
fnins-17-1122661 February 7, 2023 Time: 15:28 # 1

TYPE Original Research
PUBLISHED 13 February 2023
DOI 10.3389/fnins.2023.1122661

OPEN ACCESS

EDITED BY

Yang Zhan,
Shenzhen Institutes of Advanced Technology
(CAS), China

REVIEWED BY

Hatim Aboalsamh,
King Saud University, Saudi Arabia
Chun-Shu Wei,
National Yang Ming Chiao Tung University,
Taiwan

*CORRESPONDENCE

Guo Dan
danguo@szu.edu.cn

†These authors have contributed equally to this
work

SPECIALTY SECTION

This article was submitted to
Neuroprosthetics,
a section of the journal
Frontiers in Neuroscience

RECEIVED 13 December 2022
ACCEPTED 26 January 2023
PUBLISHED 13 February 2023

CITATION

Huang G, Zhao Z, Zhang S, Hu Z, Fan J, Fu M,
Chen J, Xiao Y, Wang J and Dan G (2023)
Discrepancy between inter- and intra-subject
variability in EEG-based motor imagery
brain-computer interface: Evidence from
multiple perspectives.
Front. Neurosci. 17:1122661.
doi: 10.3389/fnins.2023.1122661

COPYRIGHT

© 2023 Huang, Zhao, Zhang, Hu, Fan, Fu, Chen,
Xiao, Wang and Dan. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Discrepancy between inter- and
intra-subject variability in
EEG-based motor imagery
brain-computer interface:
Evidence from multiple
perspectives
Gan Huang1,2†, Zhiheng Zhao1,2†, Shaorong Zhang1,2,3,
Zhenxing Hu1,2, Jiaming Fan1,2, Meisong Fu1,2, Jiale Chen1,2,
Yaqiong Xiao4, Jun Wang5 and Guo Dan1,2,4*
1School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong,
China, 2Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging,
Shenzhen, Guangdong, China, 3School of Electronic Information and Automation, Guilin University of
Aerospace Technology, Guilin, China, 4Shenzhen Institute of Neuroscience, Shenzhen, Guangdong, China,
5Shenzhen Qianhai Shekou Free Trade Zone Hospital, Shenzhen, Guangdong, China

Introduction: Inter- and intra-subject variability are caused by the variability of the

psychological and neurophysiological factors over time and across subjects. In the

application of in Brain-Computer Interfaces (BCI), the existence of inter- and intra-

subject variability reduced the generalization ability of machine learning models

seriously, which further limited the use of BCI in real life. Although many transfer

learning methods can compensate for the inter- and intra-subject variability to

some extent, there is still a lack of clear understanding about the change of feature

distribution between the cross-subject and cross-session electroencephalography

(EEG) signal.

Methods: To investigate this issue, an online platform for motor-imagery BCI

decoding has been built in this work. The EEG signal from both the multi-subject

(Exp1) and multi-session (Exp2) experiments has been analyzed from multiple

perspectives.

Results: Firstly we found that with the similar variability of classification results, the

time-frequency response of the EEG signal within-subject in Exp2 is more consistent

than cross-subject results in Exp1. Secondly, the standard deviation of the common

spatial pattern (CSP) feature has a significant difference between Exp1 and Exp2.

Thirdly, for model training, different strategies for the training sample selection

should be applied for the cross-subject and cross-session tasks.

Discussion: All these findings have deepened the understanding of inter- and intra-

subject variability. They can also guide practice for the new transfer learning methods

development in EEG-based BCI. In addition, these results also proved that BCI

inefficiency was not caused by the subject’s unable to generate the event-related

desynchronization/synchronization (ERD/ERS) signal during the motor imagery.

KEYWORDS

brain-computer interface, inter- and intra-subject variability, electroencephalography (EEG),
motor imagery, sensorimotor rhythms (SMR)
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1. Introduction

Inter- and intra-subject variability happened pervasively and
elusively across different subjects and within the same subject over
time for the electroencephalography (EEG) recording (Saha and
Baumert, 2020). The inter-subject variability could be attributed to
the factors of age, gender, and living habits, which would be related to
the brain topographical and electrophysiology (Seghier et al., 2004;
Herzfeld and Shadmehr, 2014; Wu et al., 2014; Seghier and Price,
2018; Antonakakis et al., 2020). The intra-subject variability would
be explained as the changes of psychological and physiological, such
as fatigue, relaxation, and concentration (Smith et al., 2005; Meyer
et al., 2013; Nishimoto et al., 2020; Trinh et al., 2021; Hu et al., 2022).

