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Background: Alzheimer’'s disease (AD), a neurodegenerative disorder with
progressive symptoms, seriously endangers human health worldwide. AD
diagnosis and treatment are challenging, but molecular biomarkers show
diagnostic potential. This study aimed to investigate AD biomarkers in the
peripheral blood.

Method: Utilizing three microarray datasets, we systematically analyzed the
differences in expression and predictive value of mitophagy-related hub genes
(MRHGsS) in the peripheral blood mononuclear cells of patients with AD to identify
potential diagnostic biomarkers. Subsequently, a protein—protein interaction
network was constructed to identify hub genes, and functional enrichment
analyses were performed. Using consistent clustering analysis, AD subtypes with
significant differences were determined. Finally, infiltration patterns of immune
cells in AD subtypes and the relationship between MRHGs and immune cells
were investigated by two algorithms, CIBERSORT and single-sample gene set
enrichment analysis (ssGSEA).

Results: Our study identified 53AD- and mitophagy-related differentially expressed
genes and six MRHGs, which may be potential biomarkers for diagnosing AD.
Functional analysis revealed that six MRHGs significantly affected biologically
relevant functions and signaling pathways such as IL-4 Signaling Pathway, RUNX3
Regulates Notch Signaling Pathway, IL-1 and Megakaryocytes in Obesity Pathway,
and Overview of Leukocyteintrinsic Hippo Pathway. Furthermore, CIBERSORT
and ssGSEA algorithms were used for all AD samples to analyze the abundance
of infiltrating immune cells in the two disease subtypes. The results showed that
these subtypes were significantly related to immune cell types such as activated
mast cells, regulatory T cells, MO macrophages, and neutrophils. Moreover,
specific MRHGs were significantly correlated with immune cell levels.

Conclusion: Our findings suggest that MRHGs may contribute to the development
and prognosis of AD. The six identified MRHGs could be used as valuable
diagnostic biomarkers for further research on AD. This study may provide new
promising diagnostic and therapeutic targets in the peripheral blood of patients
with AD.
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1. Introduction

Alzheimer’s disease (AD) is a common, progressive, and complex
neurodegenerative disorder that causes cognitive decline, memory
loss, and difficulty performing daily tasks (Heckmann et al., 2020).
Globally, AD poses a huge threat to people’s health and a significant
economic burden to society (Dumitrescu et al., 2020). Thus far, the
pathogenesis of AD remains unknown, and there is no definitive
treatment. Some molecules correlate with AD progression and
cognitive decline; the identification of molecular changes and
biological processes connected to AD can increase our understanding
of AD pathogenesis and provide biomarkers for AD.

Pathological hallmarks of AD are aggregated amyloid-p (Af)
protein in senile plaques and aggregated tau protein in neurofibrillary
tangles (Liang et al., 2016). However, the molecular mechanisms
regulating AD development via AP, tau, or other factors are poorly
understood. Over the past few decades, an increasing number of
therapies and immunotherapies, such as vaccines and drugs targeting
AP protein, tau protein, or AD-related genes, have been developed.
The effectiveness of these targeted therapies has been demonstrated in
some patient populations and animal models of AD (Town et al., 2008;
Sevigny et al., 2016; Congdon and Sigurdsson, 2018; Xiong et al., 2021;
Jung et al., 2022); however, it is always challenging to translate these
results into humans safely and effectively (Town et al., 2008; Lemere,
2013; Xiong et al, 2021). Thus, it is crucial to identify novel
immunological diagnostic and therapeutic AD markers.

Healthy and active mitochondria are essential for neuronal
function (Chakravorty et al., 2019; Pradeepkiran and Reddy, 2020). The
accumulation of damaged mitochondria and mitochondrial
dysfunction are early marker events and core participants in the process
of AD (Chakravorty et al, 2019; Fang, 2019). In AD neurons,
mitochondrial dysfunction is related to mitochondrial dynamics,
biogenesis, and mitophagy (Grimm and Eckert, 2017; Kerr et al., 2017).
Mitophagy, also called selective autophagy, is a selective degradation
process that gradually accumulates defective mitochondria through
autophagy. It is a key mitochondrial quality control system that helps

Abbreviations: AD, Alzheimer's disease; APOE, apolipoprotein E; AUROC, area
under the receiver operating characteristics curve; A, amyloid-f; BP, biological
process; CC, cellular component; CDs, combined datasets; DEG, differentially
expressed gene; DLAT, dihydrolipoamide S-acetyltransferase; GEO, Gene
Expression Omnibus; GO, Gene Ontology; GSEA, gene set enrichment analysis;
ITGAX, integrin subunit alpha X; KEGG, Kyoto Encyclopedia of Genes and Genomes;
LASSO, least absolute shrinkage and selection operator; MDSC, myeloid-derived
suppressor cell; MF, molecular function; MRDEG, mitophagy-related differentially
expressed gene; MRG, mitophagy-related gene; MRHG, mitophagy-related hub
gene; PCA, principal component analysis; PPARG (PPAR y), peroxisome proliferator-
activated receptor gamma; PP, protein—protein interaction; ROC, receiver
operating characteristic; ssGSEA, single-sample gene set enrichment analysis;
SUCLAZ, succinate-CoA ligase ADP-forming subunit p; TF, transcription factors;
TREMZ, triggering receptor expressed on myeloid cells 2.
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neurons maintain health and function by removing unnecessary and
damaged mitochondria. In other words, dysfunctional mitochondria
and dysfunctional mitophagy in neurons are closely related to the
occurrence of AD. Various proteins related to mitophagy were found
to be changed in AD neurons (Rai et al., 2020; Mary et al., 2023). Recent
studies (Fang et al., 2019; Morton et al., 2021; Pradeepkiran et al., 2022)
from animal and cell models of AD and sporadic late-onset AD showed
that impaired mitophagy triggered A and tau protein accumulation
by increasing oxidative damage and cell energy deficiency, leading to
synaptic dysfunction and cognitive impairment. Moreover, these
processes can compromise mitophagy (Fang et al., 2019; Morton et al.,
2021; Pradeepkiran et al., 2022). Therefore, interventions that support
mitochondrial health or stimulate mitophagy may prevent the
neurodegenerative process of AD (Kerr et al., 2017; Fang et al., 2019).
Accordingly, by removing defective mitochondria in AD through
mitophagy targeting, it might be possible to intervene therapeutically
(Wang et al., 2021; Pradeepkiran et al., 2022; Sharma et al., 2022; Xie
et al,, 2022). Nevertheless, the association of mitophagy with AD
pathology and AD-related changes in immune system effectiveness is
not fully explained and requires further investigation.

