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Background: Non-motor symptoms are common in Parkinson’s disease (PD)

patients, decreasing quality of life and having no specific treatments. This research

investigates dynamic functional connectivity (FC) changes during PD duration and

its correlations with non-motor symptoms.

Methods: Twenty PD patients and 19 healthy controls (HC) from PPMI dataset

were collected and used in this study. Independent component analysis (ICA) was

performed to select significant components from the entire brain. Components

were grouped into seven resting-state intrinsic networks. Static and dynamic FC

changes during resting-state functional magnetic resonance imaging (fMRI) were

calculated based on selected components and resting state networks (RSN).

Results: Static FC analysis results showed that there was no difference between

PD-baseline (PD-BL) and HC group. Network averaged connection between

frontoparietal network and sensorimotor network (SMN) of PD-follow up (PD-

FU) was lower than PD-BL. Dynamic FC analysis results suggested four distinct

states, and each state’s temporal characteristics, such as fractional windows and

mean dwell time, were calculated. The state 2 of our study showed positive

coupling within and between SMN and visual network, while the state 3 showed

hypo-coupling through all RSN. The fractional windows and mean dwell time

of PD-FU state 2 (positive coupling state) were statistically lower than PD-BL.

Fractional windows and mean dwell time of PD-FU state 3 (hypo-coupling state)

were statistically higher than PD-BL. Outcome scales in Parkinson’s disease–

autonomic dysfunction scores of PD-FU positively correlated with mean dwell

time of state 3 of PD-FU.

Conclusion: Overall, our finding indicated that PD-FU patients spent more time

in hypo-coupling state than PD-BL. The increase of hypo-coupling state and

decrease of positive coupling state might correlate with the worsening of non-

motor symptoms in PD patients. Dynamic FC analysis of resting-state fMRI can

be used as monitoring tool for PD progression.
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1. Introduction

There were 6.1 million Parkinson’s disease (PD) patients
worldwide in 2016 (GBD 2016 Neurology Collaborators, 2018).
PD progresses continuously over time, mainly affecting older
people (Poewe et al., 2017). Motor symptoms, such as tremors,
akinesia, and rigidity, are the main symptoms of PD, impacting a
patient’s ability to perform routine tasks and increasing the health
care burden (GBD 2016 Neurology Collaborators, 2018). The
occurrence of non-motor symptoms, such as cognitive impairment,
depression, autonomic dysfunction and sleep disorders, progresses
over time, resulting in deteriorating quality of life (Khoo et al.,
2013; Diederich et al., 2020; Bloem et al., 2021). Occurrence
of non-motor symptoms may earlier than motor symptoms,
even in prodromal stage. Non-motor symptoms of PD may be
used as early diagnosing biomarkers. Dopamine supplements and
dopamine transporter agonists are commonly used treatments
for PD that relieve motor symptoms. Treatments for PD non-
motor symptoms were similar to those used for the general
population (Armstrong and Okun, 2020; Vijiaratnam et al.,
2021).

There are many ways to explore PD mechanisms. Functional
magnetic resonance imaging (fMRI) is a non-invasive method
to reveal brain activity by detecting blood oxygen level-
dependent (BOLD) signals (Wu and Hallett, 2005; Smith et al.,
2013a,b; Barkhof et al., 2014). The functional connectivity
(FC) method measures correlations between time courses of
regions of interest (ROIs) using Pearson correlation analysis
(Shahhosseini and Miranda, 2022). FC analysis revealed that
intrinsic networks existed in the brain (Allen et al., 2014)
and was also used to explore the PD mechanism (Schindlbeck
and Eidelberg, 2018; Ryman and Poston, 2020). FC within the
motor network was correlated with the severity of PD motor
symptoms (Chung et al., 2020). FC between the left amygdala
and thalamus was increased in PD patients with depression
compared to PD patients without depression (Hu et al., 2015).
Anxiety severity of PD was positively correlated with their FC
between the amygdala and superior parietal lobule (Zhang et al.,
2019).