Inter- and intra-subject variability poses a major challenge
in the field of EEG-based brain-computer interfaces (BCIs) (Ray
et al., 2015; Saha et al., 2017; Lee et al., 2019; Chikara and
Ko, 2020; Wei et al., 2021; Huang et al., 2022). By detecting
the event-related desynchronization/synchronization (ERD/ERS) in
sensorimotor rhythms (SMR), motor imagery-based BCI (MI-BCI)
has been proposed for neuro-rehabilitation applications, ranging
from patients with motor disabilities, severe muscular disorders,
and paralysis to the restoration of limb movements (Wolpaw and
Wolpaw, 2012; Mane et al., 2020). However, a well-trained BCI model
from a certain subject could not be directly applied to the other
subject. Further, previous studies have shown the BCI inefficiency
problem that there would be 10 to 50% of users are unable to
operate the MI-BCI systems (Vidaurre and Blankertz, 2010; Liu et al.,
2020). Even on the same subject, the performance of the BCI system
would degrade over time. The existence of inter- and intra-subject
variability leads to the decline of the generalization of conventional
machine learning, which in turn limits the application of MI-BCI to
practicality (Ahn and Jun, 2015; Saha et al., 2017).

Under the conventional machine learning framework, the
training set and testing set need to be independent and identically
distributed (I.I.D) (Duda and Hart, 2006). However, the inter- and
intra-subject variability make the assumption of the I.I.D condition
no longer tenable. By relaxing the I.I.D assumption’s limitation
requirements, transfer learning is considered an effective way to
improve the model’s reusability and generalization for inter- and
intra-subject variability (Jayaram et al., 2016; Pan, 2020). A series
of methods have been proposed to transfer knowledge from the
source domain to the target domain. Invariant representation aims
to find some invariant learning model across the different sessions
or subjects, such as regularized common spatial pattern (CSP) and
invariant CSP (Blankertz et al., 2007; Cheng et al., 2017; Xu et al.,
2019). With the development of deep learning techniques, domain
adaptation methods have been proposed and almost exclusively
dominated the field of BCI application (Li et al., 2010; Liu et al., 2012;
Samek et al., 2013; Fukunaga, 2013; Dagaev et al., 2017; Azab et al.,
2019; Hong et al., 2021). Some end-to-end advantages and stronger
feature learning ability and has received more and more attention
(Autthasan et al., 2021).

Although the challenge of inter- and intra- subject variability
to the real application has been gradually noticed and transfer
learning can compensate for the performance decrease to a certain
extent, the understanding of the inter- and intra- subject variability
is still limited. Most researchers treated inter- and intra- subject
variability as the similar type of problem (Jayaram et al., 2016). While
both inter- and intra- subject variability would lead to a change in

the feature distribution, their differences are underexplored. Firstly,
how the subject-specific and time-variant ERD/ERS patterns vary
during sensorimotor processing on the signal preprocessing level,
and whether the two types of variations are similar or not. Secondly,
whether the inter- and intra- subject variability would lead to the
covariate shifts in different situations on the feature extraction level?
Finally, to overcome the change in feature distribution, whether
different strategies should be adopted to deal with the inter- and
intra- subject variability for training the machine learning model on
the classification level?

This work aims to further explore the internal influence of the
inter- and intra-subject variability of EEG decoding in the application
of MI-BCI and the difference between them. A real-time MI-BCI
online decoding platform has been built and both multi-subject and
multi-session EEG signals have been recorded on this platform. In the
following, the problem of inter- and intra-subject variability has been
investigated from multiple perspectives. Firstly, compared with the
classification accuracies, we performed the time-frequency analysis
to compare the variability in the cross-subject and cross-session cases
on the signal level. After that, the feature distribution for the covariate
shifts during the cross-subject and cross-session transfer has been
compared on the feature extraction level. Finally, the training sample
selection strategies have been investigated on the classification level
for both the cross-subject and cross-session tasks.

