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Background:Ocular ischemic syndrome (OIS), attributable to chronic hypoperfusion

caused by marked carotid stenosis, is one of the important factors that cause ocular

neurodegenerative diseases such as optic atrophy. The current study aimed to detect

blood flow perfusion in a visual pathway by arterial spin labeling (ASL) and magnetic

resonance imaging (MRI) for the di�erential diagnosis of OIS.

Methods: This diagnostic, cross-sectional study at a single institution was performed

to detect blood flow perfusion in a visual pathway based on 3D pseudocontinuous

ASL (3D-pCASL) using 3.0T MRI. A total of 91 participants (91 eyes) consisting of 30

eyes with OIS and 61 eyes with noncarotid artery stenosis-related retinal vascular

diseases (39 eyes with diabetic retinopathy and 22 eyes with high myopic retinopathy)

were consecutively included. Blood flow perfusion values in visual pathways derived

from regions of interest in ASL images, including the retinal-choroidal complex, the

intraorbital segments of the optic nerve, the tractus optics, and the visual center, were

obtained and compared with arm-retinal circulation time and retinal circulation time

derived from fundus fluorescein angiography (FFA). Receiver operating characteristic

(ROC) curve analyses and the intraclass correlation coe�cient (ICC) were performed

to evaluate the accuracy and consistency.

Results: Patients with OIS had the lowest blood flow perfusion values in the visual

pathway (all p < 0.05). The relative intraorbital segments of optic nerve blood flow

values at post-labeling delays (PLDs) of 1.5 s (area under the curve, AUC = 0.832) and

the relative retinal–choroidal complex blood flow values at PLDs of 2.5 s (AUC= 0.805)

were e�ective for the di�erential diagnosis of OIS. The ICC of the blood flow values

derived from the retinal–choroidal complex and the intraorbital segments of the optic

nerve between the two observers showed satisfactory concordance (all ICC> 0.932, p

< 0.001). The adverse reaction rates of ASL and FFA were 2.20 and 3.30%, respectively.

Conclusion: 3D-pCASL showed that the participants with OIS had lower blood

flow perfusion values in the visual pathway, which presented satisfactory accuracy,

reproducibility, and safety. It is a noninvasive and comprehensive di�erential

diagnostic tool to assess blood flow perfusion in a visual pathway for the di�erential

diagnosis of OIS.
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Introduction

Marked stenosis or occlusion of the common or internal carotid

arteries may cause ocular hypoperfusion (Lee et al., 2022) and/or

cerebral hypoperfusion (Lineback et al., 2022). Ocular ischemic

syndrome (OIS), attributable to chronic ocular hypoperfusion, is

one of the important factors that cause ocular neurodegenerative

diseases (Mester et al., 2009), such as optic atrophy (Battista et al.,

2022). Ocular ischemic syndrome (OIS) describes ocular symptoms

and signs attributable to ocular hypoperfusion caused by marked

stenosis or occlusion of the common or internal carotid arteries

(Terelak-Borys et al., 2012). It was first described by Hedges (1962),

with their findings such as peripheral dot and blot hemorrhages

and dilated retinal veins attributed to retinal hypoxia induced by

carotid artery insufficiency (Casalino et al., 2017). It is a blinding and

disabling disease (Hung and Chang, 2017) and has diverse clinical

manifestations accompanied by asymptomatic injury (Mendrinos

et al., 2010). It is usually asymptomatic but has potentially blinding

abilities (Hung and Chang, 2017). The diagnosis of OIS can portend

life-threatening cerebrovascular and cardiovascular complications

(Mendrinos et al., 2010). The mortality rate of patients with OIS is

40% within 5 years from onset (Mills, 1989), and the most common

causes of death are cardiac disease and stroke (Avery et al., 2019). The

diagnosis of OIS is critical for saving visual function and improving

the chances of survival.

