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Objectives: The shoulder-hand syndrome (SHS) severely impedes the function
recovery process of patients after stroke. It is incapable to identify the factors at
high risk for its occurrence, and there is no effective treatment. This study intends
to apply the random forest (RF) algorithm in ensemble learning to establish a
predictive model for the occurrence of SHS after stroke, aiming to identify high-
risk SHS in the first-stroke onset population and discuss possible therapeutic
methods.

Methods: We retrospectively studied all the first-onset stroke patients with one-
side hemiplegia, then 36 patients that met the criteria were included. The patients’
data concerning a wide spectrum of demographic, clinical, and laboratory data
were analyzed. RF algorithms were built to predict the SHS occurrence, and the
model’s reliability was measured with a confusion matrix and the area under the
receiver operating curves (ROC).

Results: A binary classification model was trained based on 25 handpicked
features. The area under the ROC curve of the prediction model was 0.8 and the
out-of-bag accuracy rate was 72.73%. The confusion matrix indicated a sensitivity
of 0.8 and a specificity of 0.5, respectively. And the feature importance scored the
weights (top 3 from large to small) in the classification were D-dimer, C-reactive
protein, and hemoglobin.

Conclusion: A reliable predictive model can be established based on post-stroke
patients’ demographic, clinical, and laboratory data. Combining the results of
RF and traditional statistical methods, our model found that D-dimer, CRP, and
hemoglobin affected the occurrence of the SHS after stroke in a relatively small
sample of data with tightly controlled inclusion criteria.

ensemble learning, random forest, shoulder-hand syndrome, stroke rehabilitation,
predictive model
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Introduction

Complex regional pain syndrome (CRPS) (Harden et al,
2007) are neuropathic pain disorders that generally affect the
extremities and can occur after myocardial infarction, cervical
spondylosis, craniocerebral trauma, and cerebrovascular disease
(Shaparin et al., 2014). CRPS of the paralyzed upper limb after
stroke is frequently called shoulder-hand syndrome (SHS), also
known as reflex sympathetic dystrophy (RSD), and classified as
CRPS type I by the International Association for the Study of Pain.

The etiology of SHS is still unclear (Bussa et al., 2015), and
the prevalence varies greatly. Researchers in Korea reported the
incidence rate ranged from 2 to 50% (Kim et al, 2020), and
the Chinese reported from 12.5 to 74.1% (Zhong and Tang,
2009). SHS usually occurs 1—6 months after a cerebrovascular
accident, which happens to be the period with the highest
potential for rehabilitation (Kumar et al,, 2009) and usually has
a significant impact on the patients life quality and functional
recovery. The paralyzed upper limbs frequently appeared painful,
and edematous. The symptoms usually started from the hands,
then often spread to the fingers and palms, and in severe cases
to the lower forearms. Sensory disturbances including burning,
stiffness, sweating, cold, or fever occurred along with the nerve
distribution and the areas of injury. The pain usually increased
with hand joint movements (especially passive movement). If not
treated and controlled in time, long-term immobilization and
relative hypoxia of tissues would cause atrophy of interosseous
muscles and lumbricals, contracture of hand joints, especially
metacarpophalangeal capsules, together with fibrosis of exudates
causing adhesions, thickening of synovial bursae, and changes
of corresponding joint bones, result in irreversible disability
(Forouzanfar et al., 2002; Pertoldi and Di Benedetto, 2005; Hartwig
et al., 2012; Pervane Vural et al., 2016).

The diagnosis of CRPS is often difficult due to the lack
of confirmatory tests, and SHS’s diagnosis is not specific and
more complex than in other pathological situations. SHS is now
generally believed to be associated with incorrect movement
patterns in the early stages of stroke patients resulting in shoulder
and wrist injuries, impaired upper extremity fluid return, and
vasomotor dysfunction following central nervous system injury
(Lee et al, 2021). Stroke patients usually have arms hanging
to their side for long periods in the recumbent and seated
positions. The wrist joint is flexed, the shoulder girdle is retracted
and sunken, and the forearm is internally rotated. The flexion
and compression of the wrist joint can block a venous return
to the upper extremity, resulting in swelling of the wrist and
forearm (especially in the fingers and wrist) (Geurts et al., 2000).
It is internationally recognized that the increased sympathetic
excitability and decreased muscle strength of the affected limb
after central nervous system injury cause the muscles to lose their
“muscle pump” effect, while the obstruction of a venous return due
to motor dysfunction leads to edema and pain in the hemiplegic
upper limb (Zorowitz et al, 1996). Currently, no guidelines
for the prevention of SHS have been established. Treatments
include non-pharmacological therapy, pharmacological therapy,
regional anesthesia, neuromodulation, sympathectomy, auxiliary
compression facilities (Lin et al., 2020), also rehabilitation exercises.
Currently, there is no single treatment to be universally effective.
Since it was first introduced 70 years ago, it still is challenging

