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With the recent development of deep learning, the regression, classification,

and segmentation tasks of Computer-Aided Diagnosis (CAD) using Non-Contrast

head Computed Tomography (NCCT) for spontaneous IntraCerebral Hematoma

(ICH) have become popular in the field of emergency medicine. However, a

few challenges such as time-consuming of ICH volume manual evaluation,

excessive cost demanding patient-level predictions, and the requirement for high

performance in both accuracy and interpretability remain. This paper proposes

a multi-task framework consisting of upstream and downstream components

to overcome these challenges. In the upstream, a weight-shared module is

trained as a robust feature extractor that captures global features by performing

multi-tasks (regression and classification). In the downstream, two heads are used

for two di�erent tasks (regression and classification). The final experimental results

show that the multi-task framework has better performance than single-task

framework. And it also reflects its good interpretability in the heatmap generated

by Gradient-weighted Class Activation Mapping (Grad-CAM), which is a widely

used model interpretation method, and will be presented in subsequent sections.

KEYWORDS

intracerebral hematoma (ICH), Non-Contrast head Computed Tomography (NCCT),
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1. Introduction

Spontaneous IntraCerebral Hematoma (ICH) is characterized by high incidence, high

disability, and high mortality, accounting for approximately 10–20% of all strokes (Raafat

et al., 2020). The initial hematoma volume is the strongest predictor of mortality and

functional outcomes (Beslow et al., 2014). Fast and precise evaluation of ICH volume

through Non-Contrast Computed Tomography (NCCT) images is generally considered

the first and the most critical step to making further clinical decisions including medical

and surgical options. As the evaluation of ICH volume is relatively a time-consuming

process, head NCCT reports usually provide only a general description of ICH location

and shape, whereas the ICH volume is not calculated. In most cases, the ICH volume

is assessed manually by clinicians such as neurosurgeons or neurology physicians, using

variousmethods including ABC/2, ABC/2.4, ABC/3,1/2Sh, and 2/3Sh. Among them, ABC/2,

also known as the Tada formula, is the most used one. For further explanation, A is the
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maximum axial hematoma diameter, B is the maximum axial

diameter perpendicular to A on the same slice, and C is the vertical

diameter of the hematoma (Beslow et al., 2010). The reliability of

the ABC/2 formula is shown good correlation with computerized

ICH volume measurements for small and uniformly shaped ICHs,

but the accuracy can be affected by observer variability and

imprecision (Oge et al., 2021). The method is prone to overestimate

ICH volume by approximately 20% and even misestimate more

for large and irregularly shaped hemorrhages (Patel et al., 2019).

The 3D slicer software (http://www.slicer.org) provides a free open

source software platform for biomedical research. It can identify

hematoma pixels based on CT images and reconstruct blood clots

in a three-dimensional manner, which is free from restriction

by hematoma morphology and bleeding sites. Compared with

manual methods, 3D slicer method is considered as a more stable

and capable method of high precision for the volume calculation

of most hematomas and is gradually accepted as an effective

measurement method clinically (Xu et al., 2014; Chen et al., 2020;

Gong et al., 2021).

Newly automatic, versatile, easily deployable, and accurate

hematoma volume assessment tools are highly needed giving their

clinical significance. Numerous attempts have been conducted to

develop 3D slicer as well as other computer-assisted automated

tools for hematoma volume evaluation (Huttner et al., 2006; Wang

et al., 2009; Zhao et al., 2009; Yang et al., 2013; Xu et al., 2014), but

the methods have not been fully automated yet, and still require a

significant amount of decisions to be made by researchers, which

remains a challenging problem.

With the recent growth of deep learning, the evaluation

methods of hematomas with deep learning-based techniques have

been advanced dramatically, including the ResNet model, the

DenseNet model, and the H-DenseUNet model, see Zhao et al.

(2021), Mantas (2020), Dawud et al. (2019), Zhou et al. (2022), and

Gou and He (2021).