The identification of the OIS and its various clinical

manifestations presents an interdisciplinary challenge. In addition to

OIS, there are also ischemic mechanisms present in retinal vascular

diseases related to noncarotid artery stenosis, such as diabetic

retinopathy (DR) and high myopia (HM) retinopathy (Steigerwalt

et al., 2009). It was reported that the thinning of the choroid

contributes more to the measured decreased chorioretinal perfusion

than slowed arterial filling time (Vaghefi et al., 2017). Previous studies

confirmed the ischemic mechanisms in DR and HM retinopathy. DR

is a well-recognized ocular ischemic disease which is a microvascular

complication of diabetes (Stolte and Fang, 2020). Mudaliar et al.

reported that hyperglycemia causes retinal damage through complex

metabolic pathways, leading to vascular damage, oxidative stress,

capillary ischemia, and retinal tissue hypoxia. A growing body of

evidence (Steigerwalt et al., 2009) suggests that HM is associated

with decreased ocular blood flow (BF), the complications of which

may contribute to severe visual loss. A recent study has shown

that the aberrant blood perfusion of the cerebellum detected by

ASL in patients with HM indicates a new understanding of brain

abnormalities and brain plasticity (Wang et al., 2020).

Identifying a clinical distinction between OIS, which can

potentially imply being affected by lethal disease and noncarotid

artery stenosis-related retinal vascular disease, is essential and

difficult. Therefore, reliable diagnostic biomarkers are needed. The

traditional imaging modality for assessing ocular blood perfusion is

fundus fluorescein angiography (FFA) (Terelak-Borys et al., 2012).

Its invasive examination process relies on sodium fluorescein, an

orange water-soluble dye, which is not applicable to all patients.

Arterial spin labeling (ASL) magnetic resonance imaging (MRI) has

been widely used in cerebrovascular disease (Scelsi et al., 2018).

ASL allows magnetically labeled water protons from arterial blood

as an endogenous diffusible tracer that disperses from the vascular

system into neighboring tissues (Kitajima and Uetani, 2023). Voxel

blood flow was quantified in mL/100 mL/min (Valentin et al., 2022).

Anatomy and functionality are all important factors affecting tissue

perfusion (Vaghefi et al., 2017). Therefore, we set the DR group

in terms of arterial filling time and the HM group in terms of

tissue volume.

This diagnostic test study was designed to detect blood flow

perfusion in a visual pathway by ASL-MRI and explore an accurate,

reproducible, and safe diagnostic tool for the differential diagnosis

of OIS.

Materials and methods

Study design and participants

In this cross-sectional study, 91 participants (91 eyes) with retinal

vascular diseases were prospectively and consecutively enrolled from

November 2018 to November 2021. Participants included 30 patients

with carotid artery stenosis (30 eyes with OIS) and 61 controls with

noncarotid artery stenosis-related retinal vascular diseases (39 eyes

with DR and 22 eyes with high myopic retinopathy).

The diagnostic criteria of OIS (Luo et al., 2018) are as follows:

(1) the stenosis of the ipsilateral (to the affected eye) internal carotid

artery (ICA) was >50%; (2) abnormal ocular symptoms and/or signs

which cannot be explained by other ocular diseases; (3) FFA with

the following signs: arm-choroidal circulation time>15 s, arm-retinal

circulation time (ARCT) >18 s, and retinal circulation time (RCT)

>11 s. The subjects that satisfied the first criterion and any of the two

criteria in (2) or (3) led to a diagnosis of OIS (Lauria et al., 2020).

The diagnostic criteria for DR (Fransen et al., 2002) are based on

the international clinical DR severity grading standard established

by the American Academy of Ophthalmology in 2002 (Nawaz et al.,

2019; Flaxel et al., 2020). The diagnostic criteria for high myopic

retinopathy are based on three key factors: atrophy (A), traction (T),

and neovascularization (N), which is named the ATN classification

system (Ruiz-Medrano et al., 2019).

The inclusion criteria were defined as follows: (1) patients with

OIS; (2) patients with DR with severity greater than or equal to mild

non-proliferative diabetic retinopathy; (3) patients with high myopic

retinopathy with severity graded as A0-A4/T0-T3/N0-N2s.

The exclusion criteria were defined as follows: a history

of other ocular diseases: glaucoma, uveitis, ocular trauma, or

intraocular surgery; other types of retinal vascular diseases: retinal

artery occlusion, retinal vein occlusion, retinal macroaneurysms,

hypertensive retinopathy; MRI ineligibility (de Keizer and te Strake,

1986): claustrophobia or the presence of a cardiac pacemaker,

joint replacement, or other implanted metal devices; MR images

with visible artifacts; FFA ineligibility (Awan and Yang, 2006):

hypersensitivity to sodium fluorescein and liver and kidney

dysfunction; ocular diseases that diminished the quality of fundus

image: serious cataract and vitreous hemorrhage. We excluded those

who were implanted with metal devices (n= 1), had hypersensitivity

to sodium fluorescein (n = 1), and whose MR and FFA images were

of poor quality (n= 2).

