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A brain-computer interface (BCI) based on the electroencephalograph (EEG) 
signal is a novel technology that provides a direct pathway between human 
brain and outside world. For a traditional subject-dependent BCI system, a 
calibration procedure is required to collect sufficient data to build a subject-
specific adaptation model, which can be  a huge challenge for stroke patients. 
In contrast, subject-independent BCI which can shorten or even eliminate the 
pre-calibration is more time-saving and meets the requirements of new users for 
quick access to the BCI. In this paper, we design a novel fusion neural network 
EEG classification framework that uses a specially designed generative adversarial 
network (GAN), called a filter bank GAN (FBGAN), to acquire high-quality EEG 
data for augmentation and a proposed discriminative feature network for motor 
imagery (MI) task recognition. Specifically, multiple sub-bands of MI EEG are first 
filtered using a filter bank approach, then sparse common spatial pattern (CSP) 
features are extracted from multiple bands of filtered EEG data, which constrains 
the GAN to maintain more spatial features of the EEG signal, and finally we design a 
convolutional recurrent network classification method with discriminative features 
(CRNN-DF) to recognize MI tasks based on the idea of feature enhancement. The 
hybrid neural network proposed in this study achieves an average classification 
accuracy of 72.74 ± 10.44% (mean ± std) in four-class tasks of BCI IV-2a, which is 
4.77% higher than the state-of-the-art subject-independent classification method. 
A promising approach is provided to facilitate the practical application of BCI.
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1. Introduction

Brain-computer interface (BCI) provides an advanced approach that enables users to 
communicate with external devices (Pfurtscheller and Neuper, 2001). BCIs have shown great 
potential in many clinical applications, such as controlling assistive robots (Liu et al., 2019) or 
wheelchairs (Zhang et al., 2016) to help move, drink, and provide stroke rehabilitation, or 
communicating with others by spelling (Neuper et  al., 2006). A variety of physiological 
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information is employed in the BCI systems, and growing attention 
has been paid to the analysis of electroencephalography (EEG) signals, 
especially motor imagery (MI), which is one of the most popular 
paradigms (Pfurtscheller and Neuper, 2001; LaFleur et al., 2013; Kim 
et al., 2015; Hamedi et al., 2016) due to its portable and cost-effective 
acquisition system as well as zero clinical risks.

For the past few years, there have been outstanding outcomes in 
EEG-based classification of MI tasks (Herman et al., 2008; Suk and 
Lee, 2013; Tabar and Halici, 2017; Jiang et al., 2020). However, most 
of the current advanced works concentrate on subject-dependent 
scenario, where data from the same group of subjects is used for 
training and testing (Zhang et al., 2019). Under the circumstances, a 
calibration procedure is indispensable to collect sufficient data to build 
a subject-specific adaptation model employed by a new user, which is 
time-consuming and labor-intensive. And collecting sufficient data for 
adaptation can be a huge challenge for stroke patients. Hence, it is 
imperative to explore the subject-independent scenario for the 
scalability and usability of BCIs. Due to the high variability and 
instability of the EEG signals, data from diverse subjects are different, 
or even at different times on the same session for the same subject. 
This poses a significant challenge for subject-independent researches.

Most of the conventional MI-based BCIs are exploited from subject-
specific approaches, which demand calibration time. One of the most 
widespread approaches in MI-based BCIs, testified by 2003 BCI 
competition (Blanchard and Blankertz, 2004), is known as common 
spatial patterns (CSPs) (Ramoser et al., 2000), which can maximize the 
variance of one class and minimize the variance of the other for the 
binary classes. Based on CSP methods, many advanced algorithms have 
been developed. For example, Lemm et al. (2005) proposed common 
spatio-spectral pattern (CSSP), which is developed from the CSP method 
with embedding time delay to extract robust features. In research (Novi 
et al., 2007), the sub-band common spatial pattern (SBCSP) is proposed 
to avoid a time-consuming fine-tuning process by applying the CSP 
algorithm to different sub-bands decomposing the original EEG signal 
by using a filter bank. Ang et  al. (2008) proposed another multiple 
sub-band input method that is termed the filter bank common spatial 
pattern (FBCSP), which applies a characteristic picking algorithm to 
automatically selected discriminative CSP features of different sub-bands. 
In order to find the optimal filter bank to obtain the discriminative 
features, Suk and Lee (2013) proposed the Bayesian spatio-spectral filter 
optimization (BSSFO) that constructs a data-driven discriminative filter 
bank and bandwidth picking to optimize spatio-spectral filter within a 
Bayesian framework. Although the efficiency of CSP algorithms is well 
known and widely used, CSPs are also considered to be very sensitive to 
noise and prone to overfitting. Improved regularized CSPs have also 
been proposed recently. Lotte and Guan (2010) proposed CSP with 
Tikhonov regularization and weighted Tikhonov regularization and 
demonstrated its advanced performance by comparing them with 
various RCSP algorithms. Miao et al. (2019) proposed a novel RCSP 
method to optimize feature extraction and perform MI-BCI classification 
using the AdaBoost algorithm. A novel regularized common spatial 
pattern (RCSP) method was also utilized in Jin et al. (2019) to extract 
effective features to improve the classification accuracy of the MI task. 
However, these approaches have focused on constructing a pattern 
classifier to decode the brain patterns specific to the subjects and a 
calibration procedure is still required to train the decoder.