2. Materials and methods

2.1. Participant

This study included ten healthy subjects (aged 20 to 25 years old,
half of whom were females). All subjects reported that they had no
history of neurological or psychiatric disorders. None of the subjects
had a history of neurological or psychiatric disorders. All subjects
gave their written informed consent before the data recording. Ethical
approval of this study was approved by Medical Ethics Committee,
Health Science Center, Shenzhen University (No. PN-202200029).

2.2. Experimental platform

2.2.1. System framework
The framework of the online platform of the BCI system is

shown in Figure 1. The real-time EEG signal is first acquired by
an EEG amplifier (BrainAmp, Brain Products GmbH, Gilching,
Germany). With the BrainAmp SDK, a C++-implemented online
decoding algorithm is used for real-time signal preprocessing, feature
extraction, and classification. After that, the results would be sent
to the virtual reality by Transmission Control Protocol/Internet
Protocol (TCP/IP), in which the virtual character would perform left-
hand or right-hand grasping actions according to the classification
results. The virtual reality is made by Unity software with the C#
implemented. Finally, the avatar’s movements are visual feedback to
the subjects. So far, we have formed a closed-loop platform for online
BCI decoding and rehabilitation training.

2.2.2. Signal preprocessing
The real-time EEG signals were acquired via a multichannel EEG

electrode system (Easycap) and an EEG Amplifier (BrainAmp, Brain
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FIGURE 1

The framework of the online platform of the BCI system.

Products GmbH, Germany) using BrainAmp SDK. The sampling rate
was 5,000 Hz, and the FCz channel was used as a reference. During the
experiment, 20 EEG electrode channels over the motor sensory area
surrounding C3, Cz, and C4 were selected for EEG signal recording,
which were FC5, FC3, FC1, FC2, FC4, FC6, C5, C3, C1, Cz, C2, C4,
C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6 as illustrated in Figure 1. To
ensure the quality of EEG recording, the contact impedance between
EEG electrodes and cortex was required to be lower than 20 k�.

For signal pre-processing, the acquired signal was firstly down-
sampled from 5,000 to 250 Hz, and 50 Hz power frequency
interference was removed by a 4-order Butterworth notch filter. After
that, the MI EEG signal from 8 to 30 Hz was extracted by a 4-order
Butterworth bandpass filter. The time window from 2 to 6 s is selected
for single trial data extraction, the motor imagery task starts in the
2nd second and ends in the 6th second, see Figure 2 for details.

2.2.3. Feature extraction
The CSP algorithm was applied for SMR feature extraction

(Blankertz et al., 2007; Fukunaga, 2013). Firstly, the normalized
spatial covariance matrix was obtained for each trial.

6i =
XT

i Xi

trace
{

XT
i Xi

} (1)

in which Xi ∈ RC×T is the EEG signal of the trial i, C represents
the number of electrode channels, T represents the number of
samples for each channel. After the training runs, the averaged spatial
covariance matrices 6r and 6l can be obtained for left and right
motor imagery trials. The CSP algorithm can be realized by solving
the following generalized eigenvalue problem (Blankertz et al., 2007;
Lotte et al., 2018).

6rw = λ6lw (2)

three pairs of spatial filters w corresponding to the largest and smallest
eigenvalues λ can be obtained. The spatial filters aim to maximize

the variance of one type of EEG signal and simultaneously minimize
another type of EEG signal. After that, six-dimensional features can
be extracted as the logarithmic band power of the spatially filtered
EEG signals, which were used for online classification.