Frontiers in Neuroscience

10.3389/fnins.2023.1124329

work to make early detection of SHS. Our work aims to establish
a predictive model of SHS by machine learning algorithm based on
patient clinical information to highlight the risk factors, make early
diagnoses, and detect potential intervention targets.

Random forest (RF) is an ensemble learning algorithm
to predict a binary outcome (classifier) or a numerical value
(regressor). It utilized bootstrap aggregating of both sample and
feature bagging to create an uncorrelated forest of decision trees.
The method is useful when the samples are relatively small
(Breiman, 1996, 2001; Deo, 2015). In RF classification, many
classification and regression trees (CARTs) are generated with
bootstrap’s resampling technique repeatedly and randomly select m
samples from the original training sample set of N (m < N).

In the process of generating a tree, feature selection is needed
for splitting. The splitting principle is to improve the purity as
much as possible, which can be measured by indicators such as
information gain, gain rate, and Gini index. The bootstrap method
is also applied for randomly selected parts of the features to find the
one that makes the smallest Gini index, and the optimal solution
is found among the selected features and applied to the nodes for
splitting (Breiman, 2001; Kuhn and Johnson, 2013; Bzdok et al.,
2018; Vabalas et al., 2019).

Random forest makes it easy to evaluate variable importance, or
contribution, to the model. There are a few ways to evaluate feature
importance. Gini importance and mean decrease in impurity
(MDI) are usually used to measure how much the model’s accuracy
decreases when a given variable is excluded. However, permutation
importance, also known as mean decrease accuracy (MDA), is
another important measure. MDA identifies the average decrease
in accuracy by randomly permutating the feature values in out-of-
bag samples (Breiman, 2001; Kuhn and Johnson, 2013; Bzdok et al.,
2018; Vabalas et al., 2019). These methods allow us to measure the
role of each feature in the classification and thus the importance of
the occurrence of the disease.

This study intends to initially explore the application of RF to
establish a predictive model and measure the importance of each
variation in classification.

Materials and methods

Patient selection

This study included all adult patients (aged 18 years and
older) who were hospitalized at the rehabilitation department
during December 2020 and June 2021 in Shanghai Fourth
Rehabilitation Hospital.

We included first-onset stroke patients with unilateral
hemiparesis, who were admitted to our rehabilitation department
within 1 month after stabilization of neurological symptoms.
Exclusion criteria: subjects with more than one stroke episode,
patients with a history of surgery on the affected upper limb,
combined traumatic brain injury, spinal cord injury, acute
myocardial infarction, heart failure, history of tumor, and subjects
with severe liver and kidney dysfunction, Subjects with combined
immune system disorders, hematologic disorders, subject with
fever and pulmonary infections at the time of admission (see
Figure 1).
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FIGURE 1
The flow chart of the experiment protocol.

Since this study was a predictive model establishment, the
laboratory data were collected before the occurrence of the SHS.
The site of the stroke was clarified by brain computed tomography
or magnetic resonance imaging in all cases. All patients received
standardized functional rehabilitation training after admission.

Ethics approval

This study was approved by the Institutional Review Board of
Shanghai Fourth Rehabilitation Hospital with a waiver of informed
consent due to the retrospective nature of the study. The data
of this study are available from the corresponding author upon
reasonable request.