In recent years, deep learning techniques have attracted significant 
attention for their success in computer vision, natural language 

processing (LeCun et al., 2010; Schmidhuber, 2015; Voulodimos et al., 
2018; Nassif et al., 2019). Researchers have proposed a few end-to-end 
deep learning frameworks for subject-independent EEG classification 
based on MI. Yang et al. (2018) proposed a framework that combines a 
long short-term memory network (LSTM) with a convolutional neural 
network (CNN) to simultaneously learn spatial information and capture 
temporal dynamics from the raw MI-EEG signals, which was employed 
in subject-independent MI decoders. To further explore the temporal 
correlation of an MI-EEG sequence, a recurrent-attention networks 
combined with CNN is developed to focus on most discriminative 
features in research (Zhang et al., 2019). In research, Kwon et al. (2020) 
proposed a framework for spectral-spatial feature representation based 
on deep CNN, which concatenates and fuses spectral-spatial features of 
discriminative frequency bands by applying spatial fusion technique, 
and validated the effectiveness on a self-built large MI database. These 
proposed methods demonstrate the potential of deep learning 
frameworks for subject-independent EEG classification, but the 
improvement in subject-independent EEG classification performance 
is limited due to shortcomings in discriminative feature extraction or 
dataset size. Due to the powerful feature learning capabilities of deep 
learning, separable features can be effectively obtained by deep learning 
approaches with multi-layer nonlinear information processing (LeCun 
et al., 2010; Deng and Yu, 2014).

However, the performance of deep learning models depends 
heavily on the scale of the dataset (Abdar et al., 2021). For target 
subjects, especially stroke patients, collecting sufficient EEG data for 
adaptive training is a huge challenge. Many researchers have 
conducted studies of cross-subject EEG classification problems using 
EEG expansion data collected from other subjects, which has been 
effective to some extent; however, due to the non-stationary nature of 
the EEG signal, there are significant individual differences caused by 
different physiological characteristics. Therefore, the method of data 
enhancement via EEG from other subjects is limited. On the other 
hand, the EEG signal has a low signal-to-noise ratio and is susceptible 
to interference from noise such as impedance and muscle artifacts. 
When subjects are inattentive during the experiment, they are easily 
involved in a large amount of irrelevant information. Hence, acquiring 
sufficient data for adaptation training and extracting effective 
discriminative features from the low signal-to-noise ratio EEG signal 
are two major issues affecting subject-independent classification.

With an emphasis on data generation, generative models offer 
a potential solution to the problem of data deficiency. In particular, 
GAN has been very successful in computer vision fields, such as 
image translation (Zheng et al., 2021; Yang et al., 2022) and video 
generation (Chen et al., 2020; Liu et al., 2021; Wang et al., 2021), 
etc., due to its excellent artificial image generation capabilities 
(Saxena and Cao, 2021). However, since EEG is a multi-channel 
time series signal and is susceptible to interference, a few studies 
have reported the utilization of GAN for EEG feature or raw data 
enhancement. Luo et  al. (2020) performed enhancement of the 
power spectral density and differential entropy of EEG signals using 
a conditional Wasserstein GAN to aid in emotion recognition. In 
research (Zhang and Liu, 2018), Zhang et al. employed a conditional 
deep convolution GAN following a wavelet transform to augment 
the feature data. In addition to generating EEG features, researchers 
have also attempted to generate unwashed EEG signals for a wider 
purpose. Hartmann et al. (2018) proposed an EEG-GAN to produce 
single-channel EEG signals with very well-examined visuals. Roy 
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et  al. (2020) used long short-term memory networks in the 
generator and discriminator and acquired MI EEG signals which 
have the same characteristics of dynamic and time-frequency as the 
raw signals. These studies confirm the potential of GAN in 
generating MI EEG signals, but few studies have used GAN for 
subject-independent classification due to the high variability and 
individual differences in EEG signals.

In this paper, we  propose a novel hybrid neural network 
framework based on data augmentation and feature enhancement for 
subject-independent EEG classification, which first employs filter 
bank GAN (FBGAN) for data augmentation and obtains high-quality 
data by adversarial training of generators and discriminators. 
Specifically, MI EEG are filtered using a filter bank approach, and then 
sparse CSP features extracted from the multiple sub-bands of filtered 
EEG data are used as part of the discriminator to maintain more 
spatial features. Meanwhile, we propose a convolutional recurrent 
network with discriminative features (CRNN-DF) based on the idea 
of feature enhancement to extract distinguishable features from EEG 
signals with low signal-to-noise ratio to identify MI tasks. 
Furthermore, we have evaluated and analyzed the proposed hybrid 
neural network from different perspectives and the results show that 
it offers a promising approach for the study of cross-subject EEG 
classification problems and for facilitating the practical application of 
BCI systems. The major innovations and contributions of this work 
can be summarized as follows: (1) We applied a filter bank approach 
to extract sparse CSP features from multiple candidate bands. (2) The 
extracted sparse features were used as part of a discriminator in the 
proposed FBGAN to inherit more detailed features from the target 
subjects. (3) We also developed a CRNN-DF classifier based on the 
idea of feature enhancement to better distinguish MI tasks using 
extracted discriminative features. (4) Our hybrid neural network 
framework improves subject-independent EEG classification 
performance to a conspicuous level through data augmentation and 
feature enhancement, which helps improve the usability of the BCI 
system for new users.