2.2.4. Classification
The classifier Linear discriminant analysis (LDA) (Duda and

Hart, 2006) was used for pattern recognition. Let

S =
2∑
k

∑
x∈Dk

(x− µk)(x− µk)
T (3)

to be the within-class scatter matrix, and (µ1 − µ2)(µ1 − µ2)
T to be

the between-class scatter matrix, in which

µk =
1

Nk

∑
x∈Dk

x (4)

is the mean value of the features for class k, k = 1, 2 for the motor
imagery tasks of the left hand and right hand. LDA aims to maximize
the between-class scatter matrix and minimize the within-class
scatter matrix with the linear discrimination function

g(x) = wTx+ b (5)

in which x represents a single feature vector extracted by CSP,

w = S−1(µ1 − µ2) (6)

and
b = −

1
2
(µ1 + µ2)

TS−1(µ1 − µ2). (7)

2.3. Experimental paradigm

The study included two experiments for MI-BCI, which are
termed Exp1 and Exp2. As is shown in Figure 2, eight subjects took
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FIGURE 2

The experimental paradigm.

participated in Exp1 for only one session for the investigation of
inter-subject variability, and two subjects took participated in Exp2,
which is the same as Exp1. But the two subjects need to come for the
experiment for 10 sessions on different days for the investigation of
intra-subject variability.

In the experiment, the subjects were asked to sit in front of
the screen and complete the corresponding tasks according to
the instructions on the screen. At the beginning and end of the
experiment, a length of 60 s of resting-state EEG was recorded, in
which the subjects were asked to fix their eyes and stare at the cross
in the center of the monitor screen.

As illustrated in Figure 2, a total of 240 trials of motor imagery
trials were randomly arranged in the 8 runs of the BCI experiment,
in which 120 trials were for the left hand and 120 trials were for
the right hand. The subject would have a rest between two runs.
The first four runs were used for training the online BCI system in
the experiment. At the beginning of each trial, a cross appears on
the screen for 2 s. The subjects to prepare the following tasks, there
would be a left or right arrow appearing randomly on the screen.
The subjects need to perform the corresponding left- or right-hand
motor imagery for the following 4 s. With the arrow disappearing, the
subjects would have a rest between two trials. The last four runs were
used for testing the online BCI system. Different from the trials in the
training phase, there were 2 s of visual feedback after the 4 s of motor
imagery in the testing phase. Hence, the subjects can immediately
know whether their motor imagery was correctly recognized by the
online BCI system.

2.4 Signal-level analysis

The recorded EEG signal was firstly segmented from −2–8 s
with a time interval of 0–4 s for motor imagery. Secondly, a wavelet
transform was performed for the time-frequency analysis. Baseline
correction has been performed by subtraction with the reference
interval−2–0 s relative to stimulus onset. By averaging the trials with

left and right hands motor imagery, we can have the time-frequency
response from 8 to 30 Hz on channels C3 and C4 from each subject
and each session.

Suppose Ppre is the mean value of the EEG power from 8 to
30 Hz and the time interval of −2–0 s and the frequency of 8–30 Hz;
Ppost is the mean value of the EEG power from 8 to 30 Hz and the
time interval of 0–4 s and the frequency of 8–30 Hz. The event-
related desynchronization/synchronization index (ERD/ERS index)
(Ma et al., 2022) was calculated on channels C3 and C4 as follows.

ERD/ERS index =
Ppost − Ppre

Ppre
× 100% (8)

2.5. Feature-level analysis

On the feature level, the EEG signal was used to make the CSP
spatial filter and LDA classifier training for each session in Exp1 and
Exp2 and then applied to other sessions. For inter-subject analysis
(Exp1), the EEG signal from each subject was used for training and
testing on all eight subjects. It should be noted that it was also tested
on the subject him/herself, which means the training data and testing
data are the same in this case. By repeating the analysis eight times on
the eight subjects, we could have the 8 8 feature distribution with the
corresponding classification accuracies in Exp1. For the intra-subject
analysis (Exp2), since both two subjects repeated the experiment
10 times, we would have two 10 10 feature distributions with the
corresponding classification accuracies in Exp2.

For data visualization, only the first pair of CSP spatial filters
were used for feature extraction and classifier training. Since
the aim of the study was to explore the difference between the
inter- and intra- subject variability in MI-BCI not to achieve high
accuracies, feature space was limited to two-dimension for easy
investigation. No advanced methods, like Filter Bank Common
Spatial Pattern (FBCSP), with high dimension feature space, have
been applied in this work.
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For statistical analysis, four statistics have been compared
between the feature distribution in Exp1 and Exp2, which are Mean,
Std, Distw and Distb. Consider the:

xi
c = [x

i1
c , xi2

c ] (9)

is the two-dimensional feature of the i-th trial in class c, i = 1, 2, ..., n
and c = 1 or 2 for the class of left and right motor imagery,
n = 120 in this study.
• Mean: the mean value of the two-dimension features from all

trials of the EEG signals within a session.