The study was approved by the Medical Research Ethics

Committee of Beijing Friendship Hospital, Capital Medical

University (NO.2018-P2-185-02). All participants provided

informed consent according to the Declaration of Helsinki.
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Clinical ophthalmic examination

All subjects underwent slit-lamp, optical coherence tomography

(OCT, Heidelberg Spectralis), and FFA (Spectralis hra) examinations

(Figure 1). OCT was used to measure the central macular retinal

thickness in conventional mode. OCT measured the central macular

choroidal thickness in the enhanced depth imaging (EDI) mode. FFA

examinations were performed according to the requirements of the

patient’s condition. Allergy tests were carried out, and the subjects

with negative results underwent a puncture of the median cubital

vein and were injected with sodium fluorescein contrast medium.

We collected the ARCT, RCT, capillary non-perfusion (NP) area,

neovascularization (NV), retinal vascular staining, microaneurysms,

and other fluorescein angiography signs. The same experienced

technician completed each examination.

ASL image acquisition

All subjects underwent a 3.0T MRI scan using a Philips Ingenia

3.0T scanner equipped with a 16-channel head coil. T1 and T2

weighted images, diffusion-weighted images, and 3D time-of-flight

MR angiography images were obtained before the ASL sequence,

and scanning time summed up to 20min. Foam pads were placed

at the sides of the subject’s head to minimize head motion, and

earplugs were used to reduce noise. During the MRI scan, subjects

were instructed to close their eyes and stay relaxed to reduce

eye movement.

The BF in the visual pathway was determined using the 3D

pseudo-continuous ASL (3D-pCASL) technique, with the scan

parameters as follows: gradient and spin echo sequence, post-labeling

delay (PLD)= 1.5 s (repetition time [TR]= 3903ms, echo time [TE]

= 11ms), PLD = 2.5 s (TR = 4903ms, TE = 11ms), bandwidth in

echo-planar imaging= 2899.7Hz, label distance= 90mm, flip angle

(FA)= 90◦, slice thickness= 6mm, number of slices= 20, slice gap=

0, slice orientation=transverse, field of view (FOV)= 240× 240mm,

acquisition matrix= 64× 64, number of excitations (NEX)= 3.

ASL data quantification

Blood perfusion maps were automatically obtained using the

default process by the dedicated workstation (IntelliSpace Portal

Release v.7.0.4.20175, Philips), and the data were derived from the

blood perfusion maps. The regions of interest (ROIs) derived from

the retinal-choroidal complex, the intraorbital segments of the optic

nerve, the tractus opticus, and the visual center (Figure 2) were drawn

by a neurologist (10 years of experience) and an ophthalmologist

(10 years of experience), respectively, and clinical information was

reviewed in a blinded fashion. The specific location of the retina-

choroid complex, the orbital segment of the optic nerve, the optic

tract, and the visual center were based on T1 and T2 weighted images.

The unified criteria for drawing ROIs were as follows: The ROIs were

all subrounded. The area of ROI of the retinal-choroidal complex, the

intraorbital segments of the optic nerve, and the tractus opticus were

0.3 cm2; the area of ROI of the gyrus lingual, the cuneus, and the

occipital lobe was 2 cm2, and the average BF value was taken as the

BF of the visual center. The relative BF (rBF) value was defined as rBF

= affected BF/healthy BF (Muir and Duong, 2011). The results of the

measurements were retrieved from the two observers and calculated

as the average value.

Statistical analysis

Sample size considerations included the rarity of the OIS. This

study hypothesizes that the area under the curve (AUC) of the BF

perfusion values in a visual pathway is>0.5. Our pre-test showed that

the AUC was >0.8. According to the following parameters, α= 0.05,

β = 0.1, the power was calculated using PASS11.0 software, which

was >90%, proving that the sample size was adequate.