The remainder of this paper is organized as follows: Part 2 
discusses the methodology of the study. In Part 3, we describe in detail 
the experiments and results. Details of the experimental analysis are 
discussed in Part 4. Finally, Part 5 concludes this article.

2. Methodology

In practical applications of BCI, good classification results cannot 
be obtained with subject-independent data only, while calibration 
with target subject EEG signals requires too much data and it is 
difficult to extract effective discriminative features from the low 
signal-to-noise ratio and susceptible to interference EEG signal. In this 
context, we  propose a novel fusion feature network, the general 
framework of which is shown in Figure 1. First, a filter bank method 
is used to perform multiple sub-band filtering on the subject-specific 
EEG data, and each sub-band data is processed to obtain CSP features 
and spatial filters. Then, lasso regression is used to extract sparse CSP 
features from the spatial of all frequency bands and acquire the 
corresponding spatial filters. The sparse spatial features and 
corresponding spatial filters are then used as constraints for FBGAN 
for data augmentation. Finally, the augmented data of the target 
subject is introduced into the subject-independent data for adaptive 

training, which is applied to the training set of the proposed 
CRNN-DF.

2.1. Data description

The BCI competition IV dataset 2a (Brunner et al., 2008) from 
Graz University of Technology is applied to verify our approach. The 
dataset contains EEG signals collected from two sessions of 9 healthy 
subjects on different days, recording the subjects performing 4 
different MI tasks: the movements of left hand, right hand, both feet 
and tongue, where each session is comprised 6 runs separated by short 
breaks. One run consists of 48 trials (12 for each of the four classes), 
yielding a total of 288 trials per session. Two seconds after the start of 
a trial，a cue corresponding to one of the four classes appeared and 
stayed on the screen for 1.25 s. The subjects were asked to perform the 
MI task until the prompt message disappeared from the screen at 
t = 6 s. EEG data were captured by 22 electrodes and sampled at 
250 Hz, and then bandpass filtered between 0.5 Hz and 100 Hz. An 
added 50 Hz notch filter is employed to dampen line noise. In this 
paper, we represent the samples from each trial as a 2-D matrix XT

C , 
where C is the number of EEG channels and T  denotes the sampling 
points of the EEG data.

2.2. Preprocessing

In the raw data, “NaN” was replaced with the average of all sample 
points. A fifth-order Butterworth bandpass filter from 1 to 38 Hz was 
applied first to filter out components unrelated to the MI rhythm. The 
z-score standardization was used to reduce the instability and volatility 
of the EEG signal, which can be expressed as

 
′ =

−X X µ

σ 2  
(1)

where X  and ′X  represent the input filtered data and the 
standardized EEG signal, respectively. ∝  and σ 2 denote the mean and 
variance that were calculated by using the training set. Then, the 
normalized EEG signals were divided into 10 frequency bands (as 
shown in Figure 2): 1–4 Hz, 4–8 Hz, 8–12 Hz, 12–16 Hz, 16–20 Hz, 
20–24 Hz, 24–28 Hz, 28–32 Hz, 32–35 Hz and 35–38 Hz. Finally, a 4-s 
slice from the start of the cue for each trial was used as a sample.

2.3. Feature extraction

CSP is a feature extraction method that is widely used in MI’s 
BCI and has achieved great success in binary classification 
problems. It does this by optimizing a set of spatial filters to 
maximize the variance of one class and minimize that of the other. 
Since we are faced with a multi-classification task, we employ a 
modified one-versus-rest (OVR) strategy to overcome the 
drawbacks of traditional spatial filters. OVR refers to transforming 
multiple classification problems into multiple binary problems, 
consisting of one class and the remaining classes. We divide samples 
of the entire task into 10 sub-bands and compute a sample 
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covariance matrix for each of the four bifurcations in each band. 
The average spatial covariance matrix can be calculated as

 

R
N

X X

tr X X
c

c i

N
i c i c

T

i c i c
T

c

=
( )=

∑1
1

, ,

, ,  

(2)

where Rc  denotes the mean spatial covariance matrix of class c, 
Nc is the number of trials of class c, Xi c,  is the i-th trial in class c, and 
tr ( ) is used to compute the trace of a matrix.

According to Ramoser et  al. (2000), we  can compute the 
eigenvector w corresponding to the eigenvalue λ by solving the 
generalized eigenvalue problem R w R wc c= λ , where Rc  is the average 
spatial covariance matrix of the other class. Then, we get a spatial filter 
for the binary categories in each sub-band. Since there are four classes 
for the whole task, four sub-filters are obtained for each sub-band. In 
order to reduce the computational complexity, we remain the four 

columns corresponding to the four largest eigenvalues in each 
sub-filter. Thus, there are a total of 4 sub-filters × 4 eigenvectors.