µ =
1

2n

2∑
c=1

n∑
i=1

xi
c (10)

• Std: the standard deviation of the two-dimension features from
all trials of the EEG signals within a session.

s =

√√√√ 1
2n

2∑
c=1

n∑
i=1

∣∣xi
c − µ

∣∣2 (11)

• Distw: The within-class distance is the mean distance for all trials
to the center of the corresponding class.

Distw =
1

2n

2∑
c=1

n∑
i=1

∣∣∣∣xi
c − µc

∣∣∣∣
2 (12)

• Distb: The between-class distance is the distance between the
center of the two classes.

Distb = ||µ1 − µ2||2 (13)

in which, µc is the mean value of the trials from class c, the
operation of | | returns the absolute value for each element in a vector,
and || ||2 is the 2-norm of a vector. Since the feature dimension is 2
in this work, the statistics µ, s ∈ R2 and Distw,Distb ∈ R. Firstly, the
two-sample t-test was also performed on the four types of statistics

from the diagonal elements between the 8 8 matrix in Exp1 and the
two 10 10 matrices in Exp2. Both are the result of the within-session
self-test. Secondly, the cross-subject result (non-diagonal elements in
the 8 8 matrix in Exp1) were compared with the cross-session result
(the nondiagonal elements in the two 10 10 matrices in Exp2). To
avoid multiple comparison errors, Bonferroni correction has been
applied with the new critical threshold α = 0.05

12 = 4.17× 10−3.

2.6. Classification-level analysis

In this part, based on the different machine learning assumptions,
six types of training dataset selection strategies have been proposed,
and the performances between the cross-subject and cross-session
tasks were compared.

1) Prev: the previous session of the EEG signal was used for
training. Suppose the state of the brain changes slowly. The
signal from the previous session should be the most similar to
the current EEG data. Hence, it would be suitable for training.

2) Next: the next session of the EEG signal was used for training.
Similar to the Prev strategy, the EEG signal from the following
session would also be similar to the current EEG data. While
the Prev strategy is causal and available for online applications,
the Next strategy is noncausal and cannot be applied online. It
should be noted that both the Prev and Next strategies were only
applied to the cross-session tasks.

3) Best: the session with the best self-test accuracies was used
for training. The Best strategy that supposes the data with
the highest self-test accuracy would be to make the optimized
spatial filter and classifier.

4) Worst: the session with the worst self-testing accuracies was
used for training. Different from the Best strategy, the Worst
strategy supposes that more difficulty during the training would
make the spatial filter and classification more powerful for the
cross-subject and cross-session generalization.

FIGURE 3

The recognition accuracies with the number of spatial filters 6 (blue bar) and 2 (red bar) in Exp1 and Exp2.
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5) Closest: the session with the smallest Kullback–Leibler
Divergence (KL Divergence) with the testing set was used
for training. The Closest strategy supposes more similarities
between the training and testing dataset leads to better
classification accuracy.

6) All: all the sessions except the testing session were used for
training. The All strategy supposes a larger sample size from the
training set would lead to better classification accuracy.

3. Results

3.1. Experiment performance

In the online experiment with the paradigm in Figure 2, the first
four runs were used for training, and the last four runs were used
for testing for each session of the experiment. CSP was used for
feature extraction and LDA was used as the classifier. The feature

FIGURE 4

The inter- and intra-subject variability of the time-frequency response during the MI-BCI. The large figures on the left are the averaged time frequency
response cross-subject in Exp1 and cross-session in Exp2. The inter-subject variability in Exp1 is much larger than the intra-subject variability in Exp2.

FIGURE 5

The inter- and intra-subject variability of the event-related desynchronization/synchronization (ERD/ERS) index in Exp1 and Exp2.
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FIGURE 6

The feature distribution and the classification accuracies in the cross-subject in Exp1.