For the evaluation of intracranial hemorrhage volume, the deep

learning method has been proved to be superior to the clinical

method in stability and accuracy many times (Freeman et al.,

2008; Sharrock et al., 2022). Most quantitative assessments of ICH

volume are based on the segmentation or classification of ICH

areas. Phaphuangwittayakul et al. (2022) propose a quantitative

assessment algorithm to automatically measure both thickness

and volume via the 3D shape mask combined with the output

probabilities of the classification network. Xu et al. (2021)

realize hematoma segmentation and volume evaluation by Dense-

Unet (Cai et al., 2020; Sharrock et al., 2021), and is based on

V-Net architecture. Much literature focuses on developing better

neural network architectures and training strategies to optimize

ICH segmentation, on which post-processing can be performed to

automatically measure the volume of intracerebral hemorrhage. In

this paper, we do not have the segmentation mask of the cerebral

hemorrhage area. Instead, we have the measurement results of the

volume of cerebral hemorrhage by multiple doctors. On the basis

of training on this, we expect the model to be able to locate the

bleeding location and even mark the bleeding area, which is what

we intend to continue to study in the future.

This paper describes a lightweight multi-task learning

framework firstly, which is specifically designed to identify and

evaluate ICH hematoma volumes by training a large number

of NCCT images collected from 258 patients with ICH. Then,

based on the assessment of ICH hematoma volumes, further

prognosis analysis of intracerebral patients through the multi-task

framework is discussed. Finally, satisfactory results are obtained

for both tasks. For the evaluation of ICH hematoma volumes, the

effect of this model is even better than the assessments of some

clinicians. To further improve the interpretability of the model,

Gradient-weighted Class Activation Mapping (Grad-CAM) is

utilized to visualize the prediction of the model, which focuses

well on the bleeding area and provides a reliable basis for the

predictive output of the model. This can make a lot of sense for

clinical application.

2. Related work

2.1. Deep learning in brain computerized
tomography images

The application of neuroimaging technology plays an

important role in the diagnosis and treatment of cerebrovascular

diseases and is an indispensable auxiliary diagnostic tool. As the

main imaging methods of the brain, computerized tomography

(CT) and Magnetic Resonance Imaging (MRI) are widely used

in clinical practice. Among them, CT examination is the first

choice to find most brain diseases, including congenital brain

development intracranial abnormalities, brain tumors, cerebral

hemorrhage, and so on. The major advantages of CT images after

reconstruction for medical image analysis are high density and

clear image; it can assist clinicians to master the brain structure and

abnormalities within the brain tissues easily (Padma Nanthagopal

and Sukanesh Rajamony, 2013; Sachdeva et al., 2013; Vidyarthi and

Mittal, 2014). Researchers utilize different automated approaches

for brain disease detection and type classification through brain

radio images since medical images can be scanned and uploaded

to computers with a fine-resolution. For a long time in the past,

Support Vector Machine (SVM) and Neural Networks (NN)

techniques have been widely used due to their stable and good

performance (Pan et al., 2015). But in recent years, due to the

improvement of equipment computing power, Deep Learning

(DL) models have created an exciting new trend in the field

of machine learning, because deep architecture can efficiently

represent more complex relationships without requiring a large

number of nodes like traditional machine learning, such as SVM

and K-Nearest Neighbor (K-NN). With the vigorous development

of these technologies, they have become advanced technologies

in different medical and health fields, such as bioinformatics,

medical informatics, and medical image analysis. Among all

kinds of deep architectures, the Convolutional Neural Network

(CNN) is undoubtedly the most commonly used architecture

now, which can use the convolution kernel to realize complex

operations such as feature extraction (Pan et al., 2015; Ravì

et al., 2016; Litjens et al., 2017). Usually, CNN is designed for

image recognition tasks. The image is first processed by multiple

convolutional layers (each convolutional layer is followed by a

Rectified Linear Unit (ReLU) layer and a pooling layer), then
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input to the fully connected layer and the ReLU layer. Finally,

the output layer produces the prediction of class probabilities.