 W w w wcsp
fr

m= …[ ]1 2 4, , ,  (3)

where Wcspfr  represents the spatial filter obtained from the 
sub-band fr, and m  is the number of eigenvectors retained by the 
sub-filter in each band. The final spatial filter is then obtained by 
stacking the sub-filters in each band, with a total of 10 sub-bands × 
16 eigenvectors.

2.4. Feature selection

By applying CSP to the filtered signal in each sub-band according 
to the OVR strategy, we can derive the following feature set

FIGURE 1

An overview of the hybrid neural network for subject-independent EEG classification.

FIGURE 2

The structural flow of EEG signals processing by the filter bank method. The obtained spatial filters correspond to the sparse CSP features selected by 
LASSO.
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where fi j,  denotes the j -th feature extracted from the filtered 
EEG signals for the i-th trial, and D m= ×4 10 is the dimensionality of 
the feature set. The least absolute shrinkage and selection operator 
(LASSO) is a penalized least squares method that imposes an L1 
penalty on the regression coefficients (Tibshirani, 1996; Zou and 
Hastie, 2005), which can not only accurately select important 
variables, but also have the stability of feature selection. LASSO 
estimation can be formulated as

 
argmin

,β β
β β λ β

0

1

2
1

0

2

1
N

y f
i

N
i i

T

j

D
j

= =
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
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(5)

where yi  denotes the class label of the i-th trial, fi  is the 
D-dimensional feature vector of the i-th trial, λ is a positive 
regularization parameter, β  is a D-dimensional regression 
parameter and is a vector, and β0 is a scalar. The features 
corresponding to a coefficient of 0 in the LASSO are automatically 
discarded. Thus, the most important features are selected from 
multiple frequency bands. We  save the spatial filter Wcsp  
corresponding to the most important features (as shown in 
Figure 2), which can be used as

 Z W Xcsp
T= ′ (6)

where Z  is the sample processed by the sparse spatial filter Wcsp.

2.5. FBGAN

In order to inherit more detailed features from the target subject’s 
EEG signals and prepare sufficient data for adaptive training, 
we propose FBGAN in the hybrid neural network framework. To the 
best of our knowledge, it is the first time that the idea of FBCSP has 
been incorporated into a GAN. Specifically, the MI EEG signals are 
first filtered in multiple sub-bands, then sparse CSP features are 
extracted from multiple bands of filtered EEG data, which are used to 
constrain the GAN to maintain more spatial features of the EEG 
signal. The architecture of FBGAN is shown in Figure 3. Distinct from 
the conventional GAN, it includes a generator and two discriminators, 
and a dedicated discriminator Dψ  is innovatively introduced to 
distinguish the sparse CSP features extracted from the real EEG data 
and fake EEG data.

GAN consists of a generator (G), which learns from random noise 
to generate artificial data, and a discriminator (D), which is used to 
distinguish artificial data from real data. This can be regarded as a 
game between G  and D. When the game reaches equilibrium, G  
generates artificial data with a similar distribution to the real data 
(Goodfellow et al., 2014).

In our framework, the generator is used to generate fake EEG signals 
with similar distribution to the real EEG. A randomly initialized normally 
distributed noise (1 1600× ) to the generator, whose detailed network 

structure is shown in Table 1, with a fully connected layer FC followed by 
5 transposed convolutional layers (ConvTrans ). Batch normalization 
was used to normalize the first four  ConvTrans  layers. The activation 
function is  LeakyReLU .

Inspired by the study (Song et al., 2021), the discriminator part 
was specially designed in order to make the generated data inherit the 
spatial features of the original EEG. The general approach is to 
distinguish the original data from the generated fake data by a 
discriminator Dϕ . In our method, in order to preserve more details of 
the target subjects, we  introduce a sparse spatial filter obtained 
through the feature selection phase to filter the real data and generated 
data, as in Equation (6). Then, the obtained real and fake filter bank 
data (FB data) is fed into another discriminator Dψ . The network 
structure of the discriminator is shown in Table 2, where Conv denotes 
the convolutional layer, FC denotes the fully connected layer, and 
Maxpool  is the maximum pooling layer. Since each target subject’s 
EEG has its own specificity, we use an adaptive approach to extract 
sparse spatial filters using LASSO, rather than extracting a fixed 
number of filters. Thus, kernel size Var in the third convolution layer 
of the Dψ  adaptively varies according to the dimensionality of the 
extracted sparse CSP features.