FIGURE 7

The feature distribution and the classification accuracies in the cross-session in (A) Subject 09 and (B) Subject 10 in Exp2.
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TABLE 1 t-test result on the statistical of Mean, Std, Distw, Distb for CSP features.

Task Statistical Exp1
multiple-subject

Exp2
multiple-session

t-value p-value

self-test Mean dim1 −2.29 −2.22 −1.70 0.10

dim2 −2.33 −2.31 −0.29 0.77

Std dim1 0.68 0.55 2.05 0.05

dim2 0.65 0.57 1.37 0.18

Distw 0.57 0.56 0.25 0.80

Distb 1.20 0.81 1.71 0.10

Cross subject/session test Mean dim1 −2.40 −2.55 2.33 0.02

dim2 −2.49 −2.58 1.14 0.26

Std dim1 0.51 0.41 4.45 1.34× 10−5

dim2 0.50 0.42 3.42 7.26× 10−4

Distw 0.54 0.47 2.94 3.60× 10−3

Distb 0.52 0.29 4.89 1.84× 10−6

*Bonferroni correction is applied for multiple comparison errors. The Bonferroni-adjusted alpha was set to be 0.05/12 = 4.17 × 10 −3 . Bold values denote statistical significance at the p < 0.05
level.

dimension, also known as the number of spatial filters, was set to
six for the online experiment. To facilitate the comparison with the
performance of subsequent cross-subject, and cross-session tests, the
feature dimension was reduced from 6 to 2 and the whole online
schema has been run again offline.

In Exp1 in Figure 3, the recognition accuracy was
74.58 ± 17.34% with 6 spatial filters and 76.45 ± 18.72%
with 2 spatial filters. The paired two-sample t-test shows no
significant difference between the two conditions (p = 0.26). Large
inter-subject variability of the BCI performance has been shown, in
which the accuracies on subjects 01, 03, 06, and 07 were higher than
80%, but the accuracies on subjects 04, and 05 were lower than 60%.

In Exp2 in Figure 3, the large intra-subject variability also
happened on both subjects 09 and 10. Both two subjects have several
sessions with accuracies higher than 80% or lower than 60%. For
subject 09, the mean accuracies were 69.33 ± 15.21% with the 6
spatial filters and 72.00 ± 15.23% with the 2 spatial filters. For
subject 10, the mean accuracies were 65.00 ± 18.72% with the 6
spatial filters and 63.75 ± 14.41% with the 2 spatial filters. Similar
to the case in the multi-subject test in Exp1, there is no significant
difference for the different number of spatial filters with p = 0.36
for subject 09 and p = 0.50 for subject 10.

3.2. Signal-level results

At the signal level, Figure 4 shows the time-frequency response
for each session of the EEG signal in both multi-subject experiment
(Exp1) and multi-session experiment (Exp2). The corresponding
ERD/ERS indexes are shown in Figure 5.

At the subject level, the time-frequency response differs greatly
from each other. For subject 01, µ rhythm ERD was observed at both
the contralateral and ipsilateral side and remained 2 or 3 s after the
end of motor imagery. Most of the subjects show clear β rhythm
ERS on the contralateral side after the finishing of motor imagery,
which is clearer on subjects 03 and 05. It is interesting to find that
on the contralateral side of subjects 01 and 04, there is µ rhythm
ERD and β rhythm ERS appear at the same time after the finishing
of motor imagery.

At the session level, the time-frequency response from different
sessions within subjects 09 and 10 keep more consistent from each
other than Exp1. The ERD/ERS index in Figure 5 also shows the
same situation. As compared with the time-frequency response from
different subjects in Exp1, the time-frequency response in different
sessions in Exp2 shares a similar time and frequency scale within the
subject. The ERD during the time of motor imagery from all sessions
on subject 09 is weaker than subject 10 at both the contralateral and
ipsilateral sides.

Compared with the recognition accuracies in Figure 3, in Exp1,
a larger ERD/ERS may not necessarily correspond to a higher
recognition rate, such as subject 04. In Exp2, the consistent time-
frequency response also may not correspond to a similar recognition
rate.