Unlike static FC analysis, dynamic FC analysis focuses on
FC variability over time (Calhoun et al., 2014). Dynamic FC
analysis was more sensitive and revealed more detailed information
than static FC analysis (Du et al., 2017). The sliding window
method is the most commonly used method for dynamic FC
analysis, and a 30–60 s window size is appropriate, according
to Allen et al. (2014). The FC matrix of each window can be
grouped into different clusters, also known as states. Changes
in temporal characteristics revealed PD mechanisms (Kim et al.,
2017), and PD subjects with rapid eye movement (REM) sleep
behavior disorder (RBD) spent more time in the state characterized
by weaker positive coupling between the visual and default
networks, and default and basal ganglia networks (Gan et al.,
2021). PD patients with dementia spend increased time in a
state with positive coupling within networks (Fiorenzato et al.,
2019), while PD patients with mild cognitive impairment showed
decreased connectivity between networks, especially between
the sensorimotor and cognitive control networks (Díez-Cirarda
et al., 2018). Compared with seed-based analysis, independent

component analysis (ICA) reduces noise signals (Calhoun et al.,
2001). Voxels in independent components were characterized by
similar time courses and spatial distributions (Esposito et al.,
2002).

Progressive dynamic FC changes during PD duration have
rarely been studied. Non-motor symptoms of PD may occur
before motor symptoms, and have potential to be early diagnosing
biomarker. Non-motor symptoms exist through whole disease
duration and become severer, which lead the potential to
be progression biomarker of PD (Tolosa et al., 2021). So,
it is important to explore the mechanisms of non-motor
symptoms. fMRI method focused on fluctuations in the blood
oxygen level dependent (BOLD) signal of different brain areas
(Lee et al., 2013). fMRI was widely used in neuroscience
studies (Smith et al., 2013a,b; Raimondo et al., 2021) and
provided insight into the mechanism and diagnosis of PD
(Tessitore et al., 2019; Wolters et al., 2019; De Micco et al.,
2021).

Static FC and dynamic functional signal changes reflected
brain activities. Correlations between functional changes in
the brain and non-motor dysfunctions remain unclear. We
hypothesize that the progression of non-motor symptoms may
be associated with static FC changes and temporal characteristic
dynamic FC changes. We utilized long term data of patients
from PPMI dataset to address above questions. Static and
dynamic FC between and within intrinsic networks were
analyzed to determine static and dynamic FC changes during
disease duration and correlations between FC changes and non-
motor dysfunctions.

2. Materials and methods

2.1. Participants

Data used in the preparation of this article were obtained
from the Parkinson’s Progression Markers Initiative (PPMI)
database,1 which is a multicenter international study. For
currently updated information on this study visit.2 All data
used in our study were downloaded before January 2021. For
detailed inclusion criteria of the PPMI dataset, please visit (see
text footnote 2).

A total of 101 PD patients scanned fMRI were recruited in
PPMI dataset. We selected patients with below inclusion criteria
to our study: (1) visited for at least 4 years; (2) scanned fMRI
at baseline (PD-BL) and followed-up (PD-FU); (3) older than
50 years old, as pathogenesis of late-onset PD and early onset
PD is different (Schrag and Schott, 2006; Fereshtehnejad and
Posteuma, 2017) and this study focused on late-onset PD. We
focused on the late-onset PD, because late-onset PD population
was larger than early onset PD patients. Late- and early onset
PD were separated in many studies (Rango et al., 2021; Sigirli
et al., 2021). The patients with low image quality or diagnosed
with other diseases, such as Alzheimer’s disease, multiple system

1 https://www.ppmi-info.org/access-data-specimens/download-data

2 www.ppmi-info.org
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atrophy, dementia with Lewy bodies, during visiting period
were excluded from this study. Imaging data and information
of Healthy control (HC) subjects were also downloaded from
PPMI dataset, who were scanned fMRI. In total, data of 20 PD
patients and 19 healthy control subjects were utilized in our
study.

