few positive cases,
reducing the dimensionality, rather than introducing synthetic data,
leads to higher model performance. Considering achieving greater
generalizability is one of our aims, reducing the dimensionality
would be one of the critical solutions. Our finding is consistent
with prior studies using small sample sizes. Crippa et al. (2015)
identified children with autism spectrum disorder (ASD) from a
sample size of N = 30. Güven et al. (2020) predicted attention-
deficit hyperactivity disorder (ADHD) children from a sample size of
N = 44. Both studies implemented feature selection either manually
or algorithmically.

Within the summary SHAP plot, most of the important
features that affect our target value came from the brain
volumetric data (i.e., the amygdala, hippocampus, and caudate)
suggesting the brain’s particular sensitivity to stress exposure.
Further, the dependence plots showed distinctly larger amygdala and

smaller PHG brain volumes, respectively, increase the likelihood
of SS exposure.

The study has various limitations. First, despite our prior
research indicating the binary SS index (exposed vs. not exposed
in utero) to be a significant and critical indicator of impairment,
we acknowledge the use of binary, objective indices prevent
the analysis of important, fine-grained measures, such as post-
traumatic psychosocial reactions to SS. Second, the BASC-2P
questionnaire used to assess child behavioral problems was
based on parental report, which may lead to subjective bias.
However, our study incorporated brain imaging to corroborate
and enhance the objectivity and robustness of the findings.
Third, information on the handedness of the children was
not collected and fourth, the sample size was relatively small
with mostly girls. Thus, the results should be interpreted with
caution and warrant replication with bigger sample sizes in the
future.

There are several strengths in this study. First, our study
utilized a quasi-experimental design and rendered the pseudo-
randomization of a natural disaster-related stress in utero. Currently,
most of the studies that have investigated stress during pregnancy
relied on the measurement of maternal psychopathology, trauma
history or nominal pregnancy stress—which are likely to be
confounded by factors, such as genetics, and heterogeneity of
level of stress exerted. Second, the current study is part of a
larger longitudinal project prospectively tracking and assessing

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1113927
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1113927 February 15, 2024 Time: 12:50 # 8

Demirci et al. 10.3389/fnins.2023.1113927

FIGURE 5

Amygdala and parahippocampal dependence plots. A higher SHAP value indicates that the model is more likely to predict 1 (Sandy exposure).

FIGURE 6

Aggression and adaptability dependence plots.

the neurodevelopment of children, preventing the need to rely
on retrospective parental reports. This eliminates the problem
due to recall bias, which is common in cross-sectional research
using information based on retrospective reports in part. Third,
our study is the very first to deploy the technique of ML
on neurobehavioral and brain imaging data in the research of
in utero maternal stress. Future studies will aim to expand
on our initial findings by tracking changes from childhood
into adolescence.

5. Conclusion

Exploiting ML, we developed multiple models for classification
and chose the RFE algorithm to extract the subset of features that
contributed the most optimally to detection of natural disaster
exposure in utero. The use of SHAP values assisted in model
interpretation. SHAP plots provided critical insights into behavioral
phenotypes and brain volumetric changes associated with natural
disaster exposure in utero among offspring, especially within brain
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regions implicated in emotion regulation (the amygdala, caudate, and
PHG). The goal of this study was to leverage advanced computational
methodology to understand how a significant stressor connects
brain and behavioral development among high-risk populations. Our
preliminary results suggest that targeted intervention on behavioral
phenotypes, such as aggression, and structural morphological
alterations in the emotional centers of the brain can potentially
play a key role in buffering the adverse impact of prenatal
maternal stress on brain development and improve subsequent
developmental outcomes.
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