In recent decades, researchers have been interested in finding new
biomarkers or models to early identify metabolic risk abnormalities.
The progression and prognosis of AD can be affected by many genetic
or epigenetic alterations (Karch and Goate, 2015; Efthymiou and
Goate, 2017). Familial AD accounts for 5-10% of all AD cases.
Pathogenic mutations in genes like APP, PSEN1, and PSEN2 are found
in approximately 15-20%, 70-80, and 5% of patients with familial AD,
respectively (Ryan and Rossor, 2010; Williams, 2011). Apolipoprotein
E (APOE), as the most important susceptible gene known, may play an
important role in the predisposition to sporadic AD; the APOE4 gene
is associated with late-onset AD and contributes to the development of
neurofibrillary tangles and Ap senile plaques (Corder et al., 1993;
Poirier et al., 1993). TREM2 is also a very important gene and encodes
the protein, triggering receptor expressed on myeloid cells 2 (TREM2);
it is expressed by microglia, the resident immune cells of the brain, and
strongly affects the lifelong risk of AD (Roussos et al., 2015; Ulrich
et al,, 2017). Some other genes such as CRI, SPI1, MS4As, ABCA7,
CD33, and INPP5D (Roussos et al,, 2015) involved in different
biological processes are expressed by microglia as well. APOE, CLU,
and ABCA7 may be related to lipid metabolism; ABCA7, CD33, CR1,
CLU, and EPHAI may be associated with immune system function
(Reitz et al., 2013; Villegas-Llerena et al., 2016); PICALM, BIN1, CD33,
and CD2AP may be related to cell membrane function including
endocytosis (Villegas-Llerena et al., 2016). In addition, polymorphisms
of CLU, SORLI, and MS4A4A genes also affect AD-related biomarkers
(mainly Af, tau, and phosphorylated tau proteins) within the
cerebrospinal fluid (Elias-Sonnenschein et al., 2013). However, research
on AD is complex, and more experiments are needed to break through
the treatment bottleneck of AD. The advances in bioinformatics enable
independent studies to identify biomarkers. Numerous genes and loci
can be analyzed using bioinformatics to uncover potential biological
pathways in AD (Suh et al., 2019).
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Our study utilized the Gene Expression Omnibus (GEO) database
of the National Center for Biotechnology Information to analyze
mitophagy-related differential expressed genes (MRDEGs), do
functional enrichment analyses, construct a diagnostic model,
determine those that play key roles in AD, and identify possible
biomarkers in the peripheral blood and their associated immune cell
infiltration. Furthermore, we compared the mitophagy-related hub
genes (MRHGs) and immune patterns of patients with AD with those
of controls. However, the purpose of this research was to investigate
AD biomarkers related to mitophagy and their immune cell infiltration
correlation in the peripheral blood.

2. Materials and methods
2.1. Data retrieval

The AD-related datasets GSE110226 (Kant et al., 2018; Stopa et al.,
2018), GSE1297 (Blalock et al., 2004), and GSE63060 (Sood et al.,
2015) were downloaded from the GEO database through the R
package GEOquery (Davis and Meltzer, 2007). The control samples of
all three datasets were obtained from healthy individuals. In this study,

10.3389/fnins.2023.1125281

we included 7 AD and 6 control samples from GSE110226, 22 AD and
9 control samples from GSE1297 (Supplementary Table S1), and
145 AD and 104 control samples from GSE63060. The batch effects of
the datasets GSE110226 and GSE1297 were removed using the R
package sva (Leek et al., 2012) to obtain an integrated GEO dataset,
i.e., combined datasets (CDs) including 29 AD and 15 control samples.
Finally, the CDs and GSE63060 were standardized using the R package
limma, and the annotation probes were standardized and normalized.

Mitophagy-related genes (MRGs) were collected using the
GeneCards database (Stelzer et al, 2016), which provides
comprehensive information about human genes. In addition, MRGs
in the published literature (Zhuo et al., 2022) were obtained on the
PubMed website using the term “mitophagy-related genes.” A total of
2,414 MRGs were obtained after combining the results and removing
duplicates. A flow diagram of the database search is shown in Figure 1.

2.2. Differentially expressed genes related
to AD

According to the sample grouping of the CDs, samples were
divided into the AD and control groups. Differential analysis of genes

AD Datasets GSE110226

Combined Datasets

GSEA DEGs

FIGURE 1

AD Datasets GSE1297

Expression Difference MRDEGs LASSO and Cox
and ROC Analysis Regression Analysis
PPI Network
TF-mRNA, mRNA-miRNA
Regulatory Network
Hub Genes Consensus Clustering
Analysis

GO and KEGG

GSE63060 Immune Infiltration

Datasets Validation

Flow chart for the comprehensive analysis of MRDEGs. MRDEG, mitophagy-related differentially expressed gene.

Mitophagy-related Genes

Analysis

CIBERSORT ssGSEA
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in different groups was performed using the R package differential
gene expression analysis based on the negative binomial distribution
(DESeq2) (Love et al., 2014). DEGs with logFC>0.5 and p <0.05 were
considered statistically significant. Among these, genes with
logFC>0.5 and p <0.05 were considered upregulated, and genes with
logFC<0.5 and p <0.05 were considered downregulated.