Statistical analyses were performed using SPSS statistical software

(version 26.0, SPSS) and GraphPad Prism software (version 6.0c,

GraphPad Inc). Continuous variables were presented as mean ±

standard deviation. A one-way ANOVA was used to analyze the

differences among groups. Categorical variables were analyzed using

Chi-square tests. Receiver operating characteristic (ROC) curve

analyses were performed, and the AUC was applied to evaluate

accuracy. A intraclass correlation coefficient (ICC) was performed to

evaluate the consistency of BF values reported by the two observers;

an ICC of >0.75 indicated satisfactory concordance. Statistical

significance was accepted as a two-sided test with an alpha level of

0.05. A P-value of <0.05 was considered statistically significant.

Results

Demographics and ocular characteristics

A total of 91 participants (mean [SD] age, 61.0 [10.0] years; 37

[40.7%] women) had 91 eyes with retinal vascular diseases, including

30 patients (30 eyes) with OIS after carotid artery stenosis and

61 controls with noncarotid artery stenosis-related retinal vascular

diseases, which included 39 patients (39 eyes) withDR and 22 patients

(22 eyes) with highmyopic retinopathy. There were differences in age

(F= 8.97, p< 0.001), with the predominant gender beingmale (χ2=

16.54, p< 0.001) among the three groups. Subjects with OIS and high

myopic retinopathy showed thinner central macular retinal thickness

(F= 4.98, p= 0.009); subjects with high myopic retinopathy showed

the thinnest central macular choroidal thickness (F = 42.65, p <

0.001). There were no significant differences in ARCT among the

three groups (F = 1.40, p = 0.253). The differences among the three

groups in the RCT were significant. The subjects with OIS showed

the highest RCT values (F = 3.75, p = 0.027). The differences in

the rates of capillary non-perfusion and neovascularization among

the three groups were significant. The subjects with DR showed the

highest rates of capillary non-perfusion (χ2
= 27.66, p < 0.001) and

neovascularization (χ2
= 22.00, p < 0.001). The demographics and

clinical characteristics of each group are represented in Table 1.

ASL characteristics based on ROI analysis

There were significant differences among the three groups in

detectable BF values of the visual pathway at PLDs of 1.5 and 2.5 s,

including the BF values of the retinal–choroidal complex (F = 4.065,

p = 0.020; F = 4.923, p = 0.009), the intraorbital segments of the
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FIGURE 1

Clinical ophthalmic examinations. Fundus fluorescein angiography (A–C). Optical coherence tomography (D–G). The arm-retinal circulation time is

24.69 s showing the delayed retinal arierial filling (A). The venous phase starts at 34.45 s, showing delayed retinal venous filling, which indicates that the

retinal circulation time is 9.76 s (B). Late retinal vascular staining (C). The infrared image and the central macular choroidal thickness in enhanced depth

imaging mode (D, E). The infrared image and the central macular retinal thickness in conventional mode (F, G).

FIGURE 2

Examples of di�erent patterns in MRI images. T2 weighted images (A–D). Arterial spin labeling (ASL) images at post-labeling delay (PLD) of 1.5 s (E–H).

Regions of interest derived from the retinal-choroidal complex (A, E); the intraorbital segments of the optic nerve (B, F); the tractus opticus (C, G); the

visual center (D, H); ROIs were all marked by red circles.

optic nerve (F= 10.873, p < 0.001; F= 3.907, p= 0.024), the tractus

opticus (F = 13.617, p < 0.001; F = 3.738, p = 0.028), and the

visual center (F = 11.057, p < 0.001; F = 4.012, p = 0.022) (Table 2).

Subjects with OIS had the lowest BF perfusion values in the visual

pathway at PLD of 1.5 and 2.5 s among the three groups (all p< 0.05).

Subjects with DR were presented with lower BF perfusion values in

the intraorbital segments of the optic nerve, the tractus opticus, and

the visual center at a PLD of 1.5 s (all p < 0.05). Subjects with high

myopic retinopathy were presented with lower BF perfusion values

in the retinal–choroidal complex at a PLD of 2.5 s (all p< 0.05). Most
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TABLE 1 Demographics and ocular characteristics.