3.3. Feature-level results

In both Exp1 and Exp2, each session of the EEG data was used to
make the spatial filters and classifier and applied to the EEG data from
other subjects in Exp1 and other sessions of the same subject in Exp2.

TABLE 2 The performance of the different strategies in the
cross-subject test in Exp1.

Subject Recognition accuracies (%)

Closest Best Worst All

sub01 80.42 79.33 52.50 82.92

sub02 62.08 69.17 50.00 65.42

sub03 56.25 75.42 60.00 79.17

sub04 49.17 52.50 75.42 48.75

sub05 78.33 73.33 45.83 75.00

sub06 77.92 86.67 50.00 89.58

sub07 93.33 98.33 46.67 86.67

sub08 48.75 48.75 55.42 52.92

Mean 68.28 72.93 54.48 72.55

Bold values denote the maximum accuracy.
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TABLE 3 The performance of the different strategies in the cross-session test in Exp2.

Session Recognition accuracies (sub09/sub10)

Prev Next Closest Best Worst All

ses01 None 87.92/60.42 87.92/48.33 87.92/54.58 72.08/48.33 81.67/59.17

ses02 96.67/60.83 99.17/65.00 95.00/51.67 100.0/38.75 56.67/47.92 99.17/70.83

ses03 70.83/58.33 68.75/86.25 56.67/86.25 70.83/40.00 56.67/39.58 80.00/81.67

ses04 77.08/68.33 68.75/72.50 67.92/51.67 75.42/46.25 68.75/50.42 77.92/61.25

ses05 59.17/49.58 55.42/57.92 55.42/57.92 52.92/50.42 58.75/48.75 58.33/71.25

ses06 58.33/66.67 43.33/67.50 66.67/45.42 70.83/67.50 58.33/45.42 73.33/65.42

ses07 41.67/52.92 52.92/50.00 63.33/50.42 43.33/89.58 47.50/53.75 75.00/72.92

ses08 51.67/65.83 58.75/51.67 63.33/50.00 53.75/65.83 48.33/45.00 78.75/68.33

ses09 68.75/53.75 52.92/46.37 37.08/53.75 42.92/60.00 37.08/46.67 51.25/62.50

ses10 52.08/47.92 None 50.42/47.92 50.00/51.25 50.42/59.58 53.33/54.58

Mean 64.02/58.24 65.32/61.95 64.37/54.33 64.79/56.41 55.45/48.54 72.87/66.79

Bold values denote the maximum accuracy.

Both the feature distributions and the recognition accuracies were
illustrated in Figure 6 for Exp1, and Figure 7 for Exp2. The grayscales
indicate the recognition accuracies. To show the difference in feature
distribution between Exp1 and Exp2, the statistical mean, Std, within-
class distance, and between-class distance were compared. The
diagonal and non-diagonal elements in Figures 6, 7 were compared
separately for the self-test and cross-subject/session test in Table 1.

For the self-test result, as is shown in Table 1, there is no
significant difference for all between multiple-subject and multiple-
session experiments. All these statistics reflect the feature distribution
of the diagonal elements in Figures 6, 7. Except for different subjects,
these diagonal elements are all the results of within-session tests
without any difference.

For the cross-subject and cross-session test, there is no significant
difference in the Mean value between the cross-subject test in Exp1
and the cross-session test in Exp2, but the p-value of 1.34 × 10−5

and 7.26 × 10−4 indicate the difference of the std value on both
two feature dimensions. As compared with the self-test result, the
Std value from both Exp1 and Exp2 was reduced in the cross-
subject/session test. Further exploration indicated that the reduction
of Std mainly contributed to the reduction of Distb. As compared
with the result in the self-test, in the cross-subject/session test the
value Distb decreased from 1.19 to 0.52 for Exp1 and 0.81–0.29 for
Exp2. While the reduction of Distw value was not so great and also
the difference of Distw value between the cross-subject test in Exp1
and the cross-session test in Exp2 was not significant with the p-value
of 3.60 × 10−3, which is higher than the Bonferroni-adjusted alpha
threshold α = 0.05

12 = 4.17× 10−3.