To obtain MRDEGs associated with AD, all DEGs with logFC>0.5
and p <0.05 obtained by differential analysis in the CDs and MRGs
were intersected and plotted to obtain MRDEGs. The results of the
differential analysis were plotted using the R package ggplot2, the
heatmap was drawn using the R package pheatmap, and chromosome
mapping was performed using the R package RCircos (Zhang
etal., 2013).

2.3. Receiver operating characteristic curve

The ROC curve (Park et al., 2004) is a comprehensive index
reflecting continuous variables of sensitivity and specificity. The
relationship between sensitivity and specificity is reflected by the
composition method. The area under the ROC curve (AUROC) is
generally between 0.5 and 1. The closer the AUROC value is to 1, the
better the diagnostic effect. The AUC values were considered low,
medium, or high accuracy for ranges 0.5-0.7, 0.7-0.9, and>0.9,
respectively. The R package survivalROC was used to plot the ROC
curves of MRDEGs, as well as the survival times and statuses of
patients with AD.

2.4. Construction of the diagnostic model
of MRDEGs

In order to obtain a diagnostic model of MRDEGs in the AD
datasets, the R package glmnet (Engebretsen and Bohlin, 2019) with
set.seed(2) and family=“binary” as parameters was used to perform
least absolute shrinkage and selection operator (LASSO) regression
analysis based on MRDEGs. To avoid overfitting, the operating cycle
is 1,000. LASSO regression is often used to construct a prognostic
model, which is based on linear regression and by adding a penalty
term (lambda x absolute value of the slope) reduces the overfitting of
the model and improves the generalization ability of the model. The
results of LASSO regression analysis were visualized utilizing the
diagnostic model and variable trajectory diagrams and the molecular
expression of each gene in the MRDEG diagnostic model was
displayed in a forest plot.

Thereafter, MRDEGs were screened by LASSO regression
analysis, and univariate and multivariate Cox regression analyses
were performed to construct a multivariate Cox regression model.
Nomogram (Wu et al., 2020) is a graph that uses a cluster of disjoint
line segments to represent the functional relationship between
multiple independent variables in the plane rectangular coordinate
system. Based on these results, nomograms were drawn using the R
package rms. Next, a calibration analysis was performed, and a
calibration curve was generated to evaluate the accuracy and
resolution of the nomograms. Decision curve analysis (Van Calster
et al., 2018) is a simple method to evaluate clinical prediction
models, diagnostic tests, and molecular markers. Finally, the
accuracy and resolution of the multivariate Cox regression model
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were evaluated using the R package ggDCA to draw the decision
curve analysis map.

2.5. Protein—protein interaction network

Protein protein interaction (PPI) network is composed of proteins
and proteins through the interaction between them. The STRING
database (Szklarczyk et al., 2019) was used to construct the PPI
network related to the MRDEGs with a minimum required interaction
score of medium confidence (0.400) as the standard, and the
Cytoscape software (Shannon et al., 2003) was used to visualize the
PPI network model.

In addition, five algorithms in the CytoHubba (Chin et al., 2014)
plug-in were applied: maximum neighborhood component, degree,
maximal clique centrality, closeness, and edge percolated component
(Yang et al,, 2019; Liu et al., 2022). In the PPI network, the scores of
the MRDEGs were initially calculated, and then the MRDEGs were
arranged in the order of their scores. Finally, the genes of the five
algorithms were collected and analyzed by drawing the Venn diagram.
The intersecting genes of the algorithms were considered hub genes
related to mitophagy.

2.6. Construction of transcription
factor-mRNA and mRNA-miRNA regulatory
networks

Transcription factors (TFs) control gene expression through
interaction with a target gene (mRNA) in the post-transcriptional
stage. By retrieving TFs from the ChIPBase database (Zhou et al.,
2017), the regulatory effects of TFs on MRHGs were analyzed, and the
TF-mRNA
Cytoscape software.

regulatory network was visualized using the

miRNAs play an important regulatory role in the process of
biological development and evolution. They are able to regulate
multiple target genes; the same target gene can be regulated by
multiple miRNAs. To analyze the relationship between MRHGs and
miRNAs, miRNAs related to MRHGs were obtained from the StarBase
database (Li et al., 2014). Finally, the mRNA-miRNA regulatory
network was visualized using the Cytoscape software.

2.7. Gene function enrichment analysis,
pathway enrichment analysis, and gene set
enrichment analysis

Gene Ontology (GO) analysis (Mi et al., 2019) is a common
method for large-scale functional enrichment studies, including
biological processes (BPs), molecular functions (MFs) and cell
components (CCs). Kyoto Encyclopedia of Genes and Genomes
(KEGG) (Kanehisa and Goto, 2000) is a widely used database that
stores information about genomes, biological pathways, diseases and
drugs. GO and KEGG pathway annotation of MRHGs was analyzed
using the R package clusterProfiler (Yu et al, 2012). The entry
screening criteria were p<0.05 and a false detection rate (q)-value of
<0.05, which were considered statistically significant. The value of p
was corrected using the Benjamini-Hochberg procedure.
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Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005)
was used to evaluate the distribution trend of genes in a predefined
gene set in the gene table sorted by the degree of correlation with
phenotype, so as to judge their contribution to phenotype. In this
study, genes in the CDs were first divided into two groups with high
and low phenotypic correlations according to the phenotypic
correlation ranking. Thereafter, all DEGs in the two groups with high
and low phenotypic correlations were enriched using the R package
clusterProfiler. The genes were analyzed by GSEA. We retrieved the
c2.cp.v7.2.symbols.gmt gene set from the Molecular Signatures
database (Liberzon et al., 2011); the screening criteria for significant
enrichment were p <0.05 and g-values of <0.05.

2.8. Molecular subtype construction of
MRHGs

Consistency clustering (Lock and Dunson, 2013) refers to multiple
iterations of subsamples of a dataset. It provides the index of clustering
stability and parameter decision by using subsamples to induce
sampling variability. The consensus clustering method using the R
package ConsensusClusterPlus (Wilkerson and Hayes, 2010) was
employed to identify different disease subtypes of AD based on MRHGs.