Assessed variables and feature selection

Patients’ demographic, clinical, and laboratory data were
used as possible variables as well as the history of the
patients comorbidities. Demographic data included patients’
age and sex and laboratory findings consisted of routine
examination of blood and biochemistry (Hemoglobin, white
blood cell count, platelet count, C-reactive protein, 25-OH
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vitamin D, D-dimer, creatinine, B-type brain natriuretic peptide,
urine microalbumin, homocysteine). Clinical variables included
stroke type (infarction, hemorrhage, infarction combined with
hemorrhage) and lesion location (cerebral cortex, cerebellum,
thalamus, basal ganglia, brainstem).

Post-operative function assessments were not assessed in
this study, Due to differences in scale selection and quality
control across patients. The outcome was assessed with a follow-
up of 6 months of rehabilitation employing the Budapest
criteria (Table 1)-the mainstream diagnostic tool for CRPS
(Pergolizzi et al., 2018).

Data analysis

Data analysis was performed in python version 3.2.8., using the
NumPy, Pandas, scikit-learn, scipy, and matplotlib modules.

Data were summarized by the sample mean and standard
deviation (SD) for a continuous variable and by the count for a
categorical variable. Demographic characteristics, comorbidities,
and laboratory data were compared between two groups using two
independent-sample t-tests for continuous variables and Fisher’s
exact tests for categorical variables. Statistically, the significant
difference was denoted by a P-value of less than 0.05, whereas
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TABLE 1 The Budapest criteria: In order to make a clinical diagnosis of CRPS, the following four criteria must be met (Pergolizzi et al., 2018).

Criteria

Categories

Sensory

any inciting event

1 Continuing pain, disproportionate to -

Vasomotor Sudomotor/edema Motor/trophic

2 Symptoms: must report at least one Hyperesthesia; Allodynia
symptom in three of the four

categories shown to the right

Temperature asymmetry;
changes in skin color;

skin color asymmetry

Edema; sweating changes; Decreased range of motion;

sweating asymmetry motor dysfunction; trophic

changes (hair, nails, skin)

3 Signs: at the time of evaluation, must Hyperalgesia (pinprick);
Allodynia (light touch or

temperature); deep somatic

have at least one sign in two or more
of the categories shown to the right

pressure; joint movement

changes in skin color;
skin color asymmetry

Skin temperature Edema; sweating changes; Decreased range of motion;

asymmetry (>1°C); sweating asymmetry motor dysfunction (weakness,
tremor, dystonia); trophic

changes (hair, nails, sin)

4 No other diagnosis can better explain -
the patient’s signs and symptoms

practical significance was represented by effect sizes. Cohen’s d was
used to measure effect sizes. In general, a d of 0.2 or smaller is
considered to be a small effect size, a d of around 0.5 is considered
to be a medium effect size, and a d of 0.8 or larger is considered to
be a large effect size.

Data pre-processing

Empty data were replaced, and the missing value was filled
in with the mean to complete the information of all cases.
Variables were classified into numeric and categorical variables
according to their type.

The categorical variables were:

Gender (male 1, female 2); whether lacunar infarction (yes
1, no 0); brain (lesion involved 1, not involved 0), cerebellum
(lesion involved 1, not involved 0), thalamus (lesion involved 1, not
involved 0), basal ganglia (lesion involved 1, not involved 0), brain
stem (lesion involved 1, not involved 0), stroke type (infarction
1, hemorrhage 2); hemiplegic limbs (left side 1, right side 2);
hypertension (d 1, not combined 0), atrial fibrillation (combined
1, not combined 0), diabetes (combined 1, not combined 0).

Numerical variables were: age, white blood cell count,
hemoglobin, platelet count, C-reactive protein (CRP), B-type brain
natriuretic peptide, D-dimer, 25-OH vitamin D (25-OHD), D
dimer Body, creatinine, homocysteine, urine microalbumin.

Use one-hot encoding to convert categorical variables into
numeric variables. Perform normalization (scaling) processing for
numerical variables. The label prediction was set to 0 (SHS does not
occur) and 1 (SHS occurs).

Random forest algorithm establishment

To predict the occurrence of SHS with imbalanced data
recorded (more patients with SHS than without SHS), a classified
RF algorithm was trained. Training data were gathered by repeated
subsampling (bootstrapping) for inclusion in each tree. Data
excluded from the bootstrap subsample (approximately 30% for
each tree) were called out-of-bag (OOB). These data were further
aggregated into the OOB sample. The number of included decision
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trees was optimized to achieve the lowest possible error rate, which
prevented the over-fitting of the trained model.