2.2. Neuropsychological and clinical
assessments

The disease severity of PD patients was assessed using the
Movement Disorder Society Unified Parkinson Disease Rating
Scale (MDS-UPDRS) (Goetz et al., 2008), Part I of the UPDRS
was used to evaluate non-motor symptoms of PD, and parts
II and III evaluated motor symptoms. Total UPDRS was sum
of part I-IV. Hoehn and Yahr (H and Y) staging (Hoehn and
Yahr, 2001) were used to assess severity of PD. The UPDRS-III
and H and Y staging scores used in this study were assessed
at “ON” state, which was defined as the last dose of levodopa
or dopamine agonist were taken <6 h before assessment. The
“OFF” state meant the last dose of levodopa or dopamine agonist
were taken ≥6 h before assessment. The drug treatment dosage
was calculated as the levodopa-equivalent daily dose (LEDD)
(Tomlinson et al., 2010). Patients’ cognitive states were assessed
using the Montreal Cognitive Assessment (MoCA) scale, Benton
Judgment of Line Orientation Score (BJLOT), Letter Number
Sequencing Score (LNS), Semantic Fluency Total Score (SFT),
Symbol Digit Modalities Score (SDM), and Hopkins Verbal
Learning Test–Revised (HVLT) scales. The total SFT score
and subtest such as animal, fruit and vegetable scores were
calculated in this study. HVLT contains several aspects, such as
discrimination scores, immediate/recall scores, retention score,
false alarms, delayed recall and delayed recognition. The ability
of daily living (ADL) scale was used to evaluate life quality.
Depression and anxiety were assessed by the Geriatric Depression
Scale (GDS) score and State-Trait Anxiety Inventory (STAI). The
University of Pennsylvania Smell Identification Test (UPSIT) was
used to evaluate olfactory nerve dysfunction. Sleepiness quality
and rapid eye movement (REM) sleep were assessed by the
Epworth Sleepiness Scale (ESS) score and REM Sleep Behavior
Disorder Questionnaire score. Autonomic function was assessed
by the Scales for Outcomes in Parkinson’s Disease-Autonomic
dysfunction (SCOPA-AUT).

2.3. MRI acquisition

T1 MRI and rs-fMRI data were collected on Prisma fit 3-
tesla Siemens MR scanner (Siemens, Erlangen, Germany). All
participants were requested to remain calm and not think
during scanning. T1 MRI data were acquired with the following
parameters: repetition time (TR) = 2,300 ms, echo time = 3.0 ms,
flip angle = 9◦, matrix size = 176 × 240 × 170, and voxel
size = 1 mm × 1 mm × 1 mm. The rs-fMRI data, consisting
of 210 volumes per patient, were acquired with TR = 2.4 s, echo
time = 25 ms, flip angle = 80◦, matrix size = 68 × 66 × 40, and
voxel size = 3.3 mm × 3.3 mm × 3 mm.

2.4. MRI data processing

The preprocessing of the fMRI data was conducted using the
functional connectivity (CONN) toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012),3 based on MATLAB (R2018a, MathWorks,
Inc., Natick, MA, USA). The first ten scans were removed to
maintain the stability of fMRI data. Thus, each participant provided
200 volumes for further analysis.

A slice-timing correction step was performed to correct the
image acquisition time between slices. The fMRI data were
realigned to the first volume to correct for head movement
and then co-registered to the T1 MRI data using an affine
transformation. The T1 MRI data were normalized to standard
Montreal Neurological Institute (MNI) space and segmented into
gray matter, white matter, and cerebrospinal fluid using the tissue
probability maps. A non-linear transformation was applied to the
functional data with the same parameters as the T1 MRI data. The
functional data were smoothed with a Gaussian kernel of 6 mm full
width half maximum, to reduce the noise signal.

2.5. ICA analysis

Independent component analysis (ICA) grouping was
performed to obtain specific data components using Group
ICA of the functional MRI Toolbox (GIFT v4.0 c).4 Voxel-level
variance normalization was performed on all data. The number
of independent components was estimated using a minimum
description length approach. Functional data were decomposed
using two data reduction steps (subject-specific and group-level
PCA). The Infomax method was used to calculate independent
components, and the ICASSO method implemented in GIFT was
used to maintain reliability.

ICASSO was run 100 times, and 80% similarity was selected.
Significant components from all independent components were
chosen according to the location of the peak coordinate and
time course characteristics (Allen et al., 2014; Kim et al., 2017).
The selected components were identified as seven resting state
networks (RSN): the default modal network (DMN), attention
network (ATT), basal ganglia network (BG), visual network (VIS),
sensorimotor network (SMN), auditory network (AUD), and
frontoparietal network (FP) (Yeo et al., 2011).

2.6. Static functional connectivity
analysis

The time courses of the selected components were extracted.
Correlations between every pair of selected components formed the
subject-specific static FC matrix. Static FC group comparisons were
calculated among HC, PD-BL, and PD-FU using the multivariate
analysis of covariance (MANCOVA) toolbox contained in GIFT
with a corrected false discovery rate (FDR). Post hoc analyses were
performed between HC and PD-BL and between PD-BL and PD-
FU.