2.9. Analysis of immune cell infiltration

Using CIBERSORT algorithms (Newman et al., 2015) and the
LM22 characteristics gene matrix, the samples with output p-values of
<0.05 were filtered to obtain the immune cell infiltration matrix. The
data were then filtered for immune cell enrichment scores greater than
zero. Finally, the specific results of the immune cell infiltration matrix
were obtained. A histogram was drawn using ggplot2 to show the
distribution of 22 types of immune cell infiltrates in different subtypes
of AD samples; the correlation heatmap was drawn using pheatmap
to illustrate the correlation analysis results of the 22 immune cell types
with MRHGs in different AD subtypes.

The relative abundance of each infiltrating immune cell type was
quantified using single-sample GSEA (ssGSEA) algorithms (Coscia et al.,
2018). First, the types of infiltrating immune cells were labeled, such as
activated CD8+ T cells, activated dendritic cells, yd T cells, natural killer
cells, regulatory T cells, and other human immune cell subtypes. Second,
the enrichment score calculated by ssGSEA was used to express the
relative abundance of each immune cell type in each sample. Finally,
ggplot2 was used to display the distributions of infiltrating immune cells
in different disease subtypes of AD samples; pheatmap was used to draw
a correlation heatmap that shows the results of the correlation analysis
between immune cells and MRHGs in different AD subtypes.

2.10. Statistical analysis

All data processing and analysis in this article are based on R
software version 4.1.2. Continuous variables are presented as
mean * standard deviation. The Wilcoxon rank sum test was used for
comparison between two groups; the Kruskal-Wallis test was used for
comparisons of three groups or more. The chi-square test or Fisher’s
exact test was used to compare and analyze statistical significance
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between two groups of categorical variables. Unless otherwise
specified, correlation coefficients between different molecules were
calculated using Spearman’s correlation analysis, and statistical
significance was set at p <0.05.

3. Results
3.1. Analysis of AD-related DEGs

First, the R package sva was used to remove batch effects from the
AD datasets GSE110226 and GSE1297 and obtain CDs. The datasets
before and after batch effect removal were compared using a
distribution box diagram and principal component analysis (PCA)
(Figures 2A-D). These results showed that the batch effect of the
samples in the AD dataset was basically eliminated by this procedure.

Then, the data from the CDs were divided into the control and AD
groups. To analyze the intergroup differences in gene expression
values in the AD dataset, the R package DESeq2 was used to perform
a differential analysis on the CDs of the two data groups. The CDs
contained 436 DEGs that met the threshold of logFC>0.5 and p < 0.05.
Of these, 212 genes were upregulated (1ogFC>0.5, p<0.05) and 224
downregulated (logFC<0.5, p<0.05), and a volcano map was drawn
accordingly (Figure 3A). To identify MRDEGs, all DEGs with
logFC>0.5 and p<0.05 were intersected with MRGs
(Supplementary Table S2). A total of 53 MRDEGs were obtained,
which are illustrated in the Venn diagram in Figure 3B. Specific gene
information is presented in Supplementary Table S3. According to the
intersection results, differences in MRDEG expression between
different CD sample groups were analyzed and displayed in a heatmap
(Figure 3C) by using the R package pheatmap. Finally, the positions of
the identified 53 MRDEGs on human chromosomes were analyzed
using the R package RCircos, and their chromosome mappings were
displayed (Figure 3D; Supplementary Table S4).

3.2. Correlation analysis of MRDEGs

To further explore the differences in MRDEG expression in the
AD dataset, a histogram based on grouping and comparison was
generated (Figure 4A). It shows the differential expression of the 53
MRDEGs in the AD and control groups in the CDs. The expression
levels of 49 MRDEGs were significantly  different
(Supplementary Table S4). Of these MRDEGs, APOO, PFN2, DHX57,
PCCB, MTX2, KIFC3, and dihydrolipoamide S-acetyltransferase
(DLAT) were significantly different between the AD and control
groups (p<0.001); ITGA5, NDUFS4, SLC12A7, CHST3, GDAPI,
SLC35E1, NNT, C1QBP, KCNABI, INF2, ITGB4, EPHA2, MONI1B,
TMEMI14A, SLCIA5, RCN2, ACTRI0, NETO2, VPS33A, TFEB,
PDE12, and MRPS28 were highly significantly different (p <0.01);
and CD44, FOXO4, MDHI, ZNF787, succinate-CoA ligase
ADP-forming subunit § (SUCLA2), NUP93, NUPR1, FGF13, GLRX5,
MSTN, UQCRCI, MYC, NDEI1, RAB23, PSMA3, DAP3, DNAJC3,
integrin subunit alpha X CD11c (ITGAX), CPA3, and NOS3 were
significantly different between the studied groups (p<0.05). The
expression levels of the remaining genes, including PNOC, PPARG,
HILPDA, and MRPSIS5,
(Supplementary Table S4).

were not significantly different
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FIGURE 2
Batch effects removal of GSE110226 and GSE1297. (A) Distribution boxplot of datasets before batch processing. (B) Distribution boxplot of CDs after
batch processing. (C) PCA diagram of datasets before batch processing. (D) PCA diagram of CDs after batch processing. DEG, differentially expressed
gene; MRDEG, mitophagy-related differentially expressed gene; CDs, combined datasets; PCA, principal component analysis.

Next, the ROC curves of the abovementioned 49 MRDEGs
were drawn (Figures 4B-M). The ROC curves of 45 MRDEGs
revealed a medium correlation with different groups
(0.7<AUC<0.9; Supplementary Table S4), whereas those of the
other four MRDEGsS, namely MYC, PSMA3, ITGAX, and CPA3,
showed a low correlation with different groups (0.5<AUC<0.7;
Supplementary Table S4).

3.3. Construction of the diagnostic model
of the MRDEGs

To determine the diagnostic value of the 53 identified MRDEGs
in the AD dataset, a diagnostic model of the MRDEGs was constructed
by LASSO regression analysis (Figure 5A) and visualized through a
LASSO variable trajectory diagram (Figure 5B). The LASSO diagnostic
model comprised 17 MRDEGs (Supplementary Table S4), and the
expression levels of these genes in the different groups of the LASSO
diagnostic model are illustrated by a forest plot (Figure 5C).