Although the CNN architecture does not require manual feature

extraction compared with traditional machine learning methods,

it is very difficult to train a CNN model from scratch, which

requires a large number of labeled data sets for adequate learning,

especially for tasks such as classification and regression: the data

volume requirements are relatively large. Moreover, for processing

a large number of filters, such as large-scale medical 3D images

such as 256 × 256 × 32, the hardware requirements are very

high (Ben Ahmed et al., 2017).

The contribution of this paper is to apply deep learning to

the prediction of intracranial hemorrhage. Due to the correlation

between intracranial hemorrhage and prognosis survival, this paper

further proposes a lightweight multi-task learning framework

based on the prediction of ICH hematoma volume. The

aim is to further effectively predict the prognosis of patients

according to the relevant features of the blood loss learned by

the model.

2.2. Interpretability

Deep learning is a multi-layer representation learning

method built with simple nonlinear modules that transform the

previous layer representation into a higher-level, more abstract

representation, so that it is able to detect increasingly abstract

features. Therefore, a large number of features are also generated

in the process of generating the prediction results, which makes the

information very compact, especially in the deep layers. It’s hard

to explain this process, so we don’t know why the neural network

makes this prediction. This is called the “black box” problem

of deep neural networks (Castelvecchi, 2016). Indeed, they are

capable of producing extremely accurate predictions, but how can

predictions based on features beyond comprehension be reliable?

It is a challenging problem.

In medical images, the interpretability of the model is

even more important: it determines whether the clinicians can

trust and accept the model predictions which could be critical

in clinical applications. Interpreting the predictions of deep

models is hard without appropriate techniques, but a range of

approaches has emerged over the past few years. One example

is to show the texture of imaging features at a single layer

to examine the hierarchical process of learning (Zeiler et al.,

2011). In addition, numerous researches and explorations have

been carried out on generating meaningful heatmaps in order

to highlight the importance of individual pixel regions in the

input image for the final CNN prediction. Many techniques have

demonstrated the feasibility of generating heatmaps, including

strategies using deconvolution (Zeiler and Fergus, 2014), layer-

wise relevance propagation (Samek et al., 2016), and saliency

map construction (Simonyan et al., 2013; Ghorbani et al., 2020;

Thomas et al., 2020). However, these methods still have certain

shortcomings, such as being susceptible to noise and artifacts,

lacking sensitivity to input disturbances and qualitative criteria for

evaluating the quality of back propagation (Samek et al., 2016;

Smilkov et al., 2017; Ghorbani et al., 2020). Class Activation

Mapping (CAM) serves as a better alternative approach. But in

its most basic implementation, CAM requires adding a pooling

layer to the target model, limiting the interpretation to only

one specific layer (Zhou et al., 2016). Recently, two extended

versions of CAM have emerged, namely, Gradient-weighted Class

Activation Mapping (Grad-CAM) (Selvaraju et al., 2017), and

Grad-CAM++ (Chattopadhay et al., 2018). Compared with CAM,

both of them can interpret arbitrary layers of CNN without any

architectural modification, thus increasing the flexibility of the use.

Grad-CAM is one of the most widely used techniques for

prediction interpretation; it is chosen in this paper to interpret the

prediction of the model and to increase the credibility of the model

so that it has good interpretability in clinical application.

3. Method

To obtain the IntraCerebral Hemorrhage (ICH) volume and

provide interpretative decision details, we propose a novel multi-

task learning framework to take the complementary advantages of

ICH regression and classification. Besides improving the accuracy

of both tasks, the fusion is also able to enhance the interpretability

which is of great significance for the clinical application.

3.1. Overall architecture

As described above, the proposed network adopts the multi-

task learning manner allowing the model to learn from different

annotations. It can not only boost knowledge extraction by

sharing the convolutional parameters but also can accelerate the

learning program by calculating gradients from multiple branches.

The motivation is the correlation between ICH regression and

classification tasks. The research in Brott et al. (1997) shows that

the increase of bleeding volume in the early stage of ICH is

an important factor determining the prognosis of ICH patients.