2.6. Classifier

The EEG samples with the shape C T×  are fed into the 
convolutional module, which conventionally requires a local filter 
to extract local features from a 2-D matrix. Common local filters 
for image and video processing are reasonable and successful, such 
as VGG (Simonyan and Zisserman, 2014), ResNet (He et al., 2016), 
or AlexNet (Krizhevsky et  al., 2017), however, which cannot 
perform well on raw EEG data. Since EEG signals exhibit diverse 
characteristics from image and videos, they possess spatial features 
in one dimension representing the electrode channels and temporal 
dynamic features in another dimension denoting the time series. 
Besides, The EEG signals from different electrode channels reflect 
the functions of different brain regions in the MI task, and there is 
an intimate relationship between different electrode channels 
(Ives-Deliperi and Butler, 2018). Therefore, as shown in Figure 4, 
we apply a convolutional module to extract the spatial features 
between different electrode channels. The unique convolutional 
layer in this module has a convolutional kernel size of C × 45 and 
a step size of 1, which can explore the spatial correlation between 
different electrode channels in the MI tasks. The sample points that 
are fed into it are encoded as a higher-level representation. Then, 
a max-pooling layer, which has a kernel size of 1 75×  and a step size 
of 10, is added to reduce the feature dimensionality and the 
number of parameters. The LSTM module is then employed to 
explore the temporal dynamics of the features between the different 
time points. The module consists of two recurrent layers, where the 
hidden state of each layer is 64. To mitigate overfitting of the 
classifier during training, the dropout of all network layers is set to 
0.5. The detailed structural parameters are shown in Figure  5. 
Finally, the extraction part of discriminative feature is utilized to 
improve the discriminativeness of features from different subjects’ 
EEG data, which is essential for improving the accuracy of the 
classification of subject-independent EEG signals, which is 
described in the next subsection.
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2.7. Extraction of discriminative features

In general, the target function consisting of classification loss is 
used to guide training of models in classification tasks; however, the 
features extracted by models trained in this way are usually separable 
rather than discriminable. CSP maximizes the variance of one 
category while minimizing the variance of other category to obtain the 
most discriminative feature vector, which has achieved great success 
in the two-classification tasks. Inspired by this, we introduce a novel 
discriminative feature approach (Yang et al., 2021) into our model for 
subject-independent EEG data classification, which narrows the intra-
class diversity and expands the inter-class distance to make the 
extracted features more discriminative. The brief steps of the method 
are described as follows.

First, a center vector is computed for the feature vectors of each 
category in a batch of samples, which can be employed to calculate the 
central distance loss Lcen . In the training process, the intra-class 
distance is reduced by narrowing the distance between the feature 

vector of each sample and the corresponding center vector in order to 
centralize the feature distribution of each class.

 
L

b
v cencen

i

b
k

y
k
i

= −
=
∑1
1

2 

i

 
(7)

Where vik  represents the characteristic vector corresponding to 
the i − th sample within the k − th iteration, b represents a batch 
number during training, yi indicates the class tag for the i − th sample, 
and ceny

k
i
 denotes the centroid of class yi within the k − th  iteration, 

which will be initialized with the class center vector of all training 
samples prior to training, and the initialization process is calculated 
as follows:
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FIGURE 3

The framework of FBGAN, including a generator and two discriminator modules. Discriminator Dϕ distinguishes between real EEG and generated EEG, 
and discriminator Dψ  is used to distinguish whether the filter bank (FB) data filtered by the sparse spatial filters is real or fake.

TABLE 1 The detailed network structure of the generator Gθ .

Layers Input Output Kernel Stride Normalization

FC 1,600 256,000 – – –

ConvTrans1 128 128 (3, 15) (1, 3) BatchNorm

ConvTrans2 128 128 (3, 15) (1, 3) BatchNorm

ConvTrans3 128 64 (3, 5) (1, 2) BatchNorm

ConvTrans4 64 32 (4, 5) (2, 1) BatchNorm

ConvTrans5 32 1 (1, 2) (1, 1) –
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Where cen j0 denotes the initialized center vector of the class for 
the label j , B denotes the number of samples in the entire training set, 
vi0 denotes the initial feature vector of the i − th sample, and 

δ y j
if y j
if y ji

i

i
=( ) =

≠
=


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0

1

,

,

 is utilized to identity whether the samples in 

the training set belong to a specific class.
Then, the feature vectors of samples are more discriminative by 

expanding the distance between the center vectors of different classes. The 
process of increasing the distance of the class center vectors is to first 
calculate the center v

C
cenc

k
j
k

j
C=
=∑1

1
 (C is the number of categories), 

and then to enlarge the distance between the center vectors and the center, 
calculated as 
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 (α  is the step size of the move).

Finally, the joint supervised training with central distance loss 
and classification loss is used to guide the optimization of the 
network parameters of the whole framework. The complete 
objective loss function is Loss

b
y y Li i ceni

b
= − +′ ( )=∑1 1

log ·λ , where 

yi  and yi′ denote the true class label and the predicted label 
corresponding to the i − th sample in a batch, respectively, and λ 
represents the proportion of central distance loss within the entire 
loss function.

3. Experiments and results

3.1. Experiment settings

In Brunner et al. (2008), 288 trials from the first session of the 
same subject are utilized as the training set and 288 trials from the 
second session are applied for testing. However, for the cross-subject 
scene, we  apply the leave-one-subject-out (LOSO) approach for 

subject-independent classification of EEG signals, which employs data 
from eight subjects for training and those from the remaining one 
subject for evaluation.