In addition, the expression levels of these 17 MRDEGs were used for
uni- and multivariate Cox regression analyses, and a Cox regression
model was constructed. The prognostic ability of the Cox regression
model was evaluated based on a generated nomogram (Figure 5D). The
calibration curve was drawn, and the predictive power of the model for
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the actual results was evaluated based on the fitting of the actual
probability. The probability predicted by the model under different
conditions is presented in Figure 5E. Finally, the clinical utility of the Cox
regression model was evaluated by decision curve analysis (Figure 5F).
The range was determined in which the line of the model remained
stable and higher than “All positive” and “All negative”; the larger this
range, the higher the net benefit, and the better the model effect.

3.4. Construction of the PPl network and
screening of the hub genes

Initially, a PPI analysis was carried out, and the PPI network of the
53 MRDEGs was constructed using the STRING database. Interactions
were visualized using the Cytoscape software
(Supplementary Figure STA). Among the 53 MRDEGs, 36 were related
(Supplementary Table S4), and the scores provided by the STRING
database were calculated by applying five algorithms of the CytoHubba
plug-in. Then, the MRDEGs were arranged according to their scores.
The five algorithms were maximum neighborhood component
(Supplementary Figure S1B), degree (Supplementary Figure S1C),
maximal clique centrality (Supplementary Figure S1D), closeness
(Supplementary Figure SI1E), and edge percolated component
(Supplementary Figure SIF). The genes identified by the five
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algorithms were retrieved, and the Venn diagram was drawn to obtain
the MRHGs (Supplementary Figure S1G). The six hub genes were
CD44, SUCLA2, DLAT, ITGAX, PPARG, and MYC.

3.5. Construction of TF-mRNA and
MRNA-mMiRNA regulatory networks

TFs associated with the MRHGs were obtained from the ChIPBase
database, and the mRNA-TF regulatory network was constructed and
visualized using the Cytoscape software (Supplementary Figure S2A).
This network contained 6 MRHGs and 59 TFs. Likewise, the miRNAs
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related to the MRHGs were retrieved from the StarBase database, and
the mRNA-miRNA regulatory network was constructed and
visualized using Cytoscape (Supplementary Figure S2B). This network
contained 6 MRHGs and 61 miRNAs.

3.6. Function enrichment (GO) analysis,
pathway enrichment (KEGG) analysis of
MRHGs, and GSEA of the AD dataset

Based on GO and KEGG enrichment analyses, the relationships
among BPs, MFs, CCs, and biological pathways of the six MRDEGs
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discussed in section 3.5 and AD were further explored. The six
MRHGs were applied to GO and KEGG gene function enrichment
analysis (Tables 1, 2). The six MRHGs were mainly enriched in the
regulation of BPs such as cysteine-type endopeptidase activity
involved in apoptosis and negative regulation of fibroblast
proliferation, CCs such as secretory granule membrane, tricarboxylic
acid cycle enzyme complex, and lamellipodium membrane, and MFs
such as E-box binding, repressing TF binding, and activating TF
binding. Simultaneously, the MRHGs were also enriched in
the tricarboxylic acid cycle, thyroid cancer, and carbon
metabolism pathways, among others. The results of these
analyses were visualized as a histogram (Supplementary Figure S3A),
and GO S3B-D) and KEGG

(Supplementary  Figures
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(Supplementary Figure S3E) network maps were drawn. A connecting
line indicates a molecule and the annotation of the corresponding
entry. The larger the node, the more molecules the entry contains.
Finally, GO and KEGG enrichment analyses of the combined logFC
were performed for the six MRDEGs (Supplementary Figures S3EG).
Based on the enrichment analysis, the z-score corresponding to each
entry was calculated using the molecular logFC. The results of the GO
analysis visualized by a circle diagram (Supplementary Figure S3F)
and those of the KEGG analysis visualized by a chord diagram
(Supplementary Figure S3G) showed that cysteine-type endopeptidase
activity involved in apoptosis may be the most important positive
regulatory pathway, whereas the tricarboxylic acid cycle enzyme
complex pathway may be the most influential negative regulatory
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pathway. The connecting line between the left and right parts shows

the molecules included in the KEGG pathway entry.

GSEA was used to determine the effects of the DEG expression levels

in the AD datasets, specifically the relationships between DEG expression
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in the CDs and the BPs involved, the CCs affected, and the MFs exerted.
As shown in Table 3, DEGs in the CDs significantly affected biologically
related functions and signaling pathways (Figures 6A-E) such as IL-4
Signaling Pathway (Figure 6B), RUNX3 Regulates Notch Signaling
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TABLE 1 Results of GO enrichment analysis in AD.

ID

Ontology

Description

10.3389/fnins.2023.1125281

Bg ratio pvalue p.adjust g value

Bp GO0043281 Regulation of cysteine-type endopeptidase activity 36 215/18670 5 040.05 0.004 0,002
involved in apoptotic process
BP GO:0048147 Negative regulation of fibroblast proliferation 2/6 30/18670 3.73e-05 0.004 0.002
BP GO:2000116 Regulation of cysteine-type endopeptidase activity 3/6 239/18670 4.03e-05 0.004 0.002
BP GO:0006099 Tricarboxylic acid cycle 2/6 34/18670 4.81e-05 0.004 0.002
BP GO:0006101 Citrate metabolic process 2/6 35/18670 5.10e-05 0.004 0.002
CcC GO:0030667 Secretory granule membrane 2/6 298/19717 0.003 0.050 0.031
CcC GO:0045239 Tricarboxylic acid cycle enzyme complex 1/6 14/19717 0.004 0.050 0.031
CcC GO0:0031258 Lamellipodium membrane 1/6 22/19717 0.007 0.050 0.031
CcC GO:0005759 Mitochondrial matrix 2/6 469/19717 0.008 0.050 0.031
CcC GO:0008305 Integrin complex 1/6 31/19717 0.009 0.050 0.031
ME GO:0070888 E-box binding 2/6 50/17697 1.17e-04 0.006 0.002
MF GO:0070491 Repressing transcription factor binding 2/6 71/17697 2.36e-04 0.006 0.002
MF GO:0033613 Activating transcription factor binding 2/6 85/17697 3.38e-04 0.006 0.002
ME GO:0031406 Carboxylic acid binding 2/6 193/17697 0.002 0.020 0.005
MF GO:0043177 Organic acid binding 2/6 205/17697 0.002 0.020 0.005
GO, Gene Ontology; BP, Biological Process; CC, Cellular Component; ME, Molecular Function, AD, Alzheimer’s Disease.
TABLE 2 Results of KEGG enrichment analysis in AD.