Unfortunately, the mortality rate of ICH is about 40% per month,

with 61–88% of survivors having degrees of residual disability. In

this context, the hematoma size is a key character for prognosis

predictions. Therefore, it is more accurate and acceptable to predict

the prognosis of patients based on a certain accurate assessment of

the bleeding amount.

Our multi-task CNN architecture is proposed to jointly learn

from both tasks, whose details are shown in Figure 1. The major

components of the proposed network include a shared module

for brain image feature extraction and two heads corresponding

to different tasks. The algorithms for regression and classification

tasks are built on ResNet deep neural network architecture (He

et al., 2016), which includes the residual information extracted from

the previous layer and mitigated the adverse performance by using

a large number of layers.

3.2. E�cient feature extraction

Experience suggests that the multi-task model often achieves

better results than the single-task model. Compared to single-task

learning, multi-task learning has the following advantages: shared
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FIGURE 1

The overview of our multi-task framework.

encoder can reduce parameter amounts and save computation,

associated tasks can improve each other’s performance by

sharing information and complementing each other. Also, it is

helpful for the bottom-sharing encoder to learn the common

feature representation.

The essence of multi-task learning lies in sharing the

presentation layer and making the tasks interact with each other

when the correlation between the predicted goals is relatively high.1

Consequently, the parameter sharing layer will not bring too much

loss, the parameter sharing layer can strengthen the parameter

sharing, multiple target models can be trained jointly, reduce

the parameter scale of the model and prevent the model from

overfitting. Our final experimental results also fully demonstrate

the effectiveness of applying multi-task learning to our tasks.

For multi-task learning, learning a general feature

representation is very important for the model. As shown in

Figure 1, the robust feature extraction module is designed to

extract features of a 3D image and obtain a high-quality feature

vector, which is used for downstream tasks. The module is based

on 3D ResNet34 (He et al., 2016) because the residual structure

effectively solves the problem of model degradation due to its

depth, skip connection and also enhances the information transfer

between the upper and lower layers.

Given a 3D CT image of 224× 224× 32 pixel size, the features

are extracted by one stem block and four stages of ResNet (see

Figure 1). Specifically, the first layer is a convolutional layer with

1 In our task, ICH volume regression and patient prognosis classification

based on brain CT images. The underlying features of both should be similar,

both at the bleeding site in the brain.

a 7 × 7 × 7 kernel size and 64 filters. The pooling layer is set after

that to decrease the image’s size and save the computation cost. The

max pooling layer with a kernel size of 3 × 3 × 3 and stride 2 is

used here empirically. The second, third, fourth, and fifth phases

are made up of multiple convolutional operations, corresponding

to the four stages in Figure 1. The first is a convolution layer with a

filter size of 3× 3× 3 and the rest of the three modules are stacked

on the top of each layer. The second is a convolution layer with

the filter size of 3 × 3 × 3 and there are four residual blocks. Each

convolutional layer in the network applies zero-padding, after each

convolutional layer, a batch normalization layer (Ioffe and Szegedy,

2015) is applied to speed up model training and convergence. To

allow the application to images of arbitrary size, 3D feature maps

are not flattened but dense layers are implemented as convolutions

with the size of 1× 1× 1 (Long et al., 2015).

After the entire feature extraction process, the final extracted

feature map is obtained. The network has two output heads, one for

ICH volume regression and another one concerns the classification

of the prognosis. Finally, the features extracted by the last layer of

the module are fed to each task-specific head.

3.3. Regression head

The first task-specific head for regression only has an average

pooling layer and one fully connected layer. The final output

is a scalar referring to the amount of ICH volume predicted

by the model. This regression task is performed to predict the

IntraCerebral Hemorrhage (ICH) volume in each 3DCT scan, task-

specific head module to find the most intensive crux features of
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ICH. The regression loss is defined as the Mean Square Error Loss

(MSE Loss) defined by Lreg :

Lreg =
1

N

N
∑

i=1

(ŷregi − yregi )
2, (1)

Where ŷregi is the predicted output of the regression head, and

N is the number of CT images.