3.4. Classification-level results

In this part, we did not compare the performance between the
different techniques of transfer learning but focused on investigating
the difference between the cross-subject test in Exp1 and the cross-
session test on the classifier level. Hence, the simplest LDA classifier
was applied for ease to understand, and the effect of training set
selection strategies was compared to the difference between the
cross-subject test in Exp1 and the cross-session test in Exp2.

As is shown in Table 2 for the cross-subject test in Exp1, the Best
strategy shows the best recognition accuracies of 72.93% on average,
which is much better than 68.28% from the Closest strategy. The
All strategy also achieves a pretty good performance of 72.55%. The
Worst strategy is the worst.

The situation in the cross-session test in Exp2 would be
different. As is shown in Table 3, the All strategy achieves the
best results on both subjects 09 and 10. The performance of the
strategies Prev, Next, Closest and Best are similar, which was lower
than the All strategy by 4–12%. Again, the Worst strategy is the
worst.

4. Conclusion and discussion

Inter- and intra-subject variability played an important role in
the EEG signal decoding for the BCI application, which is also the
current research frontier. Several methods, especially deep learning
methods, have been proposed to fix inter- and intra-subject variability
for transfer learning. However, most work has noticed the difference
existing in the feature distribution between the training samples and
test samples. But to the best of our knowledge, there has been no
work to investigate the differences between cross-subject and cross-
session tests. In this work, we investigated the problem of inter- and
intra-subject variability at different levels.

Firstly, with the construction of the online experiment
platform, both multi-subject and multi-session experiment has
been conducted. The result shows the large variability of the online
classification in both multi-subject (Exp1) and multi-session (Exp2)
experiments. The result of the large inter-subject variability agrees
with existing studies of BCI inefficiency (Zhang et al., 2020), that
part of the subject is unable to make their brain signals decoded by
the current BCI algorithm. But the larger intra-subject variability
has not been fully investigated in the existing work. Compared with
the high cross-session reliability recognition accuracies from the 93
subjects 2 sessions experiment in the previous work (Liu et al., 2020),
the high intra-subject variability in this work may be attributed to
the subjects’ adaptation process of motor imagery.
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Secondly, the signal level investigation on the inter- and intra-
subject variability shows the high variability of the time-frequency
response among different subjects in Exp1 for both the time-
frequency scale and amplitude of the response. However, the multi-
session result in Exp2 shows the consistency of time-frequency
response among different sessions within the subject. The ERD/ERS
index also indicated the same conclusion. Further, it is found that
the time-frequency response may not be directly related to the
classification accuracies. In the multi-subject test in Exp1, both
the lower ERD/ERS index and the larger difference between the
contralateral and ipsilateral sides are not correlated to the recognition
accuracies. Some subjects could induce large ERD/ERS signals but
still have poor BCI recognition results. This result proved that the BCI
inefficiency, or so-called BCI illiteracy, was not due to the inability
of the subject to regulate their own brain signal during the motor
imagery, but the inability of the current algorithm to decode the EEG
single efficiently.

Thirdly, the feature level and classification level investigation
reveal the different characteristics during the transfer learning
between cross-subject and cross-session tests. With the CSP spatial
filtering, the Std values from both two dimensions are significantly
different between the cross-subject test in Exp1 and the cross-session
test in Exp2, which is mainly caused by the reaction of the between-
class distance Distb in the cross-session test. With the LDA classifier,
it is found that the quality of the training sample with the Best
strategy is important for the cross-subject, which could be attributed
to the larger inter-subject variability. While the situation in the cross-
session test is different, with the consistent time-frequency response
cross-session, the larger sample size in the All strategy would be more
helpful to improve the cross-session recognition accuracies.

4.1. Limitation

In this work, we investigated the cross-session and cross-subject
variability of motor imagery BCI. However, the problem of cross-
run variability has not been discussed. Cross-run variability, as
known as within-session variability, is also key important to the BCI
application. It is found that the cross-run variability would make the
performance of the BCI decoding algorithm decrease. We have tried
an unsupervised adaptation algorithm with a fuzzy C-means method
to catch up with the cross-run variability in our previous study (Liu
et al., 2012). However, the limited sample size of 30 trials each run
(15 trials per class) prevents us from performing the same study
on cross-run variability as we did on cross-session and cross-subject
variability.
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