Ontology ID Description Gene ratio Bg ratio p value p. adjust q value
KEGG hsa00020 Citrate cycle (TCA cycle) 2/6 30/8076 1.98e-04 0.007 0.006
KEGG hsa05216 Thyroid cancer 2/6 37/8076 3.03e-04 0.007 0.006
KEGG hsa01200 Carbon metabolism 2/6 118/8076 0.003 0.050 0.039
KEGG hsa05202 Transcriptional misregulation in cancer 2/6 192/8076 0.008 0.073 0.057
KEGG hsa05169 Epstein-Barr virus infection 2/6 202/8076 0.009 0.073 0.057
KEGG hsa05205 Proteoglycans in cancer 2/6 205/8076 0.009 0.073 0.057

KEGG, Kyoto Encyclopedia of Genes and Genomes; AD, Alzheimer’s Disease.

(Figure 6C), IL-1 and Megakaryocytes in Obesity Pathway (Figure 6D),
and Overview of Leukocyteintrinsic Hippo Pathway (Figure 6E).

3.7. Construction of AD subtypes

To explore the differences in MRG expression in the AD subgroup
of the CDs, the R package ConsensusClusterPlus was used for
consistent clustering analyses to identify different AD subtypes based
on the six MRHGs. Two AD subtypes were finally identified: Cluster
1 containing 14 samples represented subtype A, whereas Cluster 2
containing 15 samples represented subtype B (Figures 7A,B). The PCA
showed significant differences between these two subtypes
(Figure 7C). A heatmap was drawn using the pheatmap package to
visualize the differences in MRHG expression between the two AD
subtypes (Figure 7D).

To further verify the expression differences of the six MRHGs in
the AD datasets, the correlation between the expression levels of the
six MRHGs in the CDs and the two AD subtypes and the results of the
difference analysis were shown in a group comparison histogram
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(Figure 7E). The differential analysis results of the CDs showed that
the two MRHGs were statistically significant (p <0.05): the expression
of MYC was statistically significant among different subtypes of AD
(p <0.001); the expression of CD44 was highly statistically significant
between different subtypes of AD (p <0.01). In addition, the
expression levels of DLAT, ITGAX, PPARG and SUCLA2 were not
statistically significant between AD subtypes (p >0.05).

3.8. Analysis of immune cell infiltration
between the two AD subtypes

To explore the differences in immune cell infiltration between the
identified AD subtypes, CIBERSORT and ssGSEA algorithms were
used to analyze for all samples the abundance of infiltrating immune
cells in the two AD subtypes.

Based on the results of the CIBERSORT analysis, a histogram of
the proportion of immune cells in the AD samples was drawn
(Supplementary Figure S4A). Next, the correlations of immune cell
infiltration abundance in leukocyte gene signature matrix (LM22) in
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TABLE 3 Results of combined datasets GSEA in AD.

Set size A e p value p. adjust q values
score

REACTOME_INTERLEUKIN_10_SIGNALING 41 0.6888 2.5057 0.0021 0.0724 0.0621
PID_FRA_PATHWAY 34 0.6655 23017 0.0021 0.0724 0.0621
WP_TYROBP_CAUSAL_NETWORK 50 0.5603 2.1308 0.0021 0.0724 0.0621
PID_AMB2_NEUTROPHILS_PATHWAY 38 0.5922 2.1238 0.0021 0.0724 0.0621
WP_COMPLEMENT_AND_COAGULATION_CASCADES 54 0.5358 2.0661 0.0021 0.0724 0.0621
WP_IL4_SIGNALING_PATHWAY 53 0.5266 2.0246 0.0021 0.0724 0.0621
KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION 221 0.4197 2.0204 0.0021 0.0724 0.0621
PID_P73PATHWAY 74 0.4962 2.0181 0.0021 0.0724 0.0621
REACTOME_RUNX3_ MEDIATED_NOTCH_SIGNALING 12 0.7595 1.9835 0.0040 0.0905 0.0776
KEGG_HEMATOPOIETIC_CELL_LINEAGE 77 0.4812 1.9740 0.0021 0.0724 0.0621
REACTOME_INITIAL_TRIGGERING_OF_COMPLEMENT 20 0.6463 1.9598 0.0041 0.0905 0.0776
REACTOME_TRAF6_MEDIATED_IRF7_ACTIVATION 25 0.6132 1.9565 0.0041 0.0905 0.0776
WP_INTERACTIONS_BETWEEN_IMMUNE_CELLS_AND_MICRORNAS_IN_TUMOR_MICROENVIRONMENT 26 0.6009 1.9514 0.0020 0.0724 0.0621
REACTOME_INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING 103 0.4556 1.9487 0.0021 0.0724 0.0621
REACTOME_SYNTHESIS_OF_LEUKOTRIENES_LT_AND_EOXINS_EX 16 0.6814 1.9459 0.0041 0.0905 0.0776
REACTOME_YAP1_AND_WWTRI_TAZ_STIMULATED_GENE_EXPRESSION 13 0.7304 1.9355 0.0062 0.1102 0.0945
REACTOME_NOTCH4_INTRACELLULAR_DOMAIN_REGULATES_TRANSCRIPTION 17 0.6647 1.9314 0.0042 0.0905 0.0776
WP_IL1_AND_MEGAKARYOCYTES_IN_OBESITY 24 0.6094 1.9314 0.0040 0.0905 0.0776
REACTOME_REGULATION_OF_GENE_EXPRESSION_IN_LATE_STAGE_BRANCHING_MORPHOGENESIS_