Variable Total (n = 91) OIS (n = 30) DR (n = 39) HM (n = 22) p-value

Gender, female/male, n (%) 37(40.7)/54(59.3) 5(16.7)/25(83.3) 16(41.0)/23(59.0) 16(72.7)/6(27.3) < 0.001

Age, years, mean (SD) 61.0 (10.0) 66.6 (8.3) 59.3 (7.8) 56.3 (12.3) < 0.001

OCT

Central macular retinal thickness, µm, mean (SD) 265.90 (122.81) 223.47 (30.12) 309.33 (142.75) 242.50(145.31) 0.009

Central macular choroidal thickness, µm, mean (SD) 211.84 (93.55) 243.41 (61.80) 252.61 (73.53) 94.48 (60.43) < 0.001

FFA

ARCT, seconds, mean (SD) 18.00 (5.51) 19.30 (6.60) 17.61 (4.68) 16.87 (5.12) 0.253

RCT, seconds, mean (SD) 3.87 (4.37) 5.60 (7.18) 3.06 (1.19) 2.89 (0.89) 0.027

Capillary non-perfusion, n (%) 22 (24.2) 2 (6.7) 20 (51.3) 0 (0) < 0.001

Neovascularization, n (%) 24 (26.4) 3(10) 20(51.3) 1(4.5) < 0.001

OIS, ocular ischemic syndrome; DR, diabetic retinopathy; HM, high myopia; OCT, optical coherence tomography; FFA, fundus fluorescein angiography; ARCT, arm-retinal circulation time; RCT,

retinal circulation time; SD, standard deviation.

p-values for comparisons among OIS, DR, and HM.

p <0.05 was considered statistically significant.

TABLE 2 ASL characteristics based on ROI analysis.

Variable Total (n= 91) OIS (n = 30) DR (n = 39) HM (n = 22) p value

ASL: BF (PLD = 1.5 s)

Retinal–choroidal complex, ml/100 g/min, mean (SD) 14.15 (9.17) 10.43 (10.88) 15.52 (8.07) 16.77 (6.99) 0.020

Intraorbital segments of optic nerve, ml/100 g/min,

mean (SD)

14.52 (11.62) 12.29 (9.33) 11.12 (7.73) 23.59 (15.36) < 0.001

Tractus opticus, ml/100 g/min, mean (SD) 14.27 (8.69) 13.87 (7.20) 10.62 (7.13) 21.28 (9.14) < 0.001

Visual center, ml/100 g/min, mean (SD) 16.50 (9.93) 15.68 (9.91) 12.87 (7.72) 24.03 (9.70) < 0.001

ASL: BF (PLD = 2.5 s)

Retinal–choroidal complex, ml/100 g/min, mean (SD) 16.46 (10.66) 12.99 (10.95) 20.29 (11.03) 14.40 (7.22) 0.009

Intraorbital segments of optic nerve, ml/100 g/min,

mean (SD)

17.74 (11.77) 13.15 (9.18) 19.18 (13.09) 21.46 (10.91) 0.024

Tractus opticus, ml/100 g/min, mean (SD) 22.23 (9.52) 19.05 (10.10) 22.48 (9.21) 26.12 (7.97) 0.028

Visual center, ml/100 g/min, mean (SD) 28.40 (8.81) 24.81 (10.15) 29.87 (8.09) 30.67 (6.65) 0.022

ASL, arterial spin labeling; ROI, region of interest; OIS, ocular ischemic syndrome; DR, diabetic retinopathy; HM, high myopia; BF, blood flow; PLD, postlabeling delay; SD, standard deviation.

p-values for comparisons among OIS, DR, and HM.

p <0.05 was considered statistically significant.

of the perfusion values in the visual pathway increased from PLD 1.5 s

to PLD 2.5 s (Figure 3).

Accuracy of ASL in the di�erential diagnosis
of OIS

The accuracy of ASL in the diagnosis of OIS was evaluated

using the ROC curve analysis (Figure 4). The BF values of the

retinal–choroidal complex at a PLD of 1.5 s [AUC:0.669; 95%

confidence interval (CI) 0.55–0.79; p = 0.01] were estimated

by comparison with the ARCT of the gold standard FFA-

based diagnosis of delayed retinal arterial filling. The relative

intraorbital segments of optic nerve BF values at PLDs of 1.5 s

(AUC:0.832; 95%CI 0.74–0.93; p < 0.001), with a cutoff point of

0.79 (sensitivity:76.7%; specificity:85.2%), and the relative retinal–

choroidal complex BF values at PLDs of 2.5 s (AUC:0.805; 95%CI

0.70–0.92; p < 0.001), with a cutoff point of 0.78 (sensitivity:73.3%;

specificity:83.6%), were effective predictors for the differential

diagnosis of OIS.