For BCI competition IV dataset 2a, the method randomly shuffles 
the EEG data of 4,608 trials (8 subjects × 2 sessions × 288 trials) of 8 
subjects as the training set, and 576 trials from the remaining 1 subject 
as the test set to evaluate the classifier performance, and then 
we introduce generated fake samples to expand the training dataset to 
validate the proposed hybrid neural network framework validity, in 
which we take the 22 channels × 1,000 time points of each trial as a 
sample. Samples from the same subject do not appear in both the 
training set and test sets at the same time.

The entire neural network structure was implemented by the 
Tensorflow  framework on the Quadro GTX 5000 platform. In 
FBGAN, an Adam optimizer with a learning rate of 0.0001 was 
used. The network parameters were updated after a batch size of 5. 
In classifier, the learning rate and batch size are fixed at 0.0001 and 
32, respectively. In addition, the stride of the centric vector transfer 
for each epoch is 0.02, the central vector is updated every 15 
epochs, and the hyperparameter λ of the centric loss in the overall 
target function is selected experimentally. As shown in Figure 6, 
when λ is 0, the classifier is equivalent to CRNN without the 
introduction of discriminative features strategy. And when λ is 
slightly larger and the value is 0.01, the classification accuracy has 
a significant improvement. It can be seen in the figure that the 
recognition rate of the MI EEG tasks is the highest when λ is 
determined to be 0.1.

3.2. Evaluation of the generated data

In order to evaluate the effectiveness of FBGAN for data 
enhancement, we compared generated signals with original signals 
of the target subject in terms of time, frequency and spatial 

TABLE 2 The detailed network structure of the discriminator Dϕ and Dψ .

Discriminator Layers Input Output Kernel Stride Activation layer

DÆ

Conv1 1 10 (1, 23) (1, 1) LeakyReLU

Conv2 10 30 (22, 1) (1, 1) LeakyReLU

Conv3 30 30 (1, 17) (1, 1) LeakyReLU

Maxpool – – (1, 6) (1, 6) –

Conv4 30 30 (1, 7) (1, 7) LeakyReLU

Maxpool – – (1, 6) (1, 6) –

FC 750 1 – – –

DÈ

Conv1 1 10 (1, 23) (1, 1) LeakyReLU

Conv2 10 30 (4, 1) (4, 1) LeakyReLU

Conv3 30 30 (Var , 1) (1, 1) LeakyReLU

Conv4 30 30 (1, 17) (1, 1) LeakyReLU

Maxpool – – (1, 6) (1, 6) –

Conv5 30 30 (1, 7) (1, 1) LeakyReLU

Maxpool – – (1, 6) (1, 6) –

FC 750 1 – – –
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domain. As the FBGAN model was parallel for each class of each 
subject, the training simples and generated simples for subject 9 
imagining left-handed movements were averaged separated 
for visualization.

Firstly, the three main channels C3, Cz, and C4 of the MI region 
were chosen to compare the original signals and generated signals in 
the time domain (Pfurtscheller et al., 2006). As shown in Figure 7A, 
we represent the original data in lime and the generated data in steel 
blue on the same axis. It can be seen that the generated signals are 
similar to the real signals in time distribution, and the average and 
range are quite close.

Secondly, the 22 channels of real and fake samples signals are 
average to show the power spectrum density by drawing the 
spectrograms. Figure 7B plots the spectrogram with 1–38 Hz as the 
pre-processing. It can be noticed that generated data displays higher 
power where the original data power is higher, especially in the range 
1–30 Hz. Since the filtered sub-bands are selected by LASSO during 

the pre-processing stage, the selected feature band will be paid special 
attention to the generated model.

Thirdly, the heat map is employed to observe the details of 
generated data in terms of spatial distribution and to assess quality. 
The normalized covariance matrix of the original and generated data 
is plotted in the heat map, as shown in Figure 7C As the covariance 
matrix reflects the relationship between the data rows, it can be seen 
from the heat map that the relationship between adjacent electrode 
channels is well retained, which indicates that generated signals are 
spatially consistent with original signals.

3.3. Classification performance

To verify the effectiveness of the proposed subject-independent 
classification method CRNN-DF, we  conducted a number of 
experiments on the BCI competition IV 2a dataset and compared them 

FIGURE 5

The detailed network architecture of the proposed framework for the classification of subject-independent EEG data.

FIGURE 4

An overview of the CRNN-DF for subject-independent EEG classification.
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in detail with other advanced methods based on the same dataset, 
respectively. There are significant individual discrepancies in the EEG 
signals of different subjects due to their unique physiological structure 

and psychological state. To adequately validate our method, we trained 
a model for each subject with LOSO approach to ensure that dataset 
used for training and testing were from different subjects, respectively.

FIGURE 6

The classification accuracy of cross-subject MI EEG with different values of hyperparameter λ.