3 https://web.conn-toolbox.org/

4 https://trendscenter.org/software/gift
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2.7. Dynamic functional connectivity
analysis

Dynamic FC analysis was conducted using the dynamic
functional network connectivity toolbox (dFNC) contained in the
GIFT toolbox. The time courses of selected components were linear
detrended and 3D-despiked. The time courses were also filtered
using a low-pass filter with a cutoff of 0.15 Hz, as recommended
in the GIFT manual.

A sliding window approach was used to analyze dynamic
functional connectivity changes. The sliding window method is
the most commonly used method for dynamic FC analysis, and a
30-60 s window size is appropriate, according to previous studies
(Allen et al., 2014; Kim et al., 2017). The sliding window size was
set to 22 TR (52.8 s) and the step was set to 1 TR (2.4 s), based
on previous research (Allen et al., 2014; Kim et al., 2017). As a
result, each participant had 178 windows across the entire scan.
Correlations between the time course of each selected component
pair in each window formed dynamic FC matrices. The K-means
clustering method was performed to sort all dynamic FC matrices
into different clusters, also known as states. A penalty on the L1
norm was imposed with 100 repetitions, and the elbow method was
used to decide the clustering number.

Temporal properties of the dynamic FC analysis, such as
fractional windows, mean dwell times, and numbers of transitions,
were calculated for further statistical analysis. The fractional
window is the proportion of time spent in each state, and the mean
dwell time is the average time spent by each participant in each
state. The number of transitions is calculated as the number of
times switching between states.

2.8. Statistical analysis

Group differences in general information between the HC and
PD groups, such as age, gender, years of education, and clinical
assessments, were calculated using the two-sample t-test and the
chi-square test. Differences in temporal properties among HC
and PD subgroups were calculated using two sample t-test or
rank sum test. Statistical differences of clinical assessments and
temporal properties between PD-BL and PD-FU were tested using
paired t-test or Wilcoxon signed rank test. Selecting t-test or non-
parametric test was depended on the result of normality test.
Correlations between temporal properties and clinical assessment
scores were analyzed using partial correlation analysis, which
controlled effect of age, sex, and education years. Above statistical
analysis was performed in SPSS Statistics 22.0 (IBM Corporation,
Armonk, NY, USA), and the threshold for statistical significance
was p < 0.05. Multiple comparisons of p-values were corrected
with FDR correction.

3. Results

3.1. Demographics

Twenty PD patients (13 male and 7 female) and 19 healthy
subjects (15 male and 4 female) met the inclusion and exclusion

criteria described in (Section “2.1. Participants”). There were no
significant differences in age and gender between the PD and HC
groups. The years of education of the PD group were statistically
shorter than those of the HC group. After years of follow-up,
the H and Y stage (ON state) of the PD group increased. The
LEDD of PD-FU was significantly higher than PD-BL. These results
indicated that the severity of PD increased after years of follow-
up. The UPDRS-I scores of PD-FU increased compared to PD-BL.
The HVLT-False alarms and SDM scores of PD-FU were smaller
than HC group. The SCOPA-AUT scores of PD-FU were bigger
than HC group. The UPSIT scores of PD-BL were smaller than
HC group. Above results indicated that the non-motor symptoms
of PD patients were worsen after years of follow-up. Other clinical
assessments, such as UPDRS-III (ON state), total UPDRS, MoCA,
BJLOT, ESS, GDS, SFT, and STAI scores, did not significantly
change between PD-BL and PD-FU. Details of these results are
shown in Table 1.

3.2. ICA components and RSN

The minimum description length approach estimated an
average of 47 components. Sixty independent components were
selected for greater accuracy. Twenty-nine components were
identified as meaningful according to the selection criteria
described in (Section “2.5. ICA analysis”), and the selected
components were grouped into seven resting-state intrinsic
networks. The selected components and networks are shown in
Figure 1.

3.3. Static FC analysis results

We performed two steps analysis to reveal static FC changes of
PD in different stages. Static FC differences between the HC and
PD-BL group were calculated with age, sex and education years
as covariates, using two sample t-test. The difference between HC
and PD-BL did not survive the FDR correction, which was used
for multiple p-value correction. Differences between PD-BL and
PD-FU were calculated using paired t-test, with FDR correction
method to correct p-values. Results showed that network averaged
connections between FP and SMN of PD-FU were lower than
PD-BL (p < 0.05, t = −3.64) (Figure 2).