Concordance between observers in ASL

There was concordance between the two observers, with an

ICC of 0.932 (95% CI 0.897–0.955, p < 0.001) at PLDs of 1.5 s

and 0.974 (95%CI 0.956–0.984, p < 0.001) at PLDs of 2.5 s for

the retinal–choroidal complex. The ICC of the BF values of the

intraorbital segments of optic nerve BF between the two observers

was 0.972 (95%CI 0.956–0.982, p < 0.001) at PLDs of 1.5 s and

0.984 (95%CI 0.974–0.990, p < 0.001) at PLDs of 2.5 s. The

ICC of the BF values of the optic tract and the visual center at

PLDs of 1.5 s and PLD of 2.5 s were all more than 0.984 (all p

< 0.001).
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FIGURE 3

Between-group comparison. Magnetic resonance imaging metrics for each subject are shown as raw data with lines for mean and standard deviation (A,

B, D, E, G, H, J, K). Images showing blood flow perfusion values changed from PLD 1.5–2.5 s (C, F, I, L). BF, blood flow; PLD, post-labeling delay; OIS,

ocular ischemic syndrome; DR, diabetic retinopathy; HM, high myopia.
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FIGURE 4

Receiver operating characteristic curves. The area under curve (AUC) showing the accuracy of the values of blood flow perfusion in the visual pathway,

identified using arterial spin labeling (ASL) for diagnosis of the delayed retinal arterial filling (A, D). The AUC shows the accuracy of the values of blood flow

perfusion in the visual pathway, identified using ASL for diagnosis of OIS (B, C, E, F). BF, blood flow; rBF, relative blood flow; ARCT, arm-retinal circulation

time; OIS, ocular ischemic syndrome.

Safety of ASL and FFA

Of the 91 subjects, two patients felt uncomfortable due to the

claustrophobic space of the MRI, and three patients developed a

mild rash due to the sodium fluorescein contrast agent. The adverse

reaction rates of ASL and FFA were 2.20 and 3.30%, respectively.

There was no significant difference in the safety betweenASL and FFA

(p < 0.001), but ASL was noninvasive and, independent of contrast

media, showed better convenience.

Discussion

In our study, subjects with OIS tended to be older, with a male

predominance, keeping with characteristics described in the literature

(Xiang and Zou, 2020). The characteristics of the disease made

complete matching impossible. Previous studies (Vaghefi et al., 2017)

showed that, in addition to the rate of BF, the volume of the vascular

tissue may be one of the important factors that will influence the

perfusion of the eye in ASL. Central macular retinal and choroidal

thickness measured by EDI-OCT can be the surrogate biomarker of

the vascular tissue, which is known to decrease with increasing age

(Ikuno et al., 2011). Our study showed that subjects withOIS and high

myopic retinopathy showed thinner central macular retinal thickness

compared to subjects with DR, which was consistent with the

characteristics of the disease reported in the earlier literature (Brito

et al., 2015). Another finding was that subjects with HM presented

with the thinnest central macular choroidal thickness compared with

the other two groups, which was in keeping with previous studies

(Fang et al., 2019). The blood supply of the visual pathway is from

the ophthalmic artery, the middle cerebral artery, and the posterior

cerebral artery (Abhinav et al., 2020). A study (Dan et al., 2019)

assessed resting cerebral blood flow changes in patients with retinitis

pigmentosa using a pseudo-continuous ASL and found that altered

cerebral BF may cause trans-synaptic retrograde degeneration of

the visual pathway in patients with retinitis pigmentosa. We also

found some interesting results: The subjects with DR were presented

with lower BF perfusion values in the intraorbital segments of the

optic nerve, the tractus opticus, and the visual center at PLDs of

1.5 s. A previous study (Wong et al., 2020) showed the association

between DR and an increased risk of stroke, which indicated that the

larger cerebrovascular implications are caused by the microvascular

pathology inherent to DR. Therefore, we speculated that the BF

perfusion of the visual pathway in patients with DR was affected by

systemic diseases. The results of the present study also showed that

the subjects with high myopic retinopathy presented with lower BF

perfusion values in the retinal–choroidal complex at PLDs of 2.5 s,

which further confirmed that the volume of the vascular tissue is

another factor that will affect the perfusion of the posterior pole

in ASL. ASL is used to evaluate the tissue perfusion rate. Tissue

perfusion—the exchange of water and nutrients with tissues—occurs

over the entire length of capillaries (Zhu et al., 2022). ASL basically
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“tracks” the water molecules in the blood from the arterial cavity

to the tissue capillary bed and treats the water molecules as a freely

diffusible tracer. ASL can easily occur throughmagnetization reversal

or saturation of blood and water molecules in the blood supply artery

along the Z-axis (Moran et al., 2022). After labeling, the time to

wait for the blood to enter the tissue is called the PLD time or the

reversal time of some specific ASL technology. Select the delay time

so that the image can be obtained, ideally when the water molecules

and tissues are magnetized and exchanged. Arterial blood labeling is

realized through the combination of pulse and gradient to reverse

the longitudinal magnetization of blood-water protons (Iutaka et al.,

2023).