Variables were selected using the nested cross-validation and
Gini index criterion (a measurement of node purity, the smaller the
Gini index, the purer the node, and the more likely the split will
take place). The number of trees was selected to minimize the OOB
error rate. Node size was optimized using the same criterion.

Predictive power was evaluated on the corresponding OOB
data. A confusion matrix was performed to calculate the sensitivity,
specificity, and precision. OOB accuracy rate was calculated and
receiver operating characteristic (ROC) curves were constructed
with corresponding values of area under the curve (AUC)
calculated. Values of AUC close to 1 suggest strong predictive
capability, whereas values near 0.5 means poor prognostic power.

The RF algorithm had a great quality to measure the relative
importance of each feature in the prediction. scikit-learn measured
a feature’s importance by looking at how much the tree nodes that
used that feature reduce impurity across all trees in the forest. The
sum of all feature importance scores was equal to one.

Using the bootstrap method sampled 70% size as the training
set and the remaining 30% as the test set. Use Python version
3.2.8 to call the Randomforestclassifier module in the scikit-
learn library. A total of 99 decision trees were trained under
default parameter values (n_estimators = 10, max_depth = None,
min_samples_split = 2, random_state = 0). The score function
was called to calculate the accuracy of the model on the test set.
Confusion_matrix was to calculate the sensitivity, specificity, and
precision of the model. The roc_curve function was to draw the
ROC curve and obtain the AUC value to evaluate the predictive
ability of the model. Feature_importance_ was to obtain the feature
importance value and sort it according to its importance.

Results

Characteristics of the patients

The inclusion criteria were met by 36 patients (19 men and 13
women). The average age of patients was 59.23 & 18.27 years. The
main recorded comorbidities included arterial hypertension in 31
patients (86.11%), diabetes mellitus (regardless of the type) in 21
patients (58.33%), and atrial fibrillation in 8 patients (22.22%). Left
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hemiparesis was present in 16 patients (44.44%). Characteristics of
the Patients were summarized in Table 2.

Prediction of occurrence of post-stroke
SHS

To predict whether the occurrence of SHS or not, classified RFs
were constructed using 99 trees. The RF prediction model achieved
an accuracy rate of 72.73% (0.7272727272727273) on OOB data.
The two independent-sample t-tests were used for normally
distributed and continuous data (see Table 2). The homoscedastic
checks (F-value) were conducted for all data. The results showed
there was a statistically significant difference between the two
groups in terms of hemoglobin (p = 0.048424703) and D-dimer
(p = 0.042652041). Then Cohen’s d was calculated to measure the
effect sizes of the two terms. Cohen’s d for hemoglobin was 0.69,
and for D-dimer was 0.70, both indicating medium differences
between the groups. The occurrence group was prone to lower
hemoglobin content and higher D-dimer values. The ranking of
the feature importance ordered from largest to smallest was listed
in Figure 2. Combining feature importance ranking with t-test
results, our study indicated that D dimer, CRP, and HB played
more important roles in classification and discrimination. The
OOB accuracy rate of this model was 72.73%. The confusion matrix
analysis (Figure 3) showed a model sensitivity of 0.8, specificity
of 0.5, and precision of 0.57142857. The OOB ROC curve of the
constructed model had an AUC of 0.8 (Figure 4).

Based on the above 25 characteristics, feature importance
showed that the location of the lesion and hemiplegic side had

10.3389/fnins.2023.1124329

little effect on the classification, indicating its less significant role
in predicting the occurrence of SHS. Among the concomitant
diseases, concomitant diabetes was more significant than
hypertension and atrial fibrillation in predicting the development
of SHS despite the low importance ranking score.

Discussion

Shoulder-hand syndrome is the third most common
complication of stroke, after falls and confusion. A previous
study found the healthcare utilization cost after diagnosis of SHS
is 2.17-fold increased, and at least 8 years after diagnosis such
increase persisted (Elsamadicy et al., 2018).

The pathogenesis of SHS is not clear, risk factors cannot be
identified, and there are no effective interventions available. Instead
of the traditional statistics method, we applied a machine-learning
algorithm to build a predictive model and identify high-risk factors
for the occurrence of SHS.