3.4. Classification head

The second task-specific head for classification has a simple

linear classifier which consists of a global average pooling, a linear

layer, and a ReLU activation function. Finally, the softmax function

is applied to the output to obtain the probability of the model

prediction, which is between 0 and 1. Generally, we use 0.5 as

the classification decision threshold: a probability greater than 0.5

is fixed to 1, which means that the class belongs to, whereas a

probability less than 0.5 is fixed to 0, meaning that the class does

not belong to. The upstream framework is the same and shares the

weight of the feature extraction module of the regression task. The

classification loss is defined as the Binary Cross-Entropy Loss (BCE

Loss) called Lcls:

Lcls =
1

N
·

N
∑

i=1

[ycls · log(ŷclsi )+ (1− yclsi ) · log(1− ŷclsi )], (2)

Where ŷclsi is the predicted output of the classification head, and

N represents the number of CT images.

For our multi-task framework, the feature extractor is shared

and the two heads fit the outputs of the two tasks separately.

Therefore, the loss of multi-task framework is a combination of

the losses of two tasks. Through the simple weighting of loss, the

network weights are updated to optimize.

3.5. Interpretive design

Traditional deep learning applications lack interpretability and

thus faces limitation in clinical practice. We propose to utilize

the advanced Grad-CAM to explore how the results are obtained.

Specifically, class weights derived in Grad-CAM used the equation:

wc
k =

1

Z

∑

i

∑

j

∂yc

∂Ak
ij

(3)

Where Z denotes the total number of elements in a feature map

A, Ak
ij represents the data of the feature map in channel k, and the

coordinate is ij, yc denotes the score predicted by the network for

class c.

This equation is backpropagated through the prediction score

of class c to obtain the gradient information that is backpropagated

back to feature layer A, namely wc
k
, which represents the

importance of each channel of feature map A, here for class

c. The higher the value, the greater the contribution, and the

more important it is considered by the model. Finally, weighted

summation is performed and the final Grad-CAM heatmap is

obtained by ReLU activation function. Consequently, the heatmap

generation uses the formula:

LcGrad−CAM = ReLU

(

∑

k

wc
kA

k

)

, (4)

Where the ReLU (Rectified Linear Unit) function allows to

evaluate features with positive impact only. In this paper, we

use the last convolutional layer in computing the weights as

suggested previously.

4. Experiments

4.1. Ethics approval and consent to
participate

The study is undertaken in compliance with the principles

of the Declaration of Helsinki and is approved by the ethics

committees of the First Affiliated Hospital of Xiamen University

(Approved ID: SL-2020KY034). All individual patient data used for

the analysis are collected by providers after obtaining appropriate

consent and agreements.

4.2. Data collection

This study involves 258 patients with spontaneous intracerebral

hematoma (ICH) admitted to the First Affiliated Hospital of

Xiamen University between April 2017 and February 2019 to

develop the prognosis model. These axial brain Computed

Tomography (CT) scans, taken on admission using a Philips

Brilliance 64-row spiral CT scanner are exported from the

Department of Neurosurgery through Picture Archiving and

Communication Systems (PACS) and stored in Digital Imaging and

Communications in Medicine (DICOM) format.

4.3. Data preprocessing

To evaluate the effectiveness of the developed network, we

collect a new ICH dataset with 258 patients, of which 227 patients

survived and 31 patients dead. All patients are given a table with

the patient’s name and measurements of the ICH volume (mililiter,

ml) from eight professional neurosurgeons (with 2, 3, 3, 4, 4, 8, 15,

and 20 years of experience) and the 3D slicer software, which is

considered the gold standard.