FIGURE 7

(A) Comparison of the C3, Cz, and C4 channels of the original signals and generated signals in the time domain. The original signals are marked by 
lime and the generated signals are marked by steel blue. (B) Comparison of the spectrograms of the original signals and generated signals after the 22 
channels data have been averaged. The vertical axis indicates the frequency in Hz, and colorbar is in dB. (C) Heat map which compares the covariance 
matrix of the raw real data and the generated data illustrates the correlation between the electrode channels. Each small block denotes the covariance 
between the two electrodes.
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Table  3 presents subject-independent MI EEG decoding 
accuracies and their average accuracies from subject A1 to subject A9. 
In this table, we compared with competitive approaches on the BCI 
competition IV 2a dataset, including EEGNet (Lawhern et al., 2018), 
CTCNN (Schirrmeister et al., 2017), AE XGboost (Zhang et al., 2017), 
FBCSP (Ang et al., 2008), and CRAM (Zhang et al., 2019). From the 
table, we can observe that our classifier has higher average accuracy 
than the comparative approaches when tested on all subjects 
separately. Furthermore, the proposed method achieved the maximum 
average precision on the 2a dataset.

3.4. Comparison of feature distributions

To further demonstrate the validity of the classification method at 
the subject-independent EEG feature level, we output feature vectors 
of typical subjects in 2a dataset. All these vectors are then converted 
to the two-dimensional plane via TSNE (van der Maaten and Hinton, 

2008). As can be  seen in Figures  8, 9, the sample features of the 
subjects are distributed chaotically in the feature space before the 
processing with the discriminative feature method, and the feature 
vectors of the different MI tasks are not sufficiently distinguishable. 
The comparison indicates that our method allows the similar sample 
features from different subjects to converge to the same area of the 
characteristic space, and the sample characteristic from diverse 
categories to become sufficiently discriminative in the feature space, 
which can help us achieve higher classification accuracy.

3.5. Data augmentation for 
subject-independent classification

After confirming the effectiveness of the designed subject-
independent classifier CRNN-DF, we  tried to introduce fake data 
generated for the target subjects in the training set to better help the 
classifier perceive subject-specific features and separate the four MI 

TABLE 3 Comparison of the subject-independent EEG decoding accuracy (%) with the present advanced classification approaches on the BCI 
competition IV 2a dataset and A1–A9 denotes nine different subjects.

Comparision 
method

Test subject (the remaining subjects used as training) Mean Std

A1 A2 A3 A4 A5 A6 A7 A8 A9

EEGNet 53.76 39.54 54.88 43.02 51.80 48.96 60.70 61.38 47.82 51.32 6.94

CTCNN 55.90 26.04 70.66 45.49 33.16 35.42 40.97 61.29 60.07 47.67 14.20

AE XGboost 32.12 32.34 32.29 32.99 33.85 32.47 39.06 30.90 32.64 33.18 2.20

FBCSP 47.92 24.83 39.24 39.93 27.26 31.60 27.08 46.70 36.68 35.69 8.04

CRAM 61.02 42.35 73.11 50.43 50.74 51.48 67.26 69.72 66.85 59.22 10.13

CRNN-DF 65.51 45.18 78.62 53.58 55.64 56.03 71.28 75.02 70.78 63.52 10.70

FIGURE 8

The separative features of typical subjects from the BCI competition IV 2a dataset that are acquired by the proposed convolutional recurrent networks 
framework, mapped to the two-dimensional plane via TSNE.
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categories. The classification results after introducing different numbers 
of fake data for augmentation are shown in Table 4. Since there are four 
categories in the MI task, the number of samples in each one is one-fourth 
of the total number of samples introduced. It can be seen from the table 
that when only 500 generated fake samples are introduced, the average 
classification accuracy is greatly improved. As the number of fake samples 
increases, the accuracy rate has improved to varying degrees. However, 
for subjects A4 and A8, the accuracy at the introduction of 3,000 samples 
was lower than that at the introduction of 2000 samples, which may 
be due to the addition of other irrelevant information along with the 
target subject features when introducing the generated fake samples. 
Excessive augmented samples may cause the noise to dispel the effect of 
the valid information. Therefore, for each target subject, we introduced 
3,000 generated fake samples, that is, 750 samples per category in 
our framework.

Figure 10 presents the comparison of our proposed hybrid neural 
network framework with the current state-of-the-art subject-independent 
classification approach. It can be seen from the table that our proposed 
framework obtains the best classification accuracy. As shown in Table 3, 

the CRNN-DF classification method designed in this paper obtained 
satisfactory recognition results with LOSO strategy and without the 
introduction of augmented data. Then, we further introduced 3,000 fake 
samples for target subjects, which led to a huge improvement in the results 
of the four MI classification tasks. It is due to the combination of OVR and 
CSP in the pre-processing stage of the hybrid framework, which 
maximized the variance of one class while minimizing the variance of the 
other, expanding the difference between one and other categories. In 
addition, the introduction of augmented data from target subjects and the 
discriminative feature strategy employed in the classification phase played 
an important role in improving the distinguishability of the 
different classes.

4. Discussion

The brain patterns of different subjects performing the same MI tasks 
usually have individual differences, and these differences always interfere 
with the subject-independent MI EEG decoding process, which has long 

FIGURE 9

The discriminative features of typical subjects from the BCI competition IV 2a dataset that are acquired by the proposed CRNN-DF, mapped to the 
two-dimensional plane via TSNE.