3.4. Dynamic FC analysis

All dynamic FC matrices are clustered into four states
according to the elbow method. 19% of the matrices clustered into
state 1, characterizing positive coupling within the VIS network.
State 2 contained 22% of the matrices, which characterized positive
coupling within SMN, within VIS, between SMN and VIS, between
DMN and SMN, and between DMN and VIS. State 3 had 56%
of the matrices, showing hypo-coupling within and between all
networks. State 4 was the smallest, with only 3% of matrices
(Figure 3).

Temporal characteristics such as fractional windows, mean
dwell time and transition number of HC group and PD
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TABLE 1 Demographic information for the HC and PD subgroups.

BL-HC FU-BL FU-HC

PD-BL (n = 20) PD-Y3 (n = 20) HC (n = 19) P-value T/Z value P-value T value P-value T value

Age (years) 64.35 ± 7.96 67.35 ± 8.0 62.84 ± 10.5 0.62 0.51 − − − −

Gender (M: F) 13: 7 – 15: 4 0.33 0.94 − − − −

Education years 13.4 ± 3.2 – 16.84 ± 2.54 0.002 −3.16 − − − −

Disease duration
(months)

4.99 ± 4.82 – – − − − − − −

LEDD 215.65 ± 164.61 590.36 ± 229.67 – − − <0.001 5.98 − −

H and Y stage (ON) 1.37 ± 0.48 1.7 ± 0.47 – − − 0.03 2.18 − −

ADL 90 ± 6.88 89.25 ± 5.68 – – − 0.51 −0.66 – −

UPDRS-I 6.7 ± 5.17 8.15 ± 5.03 – − − 0.03 2.42 − −

UPDRS-II (ON) 6.4 ± 4.59 7.65 ± 4.73 – − − 0.46 0.74 − −

UPDRS-III (ON) 15.9 ± 9.83 18.1 ± 9.22 – − − 0.35 0.94 − −

Total UPDRS (ON) 29.26 ± 15.38 33.9 ± 15.15 – − − 0.23 1.25 − −

HVLT-immediate recall 26.05 ± 6.12 25.8 ± 5.91 25.89 ± 5.08 0.70 0.38 0.83 0.21 0.87 0.17

HVLT-delayed recall 9.1 ± 2.94 8.4 ± 3.42 8.21 ± 3.12 0.38 0.88 0.26 −1.13 0.91 0.11

HVLT-recognition 10.8 ± 2.73 11.2 ± 1.11 11.21 ± 1.03 0.68 0.42 0.85 −0.21 0.84 0.20

HVLT-false alarms 0.8 ± 0.95 0.6 ± 0.75 2.16 ± 2.17 0.06 −1.91 0.34 −1.10 0.02 −2.33

HVLT-discrimination 10 ± 2.92 10.6 ± 1.6 7.16 ± 5.52 0.11 1.58 0.76 −0.36 0.05 1.92

HVLT-retention 0.84 ± 0.2 0.8 ± 0.24 0.79 ± 0.23 0.55 0.60 0.38 −0.88 0.89 0.14

BJLOT 12.6 ± 1.93 13.3 ± 1.56 13.37 ± 1.8 0.14 −1.49 0.21 −1.27 0.73 −0.35

ESS 6.3 ± 4.35 6.95 ± 5.25 5.58 ± 3.31 0.84 0.2 0.36 0.92 0.59 0.54

GDS 1.9 ± 2.22 1.85 ± 2 0.95 ± 1.58 0.13 1.5 0.81 0.25 0.86 0.18

LNS 10.75 ± 1.97 10.15 ± 2.74 11.37 ± 2.29 0.47 −0.73 0.23 −1.2 0.14 −1.46

REM 3.45 ± 1.99 3.6 ± 2.21 2.76 ± 1.66 0.35 0.95 0.89 0.14 0.3 1.04

SCOPA-AUT 9.65 ± 6.77 10.5 ± 5.72 6.28 ± 3.84 0.09 1.7 0.34 0.95 0.012 2.51

SFT 50.35 ± 11.52 50.55 ± 10.77 48.16 ± 9.48 0.52 0.65 0.91 0.12 0.52 0.65

SFT-animal 23.25 ± 4.98 22.95 ± 6.03 20.89 ± 4.65 0.14 1.52 0.82 −0.23 0.39 1.06

SFT-fruit 13.8 ± 4.10 13.45 ± 3.86 14.11 ± 3.77 0.81 −0.24 0.67 −0.43 0.58 −0.55

SFT-vegetable 13.3 ± 4.66 14.15 ± 3.84 13.16 ± 3.88 0.92 0.1 0.3 1.07 0.38 0.88

STAI-state sub score 32.8 ± 8.76 31.75 ± 8.24 30.05 ± 8.19 0.34 0.96 0.65 −0.46 0.50 0.68