Medical dataset may contain noisy information, missing and
unbalanced data. When it comes to building disease prediction and
diagnostic models, the relevant data may involve many features and
complex and non-linear relationships between variable which are
often beyond the capacity of traditional statistical data processing.

Random forest is a flexible and easy-to-use machine learning
algorithm that hold the advantage of identify the pattern in medical
dataset that may not be directly apparent, even without prior
knowledge (Hostettler et al., 2018) which made it suitable for the
medical dataset.

TABLE 2 Comparison data of demographic and clinical characteristics between the occurrence group and the non-occurring group.

Occurrence Non-occurring T-value Cohen’s d

Age 75.26 4 10.43 73.35+8.38 0.551815161 0.1

White blood cell 6.40 + 1.94 7224326 0373135738 0.15
Hemoglobin 117.89 + 20.57 130.82 + 16.86 0.048424703 0.69
Platelet 209.53 4 58.81 22329 +82.35 0.564450443 0.19
C-reactive protein 1141 + 2157 13.25 + 14.86 0.77005131 0.1

B-type brain natriuretic peptide 78.77 £ 80.48 107.96 + 169.24 0.523183027 0.22
D-dimer 1.80 £ 1.59 0.92 £0.77 0.042652041 0.7
25-OH vitamin D 30.86 & 11.95 33.06 + 12.79 0.596054774 0.18
Homocysteine 41.68 + 25.78 86.65 + 211.26 0.39585193 03

Creatinine 64.72 +13.79 67.20 +28.1 0.744649236 0.11
Urine microalbumin 54.16 % 50.2 4429 +43.16 0.533938047 021

Total case ratio X

non-consolidation

Sex male: female 12: 07 11: 06 23(1):13(2) 0.99998918
Stroke type infarction: hemorrhage 16: 03 16: 01 32(1):4(2) 0.925757
Hemiplegic later left: right 11: 08 5:12 16 (1):20 (2) 0.56656694
Without hypertension consolidation: 17: 02 14: 03 31(1):5(0) 0.98405107
non-consolidation

Without diabetes consolidation: non-consolidation 7:12 14: 03 21 (1): 15(0) 0.10544849
Without atrial fibrillation consolidation: 5:14 3:14 8(1):28 (0) 0.98327996
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FIGURE 2
Feature importance ranking.
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It can process very high dimensional data (many features) and
without dimensionality reduction and feature selection. Also it can
determine the importance of features and the interaction between
different features. These advantages make it particularly suitable
for the prediction of diseases with multifactorial involvement (such
as SHS) in their pathogenesis, it enable all related or unrelated
information during analysis. Also in terms of model building, it is
not easy to over-fitting; It can balance the error for unbalanced data
sets; If a large part of the features is missing, the accuracy can still be
maintained (Vabalas et al., 2019; Liu et al., 2020; Yang et al., 2020).

The onset and severity of SHS appear to be related to the
etiology of the stroke (Geurts et al, 2000; Su et al, 2021).
Injurious stimuli from stroke lesions can induce inflammatory
responses (Shaparin et al,, 2014), including classical inflammation
(an exaggerated inflammatory response and some chemical
mediators around the primary afferent fibers induced peripheral
sensitization), neurogenic inflammation (a localized neurogenic
inflammation brought edema, vasodilation, and hyperhidrosis,
or repeated discharge of the C fibers caused an increased
central sensitization), impairment of the autonomic nervous
system, and changes of the central nervous system (especially
the reorganization of primary somatosensory cortex). Therefore,
we included inflammation-related indicators, such as CRP and
WBC, and other stroke-related biochemical indicators. Patients’
age, hemiplegia side, location of the lesion, etiology of stroke, and
comorbidities were also selected into our feature. Feature Selecting
for building predictive models is readily available for any medical
institution which makes the model practical and generalizable.