For the regression labels, because of the uneven distribution of

ICH volume (shown in Figure 2 left), we calculate the third root of

the ICH volume and convert it to the ICH size (milimeter, mm),

which is more balanced in distribution (shown in Figure 2 right)

and more beneficial to model training. For the final prediction

results of the regression model, we perform post-processing

and then convert them into ICH volumes for further analysis

and comparisons.

Considering the intensity range of brain

characteristics (Fosbinder and Orth, 2011), we apply a brain

window that clips [40, 110] Hounsfield units (HU) and normalized
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FIGURE 2

Histogram of the blood loss distribution.

the input to [0, 1]. After cutting out the blank part of the brain in

the image, the image size is resized down to 32 × 224 × 224 by

linear interpolation. Since ICH can occur anywhere in the brain

with multiple subtypes simultaneously, we do not crop the images

and don’t use patch images for training, which may lead to unstable

results and false positives (Hu et al., 2011).

4.4. Evaluation metrics

For the regression task, we choose the following three indicators

to evaluate, which include Mean Square Error (MSE), Mean

Absolute Error (MAE), and Mean Absolute Percentage Error

(MAPE). AndMAPE is the relative error, which is the percentage of

absolute error and truth. For classification task, three widely-used

metrics are used for quantitative analysis, which are accuracy, ROC

curve, and area under the curve(AUC).

4.5. Implementation details

Our network is implemented on Pytorch (Paszke et al., 2019)

and trains using SGD (Robbins and Monro, 1951) with 300 epochs,

an initial learning rate of 1 × 10−4, a momentum of 0.9, and a

weight decay of 5× 10−4. The whole architecture is trained on one

GeForce RTX 3080 Ti GPU, and each GPU has a batch size of 8.

For a fair comparison, our method and all models follow the same

training settings.

4.6. Results

The performance of our proposed approach for regression and

classification tasks is reported in Tables 1, 2, respectively.

To verify the effectiveness and feasibility of our proposed

framework, Table 1 selects five existing methods widely used

TABLE 1 Quantitative comparisons for the e�ectiveness of regression

model.

Methods MAE MSE MAPE(%)

Clinician 1 5.21 65.93 28.78

Clinician 2 6.14 84.10 38.50

clinician 3 4.46 39.15 38.68

Clinician 4 4.77 50.05 34.13

Clinician 5 4.88 72.04 29.60

Clinician 6 5.30 56.08 44.65

Clinician 7 3.86 38.84 20.14

Clinician 8 4.02 40.98 24.42

X3D (Feichtenhofer, 2020) 18.28 490.19 99.98

R(2+1)D (Tran et al., 2018) 7.09 80.02 45.59

P3D (Qiu et al., 2017) 10.24 143.54 171.18

TSM (Lin et al., 2019) 9.51 130.69 160.93

Times Former (Bertasius et al., 2021) 10.49 158.13 171.09

TIN-ResNet-18 (Shao et al., 2020) 7.90 107.52 110.68

TIN-ResNet-34 (Shao et al., 2020) 9.71 134.73 159.54

TIN-ResNet-50 (Shao et al., 2020) 10.87 170.85 184.58

Uniformizing-3D (Zunair et al., 2020) 7.87 118.06 102.38

Multi-task (ours) 4.91 52.65 43.00

The first eight lines denote the measurements of eight clinicians.

for 3D image classification tasks for comparison, including

X3D (Feichtenhofer, 2020), R(2+1)D (Tran et al., 2018), P3D (Qiu

et al., 2017), TSM (Lin et al., 2019), Times Former (Bertasius et al.,

2021), TIN (Shao et al., 2020) with backbone of ResNet-18, 34, 50

and Uniformizing-3D (Zunair et al., 2020), which is a 3D CNN

for CT scans . For providing a fair comparison, we obtain the
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final classification results on the official implementations of these

compared methods. We train these models on our dataset and set

the same experimental parameters as ours. As shown in Table 1,

the model trained by deep learning performs well. The method we

choose based on ResNet architecture achieves the best results and is

even more suitable for the tasks of regression and classification of

3D brain CT images, with MAE reaching 4.91, the MSE reaching

51.92, and MAPE reaching 43.00%. Compared to the evaluation

results of eight clinicians (first eight rows in Table 1), our method

also has competitive performance, outperforming the evaluation

results of three clinicians (clinicians 1, 2, 6), while also having

better interpretability.