The accuracy of ASL perfusion evaluation is essential to

diagnosing OIS. As the primary cause of OIS, the stenosis or

occlusion of the common or internal carotid arteries is easy to ignore,

and it is a necessary condition for diagnosing OIS (Mendrinos et al.,

2010). The most specific (but not the most sensitive) fluorescein

angiography sign of OIS is prolonged retinal filling time, known

as ARCT, which is present in approximately 60% of patients with

OIS (Terelak-Borys et al., 2012). The most sensitive (but not the

most specific) fluorescein angiography sign of OIS is prolonged RCT,

which is present in 95% of patients with OIS (Brown and Magargal,

1988). The BF values of the retinal–choroidal complex at PLDs of 1.5 s

were estimated by comparison with the ARCT of the gold standard

FFA-based diagnosis of delayed retinal arterial filling in our study.

The result of an AUC of 0.669 was not satisfactory. However, the

results of the rBF value were satisfactory. In previous studies of

cerebral blood flow perfusion, the relative cerebral perfusion value

(Iutaka et al., 2023) was more concerning than the absolute value

(Salisbury et al., 2022). However, a delayed arterial filling time is

not diagnostic for ocular ischemia (Hung and Chang, 2017). In

Vaghefi’s report (Vaghefi et al., 2017), they attempted to quantify the

chorioretinal blood perfusion in patients with a clinical diagnosis of

retinal ischemia using ASL. They speculated that ocular ischemiamay

be due to tissue volume and arterial flow, but only four participants

without blood perfusion of the visual pathway were evaluated in

their study.

The reproducibility of ASL perfusion evaluation is necessary for

clinical application in diagnosing OIS. In our study, the ICC of

the BF values derived from the retinal–choroidal complex and the

intraorbital segments of the optic nerve between the two observers at

PLDs of 1.5 and 2.5 s showed satisfactory concordance. A previous

study (Khanal et al., 2019) demonstrated the high intraday and

interday repeatability in the quantitative ASL-MRI measurements

of retinal–choroidal complex blood perfusion. However, their study

did not evaluate other blood perfusion values in the visual pathway.

When we suspect that the patient has ocular hypoperfusion, we

should combine ASL with FFA to make a comprehensive judgment.

When ASL is applied in the eye, the blood perfusion in the posterior

part of the eye will be measured, and the low perfusion of the visual

pathway can be presented, which will help to understand the factors

affecting the changes in the blood perfusion of the visual pathway

and the changes in the blood perfusion of the eye caused by carotid

artery stenosis.

The safety and convenience of the clinical application of ASL in

the differential diagnosis of OISmay be attractive to ophthalmologists

compared with traditional ophthalmic examinations. However, FFA

is the gold standard for diagnosing retinal vascular diseases. The

limitations of FFA in itself affect the clinical application. In our

study, two patients felt uncomfortable due to the claustrophobic

space of the MRI, and three patients developed a mild rash

due to the sodium fluorescein contrast agent. Although there

was no significant difference in the safety of ASL and FFA, ASL

was noninvasive and showed more advantages, independent of

contrast media.

Conclusion

In conclusion, 3D-pCASL showed the participants with OIS had

lower blood flow perfusion values in the visual pathway, which

presented satisfactory accuracy, reproducibility, and safety. It is a

noninvasive and comprehensive diagnostic tool to assess blood flow

perfusion in a visual pathway for the differential diagnosis of OIS.

Limitations

The limitations of this study are as follows. The spatial resolution

of images is larger than the areas of intraorbital ROIs and the tractus

opticus, which are determined by the size of the study organ. ASL

of white matter, particularly small white matter tracts, has always

been problematic, even when this study used the contralateral side

as an internal reference. However, we attempted to include complete

clinical data for analysis to explore OIS’s noninvasive differential

diagnosis strategy.
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