PANCREATIC_BUD_PRECURSOR_CELLS 13 0.7237 1.9179 0.0062 0.1102 0.0945
WP_OVERVIEW_OF_LEUKOCYTEINTRINSIC_HIPPO_PATHWAY_FUNCTIONS 27 0.5898 1.9178 0.0020 0.0724 0.0621

GSEA, Gene Set Enrichment Analysis; AD, Alzheimer’s Disease; NES, Normalized Enrichment score.
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AD subtype A (Supplementary Figure S4B) and subtype B
(Supplementary Figure S4C) were demonstrated by plotting
correlation heatmaps. The results showed that the correlation between
activated mast cells and regulatory T cells was the highest in subtype
A (cor value=0.90). By contrast, the correlation between MO
macrophages and neutrophils was the highest in subtype B (cor
value=0.84). In addition, the correlation between the abundance of
LM22 immune cell infiltration and the expression of the six identified
MRHGs in the samples of patients was analyzed by plotting the
correlation heatmap of the two subtypes (Supplementary Figures S4D,E).
The results showed that in subtype A, PPARG expression was
significantly positively correlated with follicular helper T cell levels,
and DLAT expression was significantly negatively correlated with the
abundance of activated dendritic cells. In subtype B, DLAT expression
was significantly negatively correlated with yd T cell levels.

Similarly, immune cell infiltration was analyzed using ssGSEA. The
correlation between the abundance of the 28 types of infiltrating
immune cells in subtype A (Supplementary Figure S5A) and subtype B
(Supplementary Figure S5B) of AD was demonstrated by plotting the
correlation heatmap. The results showed that myeloid-derived
suppressor cells (MDSCs) had the highest correlation with neutrophils,
mast cells, and central memory CD8+ T cells (cor value=0.89, 0.77, and
0.82, respectively) in subtype A. In subtype B, the correlation between
MDSCs and activated dendritic cells was the highest (cor value=0.78).
Moreover, the correlation between the abundance of these 28 immune
cell types and the expression of the six MRHGs in the samples of
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patients was analyzed by plotting the correlation heatmaps for the two
AD subtypes (Supplementary Figures S5C,D). The results showed that
in subtype A, SUCLA2 expression was significantly positively correlated
with the levels of effector memory CD4+ T cells and immature dendritic
cells, whereas DLAT expression was significantly negatively correlated
with the level of activated B cells. In subtype B, SUCLA2 expression was
significantly negatively correlated with activated B cell levels.

3.9. Dataset validation and ROC analysis

To further verify differences in MRHG expression in the AD
dataset, the results of the differential expression analysis comparing
the levels of the six identified MRHGs between the AD and control
groups of the GSE63060 dataset were displayed in a group comparison
histogram. The differential expression analysis results (Figure 8A)
showed that three MRHGs significantly differed between the two
groups. Among them, the expression of ITGAX and SUCLA2 in the
AD and control groups of the GSE63060 dataset was markedly
significantly different (p<0.001), and the expression of DLAT was
significantly different (p <0.05). The expression levels of the other
MRHGs (CD44, MYC, and PPARG) were not significantly different
between groups. The ROC curves suggested a low accuracy for DLAT
(AUC=0.596, Figure 8B), ITGAX (AUC=0.678, Figure 8C), and
SUCLA2 (AUC=0.655, Figure 8D) to distinguish AD from control
samples in the dataset GSE63060.
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4. Discussion

AD is one of the main causes of dementia and death in the
elderly, seriously endangering human health, and its course is
usually 6-10years. With the intensification of the global aging
society, its incidence rate and prevalence rate are increasing. In
March 2019, the Alzheimer’s Association of the United States
released the impact of AD on public health in the United States. It is
expected that by the middle of this century, the number of Americans
aged 65 and over suffering from AD may increase to 13.8 million.
However, up to now, there is a lack of ideal diagnostic indicators and
effective prevention and treatment measures for AD. Therefore, it is
of great social significance to strengthen the research on the
pathogenesis of AD. Hence, it is crucial for this study to broaden its
horizons to search for key molecules that may play a role in the
pathogenesis of AD.

Mitophagy as a selective degradation process, is critical to keeping
mitochondria healthy, producing ATP, and maintaining neuronal
activity and survival by removing impaired mitochondria. MRGs have
been previously reported as prognostic or diagnostic markers for
various tumors, including pancreatic cancer (Zhuo et al., 2022), breast
cancer (Zhao et al., 2022), and liver cancer (Chen et al., 2021; Xu et al.,
2022), whereas only a limited number of studies have examined the
usefulness of them as AD biomarkers. Pakpian et al. (2020) recently
reported that alterations in mitochondrial dynamic-related genes in
the peripheral blood may be useful for diagnosing AD. However,

Frontiers in Neuroscience 13

MRGs have not yet been evaluated for their diagnostic performance
in AD and their role is worth further exploring.

In our study, we investigated the role of MRGs in the diagnosis of
AD. Not only did we identify six MRHGs (CD44, SUCLA2, DLAT,
ITGAX, PPARG, and MYC) as AD biomarkers, but we also used these
MRHGs to create a diagnostic model. Moreover, a validation analysis
conducted both internally and externally revealed that this model is
effective in discriminating patients with AD from controls.
Furthermore, we analyzed the relationships between MRHGs and
immune cell infiltration in AD utilizing CIBERSORT and
ssGSEA algorithms.