STAI-trait sub score 31.8 ± 8.48 31.3 ± 7.48 29.74 ± 8.93 0.38 0.89 0.92 −0.10 0.43 0.79

STAI total 64.6 ± 16.67 63.05 ± 14.7 59.79 ± 15.48 0.36 0.93 0.58 0.57 0.4 0.84

SDM 41.25 ± 9.44 38.2 ± 9.40 48.16 ± 10.12 0.03 −2.21 0.11 1.7 0.003 −3.19

MoCA 27.25 ± 2.34 27.4 ± 2.56 28.21 ± 1.13 0.3 −1.04 0.69 −0.4 0.61 −0.52

UPSIT 20.9 ± 8.79 – 33.58 ± 4.57 <0.001 −5.61 − − − −

LEDD, levodopa-equivalent daily dose; H and Y, hoehn and yahr staging; ADL, ability of daily living; UPDRS, Movement Disorder Society Unified Parkinson Disease Rating Scale; BJLOT,
Benton Judgment of Line Orientation Score; LNS, Letter Number Sequencing Score; REM, Rapid Eye Movement; SCOPA-AUT, Scales for Outcomes in Parkinson’s Disease-Autonomic
dysfunction; VLT, verbal learning test; SFT, Semantic Fluency Total Score; SDM, Symbol Digit Modalities Score; MoCA, Montreal Cognitive Assessment; GDS, geriatric depression scale score;
STAI, State-Trait Anxiety Inventory; ESS, epworth sleepiness scale score; UPSIT, University of Pennsylvania Smell Identification Test. P-values of multiple comparison were correction with
Bonferroni correction. The p-values which were smaller than 0.05 were written with bold.

subgroups were calculated. Age, sex, and education years may
affect cognitive function. The effect of age, sex and education
years were controlled when calculating difference between
HC and PD-BL group. Results showed that there was no
statistical difference between HC and PD-BL group of above
temporal characteristics. Changes between PD-BL and PD-FU
were performed sign rank test, because data wasn’t normality
distributed. The temporal properties analysis showed that the
fractional windows and mean dwell time of PD-FU at state 2 were

statistically lower than PD-BL. Fractional windows and mean dwell
time of PD-FU at state 3 were statistically higher than PD-BL
(Figure 4).

3.5. Correlation analysis

Correlations between clinical scale scores and measurements
of rs-fMRI were computed. Clinical scales included UPDRS-I,
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FIGURE 1

The 29 independent components and 7 networks identified by group ICA. Seven functional networks and 29 selected independent components are
shown: ATT, attention network; AUD, auditory network; BG, basal ganglia network; DMN, default modal network; FP, frontoparietal network; SMN,
sensorimotor network.

FIGURE 2

Averaged connection between FP and SMN network of PD-FU was
lower than PD-BL. The p-value of comparison corrected using FDR
correction (∗: p < 0.05; t = −3.64). PD, Parkinson’s disease; BL,
baseline; FU, follow-up; FP, frontal parietal network; SMN,
sensorimotor network.

UPDRS-II(ON), UPDRS-III(ON), SCOPA-AUT, and ADL. Rs-
fMRI measures included static FC of brain areas, fractional
window, mean dwell time and transition number. Age, sex and
education years may affect correlation result of abovementioned
score. The effect of age, sex, and education years were controlled
as variances, using partial correlation method. Results showed that
SCOPA-AUT scores positively correlated with the mean dwell time
of state 3 of PD-FU (Figure 5). There was no correlation between
clinical scores and temporal characteristics of PD-BL.