To further show the stability and effectiveness of our model

training, we plot the curve of the indicator change during themodel

training and validation process, includingMAE andMSE, as shown

in Figure 3. From the figure, we can see that whether in the training

or validation phase, the MAE and MSE loss functions of our model

gradually decrease and converge to be stable in 300 epochs, which

indicates that the model obtained by our training is stable and

reliable. The training of other models also shows a similar trend.

The results of the classification task shown in Table 2

demonstrate the effectiveness of the multi-task network. Compared

with the single-task model, that is, trained from scratch, the

performance of the multi-task model is also greatly improved

due to the shared encoder parameters, with accuracy improved

by 5.66% and AUC improved by 5.68%, and both reached more

than 90%.

TABLE 2 Quantitative comparisions of the e�ectiveness of multi-task

framework.

Methods ACC (Accuracy) AUC

ResNet (single-task) 88.68 87.94

ResNet (multi-task, ours) 94.34 93.62

“Single-task” denotes the classification model train from scratch.

Bold values indicate the optimal result.

More visually, Figure 4 shows the ROC curves of our

multi-task model and single-task model. The performance

of the multi-task model is better than others, and the

area of AUC remains over 90%, which fully demonstrates

its effectiveness.

4.7. Interpretability

To enhance the interpretability of the model for the

prediction of ICH volume, we visualize the output of the last

convolutional layer of the regression model. As mentioned earlier,

we introduce Grad-CAM (Gradient-weighted Class Activation

Mapping) (Selvaraju et al., 2017) to generate heatmaps, which show

the region of interest of the model.

FIGURE 4

ROC curves of our multi-task framework and compared method.

FIGURE 3

The training curve of the regression loss in our multi-task framework.
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FIGURE 5

Interpretable visualization of our multi-task framework. The images are five slices taken from a 3D CT scans at medium intervals (t = 5).

In the heatmap, the brighter the color is, the more attention

the model pays to. As shown in Figure 5, the highlighted areas are

concentrated in certain parts of the brain with some white spots.

And according to our confirmation with a professional clinician,

this is exactly the location of the cerebral hemorrhage in the

image. Therefore, it is reasonable to say that in the prediction

of ICH volume, our model accurately locates the location of

bleeding, to make the prediction, and the result is acceptable to

clinicians. At the same time, it also provides a basis for subsequent

prognostic analysis tasks, as the ICH volume is a key factor affecting

patient mortality.

5. Discussion

5.1. Clinical significance for proposed
algorithm

Stroke is the second-leading cause of death, and the third-

leading cause of death and disability combined in the world (Feigin

et al., 2021). Intracerebral hematoma (ICH) is a common and

fatal subtype of stroke, which is characterized by rupture of

arterial blood vessels and formation of hematoma within the brain

parenchyma, such as the basal ganglia (Zhang et al., 2020; Kinoshita

et al., 2021). The formation of a large hematoma compresses the

surrounding brain tissue, resulting in neurological deterioration,

intracranial hypertension, global cerebral ischemia, and brain

herniation, which can affect vital autonomic structures (Yu

et al., 2020). The mortality rate of ICH is about 40% per

month, with 61–88% of survivors having high degrees of residual

disability (Van Asch et al., 2010). Management of increased

intracranial pressure is the mainstay of ICH treatment in the

acute phase (Kase and Hanley, 2021). Patients with excessive

bleeding and coma often require surgical treatment to relieve

the hematoma, brain tissue compression, and secondary brain

injury (Lin et al., 2014). However, as an invasive process, iatrogenic

injury is inevitable during hematoma evacuation, which means the

accurate assessments of the patients’ condition and appropriate

selections for surgical interventions are critically important. The

hematoma size is a key character for prognosis predictions and

clinical decision making. Supratentorial hematomas larger than 30

ml (Kerebel et al., 2013; Huang et al., 2021) and infratentorial

hematomas larger than 15 ml (de Oliveira Manoel, 2020) are

often considered to result in poor prognosis and tend to require

surgical evacuation. Thus, the accuracy of volume evaluation for

ICH patients has significant clinical implications.