It has been suggested that the key to the treatment of SHS is
prevention, so some studies have focused on the risk factors for
SHS. Potential risk factors had been recognized for SHS like being
female, left hemiparesis, spasticity, shoulder subluxation, a lower
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Brunnstrom stage of the distal upper limb, and an inferior Barthel
index (Braus et al., 1994; Sandroni et al., 2003; Ringman et al,
2004; Altas et al,, 2020; Su et al,, 2021). But no consensus was
reached. A population-based study conducted by Sandroni et al.
(2003), confirmed female patients had a higher incidence of CRPS
compared with male patients, although the mechanisms were not
clear so far. And some researchers indicated that patients with
left paralysis were more subject to CRPS due to hemineglect more
often occurring in a right hemispheric stroke (Braus et al., 1994;
Ringman et al., 2004; Altas et al., 2020). Su et al. (2021) conducted a

40
35
30
2
o 25
2
=
20
15
10
Predicted label
FIGURE 3
Confusion matrix analysis of the test set. (Accuracy: 0.875,
sensitivity: 0.8, specificity: 0.5 and precision: 0.57142857).
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FIGURE 4
The area under the ROC curve evaluates the predictive ability of the
model.

meta-analysis comprising 2,225 participants and claimed that age,
side of the lesion, etiology of the stroke, the Brunnstrom arm stage,
the duration of stroke, and shoulder pain were not found to be
associated with SHS. But in post hoc analysis they found that women
and paralysis of left limbs were found to be more likely to be the
feature of SHS.

Our predictive model used feature importance to weigh each
feature in classification. It assigned the score of input features based
on their significance to predict the output. The more the features
were responsible to predict the output, the more their score.

The feature importance of our model assigned a relatively
greater value for D-dimer and hemoglobin. Also, statistics analysis
found that the SHS group had higher D-dimer levels and lower
hemoglobin levels. So a reasonable hypothesis arose whether
anticoagulation drugs to decrease the D-dimer and therapies to
increase the hemoglobin could be effective precautions or strategies
for SHS. Oral corticosteroids were the only recommended drugs
for SHS with level 1 evidence of the purpose of anti-inflammatory
(Harden et al,, 2007). This suggested the important role of anti-
inflammatories in the prevention and treatment of SHS. The
feature importance ranking assigned CRP a relatively high score
in the classification which was not detected in the conventional
statistical methods. This result corroborated the reliability and
validity of the model to some extent. It also demonstrates the
ability of machine learning to far outperform traditional statistical
methods in the identification of high-risk factors, even on small
sample data.

It is important to note that steroid therapy is somewhat limited
in stroke patients (Long and Dagogo-Jack, 2011; Oray et al,
2016). So new approaches are warranted to solve this situation.
For the possible implications of D-dimer, hemoglobin in the
pathogenesis and treatment of SHS, such as anticoagulant therapy
and therapeutic measures to increase hemoglobin levels may
prevent or even treat SHS. Confirmation requires larger clinical
trials and multiple-center cooperation to validate our preliminary
results on a broader sample of numbers and sources.

We also recognize that our model had some limitations due to
the small sample for modeling:

1. Our data came from a single medical institution, so our
model and findings may not generalize to other populations.
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2. The sample size in this study was small, that was why the
ROC curve demonstrated a stepped shape. Although it was able to
obtain better results with the bootstrap sampling method, it was
not sufficient to train a fully valid prediction model and may not
provide reliable discrimination of results for out-of-training data.
The sample size should be further expanded in future work.

3. Feature selection lacked function assessing indicators. Some
researchers indicated that lower function assessment of upper limb
like (Barthel index, Brunnstrom stage) may be associated with SHS.
The difficulty of our research to incorporate function scale was the
lack of uniform quality control. There were inconsistent treatment
strategies for functional assessment because patients were seen in
different hospitals at the time of stroke onset. Some hospitals had
early interventions for functional rehabilitation, while others did
not. And there were inconsistencies in the time of assessment, and
the functional scores of patients fluctuated widely without good
certainty. So we discarded the corresponding functional indicators.
Since this study was a preliminary study, we will establish uniform
standards for the quality control of functional assessment in the
follow-up study.

Conclusion

The present study demonstrated a ensemble learning method
using RF algorithm to predict the occurrence of SHS. Our findings
highlighted the predictability of the onset of SHS using common
and easily accessible metrics such as the blood biochemistry
indicators, site of stroke, etiology, and concurrent diseases. The
prediction model had an area under the ROC curve of 0.8,
indicating considerable predictive ability. This method has the
potential for early diagnosis and identification of high-risk factors
with good utility.
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