TABLE 4 The classification accuracy (%) from subject A1 to subject A9 for different numbers of augmentation samples, where Naug  denotes the number 
of fake samples introduced in the training set and A1–A9 denotes nine different subjects.

Naug
A1 A2 A3 A4 A5 A6 A7 A8 A9 Mean Std

0 65.51 45.18 78.62 53.58 55.64 56.03 71.28 75.02 70.78 63.52 10.70

500 74.01 48.78 80.97 60.51 64.40 57.56 74.45 80.07 76.04 68.53 10.55

1,000 77.32 48.69 81.55 61.64 66.69 58.00 77.10 80.12 78.01 69.90 10.97

2000 77.95 50.37 81.94 63.74 67.35 57.03 79.30 83.88 80.24 71.31 11.42

3,000 79.60 54.25 83.84 60.93 70.54 62.18 79.94 82.01 81.36 72.82 10.44

4,000 79.60 51.94 85.87 65.24 68.34 61.31 78.39 83.48 81.17 72.82 10.94
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restricted the application of EEG-based BCI. In this study, we proposed a 
subject-independent hybrid neural network framework to solve the cross-
subject classification problem for MI tasks. To overcome the effects of 
large individual differences, low signal-to-noise ratio, and difficulty in 
collection in EEG data, we designed FBGAN to generate EEG samples for 
data augmentation, and designed CRNN-DF to extract effective 
discriminative features based on the idea of feature augmentation.

In the article, the BCI Competition dataset 2a was employed to 
evaluate the method performance. As shown in Table 3, the CRNN-DF 
achieved advanced classification performance with LOSO strategy for 
each subject and obtained the highest average classification accuracy. 
This is because the use of the discriminative feature strategy makes the 
features vectors of the same category sample more compact in the 
feature space and ones of samples of different classes more dispersive as 
shown in Figures 8, 9, which improved the resolution of brain patterns 
across MI tasks and improved generalization to different subject’ brain 
patterns. To enable the classifier to better perceive subject-specific 
features, we introduced fake EEG samples of target subjects generated 
by FBGAN into the training set. As can be seen in Table 4, the average 
classification accuracy was greatly improved after 500 generated fake 
samples were introduced. As the number of introduced fake samples 
increased, the performance of the classifier improved to varying degrees. 
We also compared FBGAN with some other powerful augmentation 
methods, such as adding Gaussian Noise, Segmentation and 
Recombination (S&R) (Fan et  al., 2020), Variational Auto-Encoder 
(VAE) (Bao et al., 2021), Deep Convolutional GAN (DCGAN) (Xu 
et al., 2022), and Common Spatial GAN (CSGAN) (Song et al., 2021), 
as shown in Figure  10. The superiority of the proposed method is 
further demonstrated by the ablation experiments of discriminative 
feature strategy and FBGAN in hybrid neural networks. Furthermore, 
as shown in Figure 7, we have analyzed and compared the details of the 
data generated by FBGAN with the original data in three dimensions: 
time domain, frequency domain, and spatial domain, which confirms 
that the generated signals are indeed of sufficient quality.

However, our method still has some limitations. Firstly, as can 
be seen from Table 3, although the decoding accuracy of our method is 
the highest on BCI Competition IV dataset 2a, the standard deviation 

is also relatively large and the stability is not yet good enough. The main 
reason is that EEG signals vary greatly from subject to subject. Although 
our method is able to overcome the differences in brain patterns 
between subjects to some extent, it is not yet well adapted to subjects 
with large variability. But this problem was alleviated after introducing 
more generated data from the target subjects due to the enhanced 
adaptability of the target subjects. Secondly, the introduction of 
augmented data did significantly improve the classification results for 
cross-subject MI tasks, but in fact, it can be seen from Table 4 that the 
quality of the signals generated by FBGAN was not always perfect. For 
example, the classification results for subject A4 introducing 3,000 
samples were worse than those introducing 2000 samples, which is due 
to the fact that the input noise is high and somewhat random, and the 
generated signals has certain fluctuations. The balance between the 
amount of input noise and the diversity of the generated data deserves 
more research. Thirdly, as the FBGAN model is parallel to each category 
of each subject, which increases the computational cost.

5. Conclusion

In this paper, we  present a novel hybrid neural network for 
subject-independent EEG signal classification. The framework uses a 
specially designed FBGAN to obtain high-quality EEG data for 
augmentation. Based on the idea of feature enhancement, the 
CRNN-DF is designed to recognize MI tasks, which introduces a 
discriminative feature strategy to expand the inter-class feature 
differences and narrow the intra-class feature distances. This improves 
the recognition rate of different subject brain patterns by enhancing 
the distinguishability between different classes of samples. The 
experimental results indicated that our method significantly 
outperforms previous subject-independent methods and can 
overcome the differences in brain patterns across subjects to some 
extent. In conclusion, the approach is expected to pave the way for the 
practical implementation of subject-independent BCI systems, 
alleviating the mutual interference between different subject brain 
patterns and improving the accuracy of the EEG decoding process.

FIGURE 10

The average classification accuracy of subject A1 to subject A9 compared to advanced augmentation methods, where CRNN-DF is the proposed 
classifier and no augmented data were used.
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