There are mainly four kinds of methods to evaluate ICH

volume, including the mathematical formula method, tool

measurement method, CT machine measurement method, and

software method (Chen et al., 2020). Among them, Tada formula, a

kind of formula method, is the most commonly used one. However,

the accuracy of Tada formula can be affected by both hematoma

shape and volume, resulting in imprecise disease evaluation and

potential improper treatments (Gong et al., 2021). 3D Slicer is

shown to be more precise than most methods (Chen et al.,

2020), but the modeling process is relatively time-consuming for

clinicians. With the development of deep learning techniques,

artificial intelligence has provided promising results in the medical

field andmay help withmedical image interpretation and prognosis

prediction, offering more reliable results than manual decisions

by clinicians. Several previous studies have used deep learning-

based techniques to evaluate ICH volumes (Roh et al., 2019), but

there are still some shortcomings. For instance, some studies use

the manually estimated hematoma volume as the label to train the

model, which is not accurate enough to evaluate the performance

of the model because the relatively large error of manual estimation

leads to the inaccuracy of the label. In addition, it does not take the

problem of model interpretation into account.

For this reason, this study uses the results of 3D slicer as

labels to improve the accuracy of model training and evaluation.

At the same time, in addition to achieving competitive accuracy

with clinicians, our model has good interpretability and is easier to

be understood and accepted by clinicians. Intuitively, we attribute

the accuracy of model prediction to the fact that the heatmap

shows that it focuses on the information related to the bleeding

area, which is in turn the target of the model being explained.

This demonstrates the accuracy of the effect of our model, and

its concerns are consistent with those of professional physicians.
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Furthermore, the evaluation of hematoma volume to predict

patient prognosis is not accurate enough because the ICH density,

shape, location, the middle line deviation, the effacement of Sylvian

fissure and perimesencephalic cisterns (Kim, 2012) are all related to

the prognosis of ICH. Therefore, this study uses the complete CT

images as the training objects and does not mark a specific region

of interest, so that the results are more reasonable and robust.

5.2. Limitations and further directions

Our experimental results prove the effectiveness of our

proposed framework well, but to better apply it clinically, we should

test it on more data. This is also the current limitation of our

method. First, our data are collected from a single center and the

result should be further validated by data from multiple centers in

terms of predicting prognosis due to differences in treatment levels.

Second, given the variable performance of ICH, the sample size is

still needed to be expanded, including hemotomas of different sizes,

locations, shapes, and densities. Third, cerebral hemorrhage is a

dynamic process, and a single NCCT can only be used to evaluate

static intracranial conditions. Therefore, subsequent studies can

use different concurrent images as time series for prognostic

evaluation. Fourth, besides the radiological features, the clinical

features including age, the severity of other underlying diseases,

the GCS coma score, etc. are all associated with prognosis (Wang

et al., 2014). Using multimodal data may further advance the

performance of such clinical prediction models.

6. Conclusion

We introduce a multi-task framework for ICH volume

(regression) and patient prognosis (classification) prediction in

NCCT. First, we design a robust feature extractor through the ICH

volume prediction task, which effectively locates and focuses on

ICH regions. This is effectively demonstrated in the Grad-CAM.

By exploring the relationship between ICH volume and patient

prognosis, we find that the effectiveness of feature extraction on the

former task affected the performance on the latter task. A feature

extractor that can well locate the hemorrhage area and pay attention

to the hematoma, which is very beneficial for the subsequent

task of prognostic analysis. The experimental results also prove it

well. Compared with existing methods, our framework achieves

impressive results on both tasks, and its reliable interpretability also

makes it possible for clinical application.
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