4. Discussion

The H and Y stages of the PD group increased after 3 years
of follow-up in this study, while UPDRS-III scores (ON) did
not change significantly after 3 years. As PD patients collected
from PPMI dataset in this study accepted treatment, motor
symptom changes were assessed by the UPDRS-III (ON). UPDRS-
I and SCOPA-AUT scores of the PD group increased, and the
SDM and ADL scores decreased after 3 years in our study.
These results indicated that PD severity increased over time. The
dopamine supplement treatment was collected as LEDD, which
significantly increased after follow-up. Non-motor symptoms,
such as autonomic dysfunction, progressed over time, even
after long-term treatment in the present study. The UPDRS-
III scores which were used to assess motor symptoms of PD,
didn’t significantly change. Our results indicate that dopamine
supplement treatment was not effective enough to relieve all non-
motor symptoms in this study.

Our result showed that network averaged connection between
FP and SMN of PD-FU was lower than PD-BL. FP is associated
with execution function. The decreased connection between FP to
SMN in PD-FU may be associated with worsen of motor symptoms.
While we didn’t find statistical correlation between decrease of
network connection and clinical assessment scores.

Results showed that PD-FU spent more time at state 3, which
characterized as hypo-coupling between networks. PD-FU spent
less time at state 2, which was characterized as positive coupling
between networks. These results indicated that coupling between
networks of PD-FU decreased and may converted to hypo-coupling
state. The loss of coupling may associate with the worsen of
PD. These results are consistent with those of Li et al. (2021),
which showed that the fractional windows and mean dwell time of
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FIGURE 3

Dynamic functional connectivity state results. The dynamic FC matrices were clustered into 4 states. Averaged across subjects-specific median
cluster of all participants were showed. Total occurrences for State 1-4 were 19, 22, 56, and 3%, respectively. ATT, attention network; AUD, auditory
network; BG, basal ganglia network; DMN, default modal network; FP, frontoparietal network; SMN, sensorimotor network.

states that characterized positive correlations between FP and SMN
decreased in PD compared to HC (Chen et al., 2021). In Li et al.’s
(2021) study, the mean dwell time of the above ON state increased
compared with the OFF state, indicating that dopamine depletion
affects functional connectivity stability between FP and SMN (Chen
et al., 2021).

Autonomic dysfunction was widespread in PD and occurred at
an earlier stage. Autonomic dysfunction, such as gastrointestinal
dysfunction in PD patients, was a risk factor for falling, with severe
consequences (Kwon et al., 2021). The SCOPA-AUT scale was used
in this study to assess autonomic dysfunctions. The autonomic
functions of PD patients at FU were impaired in our study. The
correlation results showed that the SCOPA-AUT scores of PD-
FU positively correlated with the mean dwell time of state 3.

Above results indicated that the increase of hypo-coupling state
correlated with autonomic dysfunction. Our results in line with
precious studies, which showed the correlation between functional
connectivity of RSN and autonomic dysfunctions (Ashraf-Ganjouei
et al., 2018; Dayan et al., 2018; Li et al., 2021; Nakano et al., 2021).

5. Limitations

There are some limitations to this work. Only 20 PD and 19 HC
patients were collected from PPMI in this study. PD patients were
only followed up for 3 years, which was much less than the entire
length of PD duration. A larger scale and longer visiting period for
the longitudinal study is needed in future studies. Most of the PD
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FIGURE 4

Results of temporal properties of dynamic functional state analysis. The median of fractional windows (A) and mean dwell time (B) of all subjects in
each state are shown using a Tukey box plot. ∗: p < 0.05. PD, Parkinson’s disease; BL, baseline; FU, follow-up; HC, healthy control.

FIGURE 5

Correlation between SCOPA-AUT scores of PD-FU and mean dwell
time of state 3. PD, Parkinson’s disease; SCOPA-AUT, Scales for
Outcomes in Parkinson’s Disease-Autonomic dysfunction.

patients in the recent study received treatment, and the UPDRS-III
scores of the OFF states were missing. PD patients did not undergo
MRI scans before accepting any treatment. We cannot entirely
remove the treatment effect. Although some studies revealed
that dopamine treatment rarely affected non-motor symptoms,
randomized controlled trials are needed in the future.

6. Conclusion

We found four distinct dynamic FC states in PD patients
according to dynamic functional correlations within and
between RSN. The state 2 of our study showed positive
coupling within and between SMN and visual network,
while the state 3 showed hypo-coupling through all RSN
networks. Our finding indicated that PD-FU patients spent
more time in hypo-coupling state (state 3) than PD-BL.
The increase of hypo-coupling state and decrease of positive
coupling state might correlate with the worsening of non-
motor symptoms in PD patients. The dynamic FC analysis

may be used as monitoring tool for non-motor symptoms and
disease progression.
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