Some diagnostic biomarker signatures have been reported in
previous studies. For example, Shigemizu et al. (2020) analyzed the
blood samples of cognitively normal adults and patients with AD by
RNA sequencing and detected DEGs. A model constructed by the
proportion of neutrophils and the most important central genes (EEF2
and RPL7) achieved an AUC of 0.878 in the validation cohort. Based
on the results of its application to a prospective cohort, the model
achieved an accuracy of 0.727, identifying blood-based biomarkers as
early indicators of AD. Using the GEO database, researchers have
identified in recent years numerous hub genes that are differentially
expressed in AD and control brain samples and have further
determined many possible diagnostic biomarkers of AD using the
ROC prediction model. Tian et al. (2022) identified three hub genes
(MAFF, ADCYAPI, and ZFP36L1; AUC=0.850) and verified their
expression in the AD brain (AUC=0.935). Wu et al. (2021) found 10
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hub genes, namely SERPINEI, ZBTB16, CD44, BCL6, HMOX1,
SLC11A1, CEACAMS, ITGA5, SOCS3, and IL4R, all of which have
good diagnostic value (AUC>0.75). Liu et al. (2021) identified seven
genes, including ABCA2, CREBRF, CD72, CETN2, KCNG1, NDUFA2,
and RPL36AL (AUCs were 0.845 and 0.839 in the test and validation
sets, respectively), as hub genes and confirmed them by reverse
transcription polymerase chain reaction. Our team (Zhao et al., 2022)
found that AGAP3 is an important hub gene (AUCs in the three
studied datasets were 0.878, 0.727, and 0.635), which may be a
diagnostic biomarker related to immunity in AD. Among the six
MRHGs identified in the current study, the expression levels of CD44,
SUCLA2, DLAT, and PPARG in the CDs showed a medium
correlation with the study groups, whereas ITGAX and MYC showed
a low correlation. Our findings suggest that a combination of a few
biomarkers performs fairly well as a diagnostic tool.

Of the six identified MRGs, CD44, ITGAX, and PPARG are clearly
correlated with AD according to previous reports (Butovsky et al.,
2006; Moreno-Rodriguez et al., 2020; Bottero et al., 2021). The CD44
protein encoded by the CD44 gene is a cell surface glycoprotein and a
receptor for hyaluronic acid. CD44 is involved in cell-cell interaction,
as well as cell adhesion and migration (Wang et al., 2018; Moreno-
Rodriguez et al., 2020). It is described as a multifaceted molecule
involved in several biological and pathological processes. Western blot
analyses revealed that CD44 levels of the frontal cortex were increased
in sporadic AD and associated with disease progression
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(Moreno-Rodriguez et al., 2020). This is consistent with our prediction
results to some extent. The gene ITGAX encodes an integrin o X-chain
protein. Integrins are heterodimers composed of & and f chains to
integrate membrane proteins, forming aXp2 integrins (Golinski et al.,
2020). ITGAX is considered the main driving factor of atherosclerosis
(Williams et al., 2020). Using single-cell transcriptome analysis of the
brain of AD mice, a recent study on the transcriptional characteristics
of plaque-associated microglia found a two-step transition from
homeostasis to pathologically related phenotypes, with Trem2, to
which Itgax is related, as the main phenotypic regulator (Mancuso
etal, 2019). Ramesha et al. (2021) reported that the inoculation of T
cell-based Gramer acetate vaccine against AD-induced dendritic
microglia to express Itgax and found that the plaque formation and
cognitive ability of APP/PS1 mice were reduced (Ramesha et al.,
2021). These discoveries are consistent with our predicted changes in
the expression of ITGAX in AD. The PPAR y protein encoded by the
gene PPARG, a member of the peroxisome proliferator-activated
receptor subfamily, is a regulator of lipid metabolism and
inflammatory response mediators; it may regulate AD switch genes as
a TE. It is involved in the pathology of many disorders, such as obesity,
atherosclerosis, and AD (Bottero et al., 2021). Activation of platelets
and phospholipase D are regarded as its key signal components
(Bottero et al.,, 2021). Like APOE, PPARG is an important risk gene.
CG or GG, which are participant genotypes of rs1805192 in PPARG,
confer the highest risk for AD (Wang et al., 2017). These research data
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above support our prediction results. Overall, these findings may
account for the distinct role of these genes in AD.

It has been suggested that the three genes CD44, ITGAX, and
PPARG participate through
neuroinflammation and immune pathways, making them promising

in AD pathogenesis mainly
therapeutic targets. Previous studies have shown that CD44 may
be highly involved in biological processes and pathways related to
immune inflammatory response, apoptosis, and mitogen-activated
protein kinase pathways in AD (Shim et al., 2022; Xu et al., 2022). A
systematic review found that CD44 is related to the complexity of
reactive astrocytosis in AD (Viejo et al., 2022). As a microglia-related
gene, ITGAX was found to be differentially expressed in AD and
possibly involved in neuroinflammation, oxidative stress, and Af
autophagy and transport (Li and de Muynck, 2021; Wu et al., 2021).
The PPARG gene may increase the incidence of AD in patients with
psoriasis by activating a positive feedback loop leading to excessive
inflammation and metabolic disorder (Liu et al., 2022).

However, the relationship of SUCLA2, DLAT, and MYC expression
with AD has not been previously reported. The SUCLA2 gene encodes
ATP-specific Succinyl-CoA synthetase (SCS) f subunits, which
dimerize with SCS o subunits to form SCS-A, a heterodimeric
mitochondrial matrix enzyme, which is an important component of
the tricarboxylic acid cycle. By hydrolyzing ATP, SCS-A forms succinic
acid and succinyl-CoA. Mutations of SUCLA2 are one of the causes of
myopathic mitochondrial DNA deletion syndrome (Viscomi and
Zeviani, 2017). This is somewhat different from our predicted results,
and further prospective studies are needed to determine the diagnostic
accuracy of SUCLA2 for AD. The gene DLAT encodes the E2
component of the multi-enzyme pyruvate dehydrogenase complex,
which is a lipoylated core protein (Carrico et al., 2018). The protein,
which is also an antigen of anti-mitochondrial antibody, accepts the
acetyl group formed by oxidative decarboxylation of pyruvate and
transfers it to coenzyme A. It has been reported that DLAT is the key
mediator of cell survival in chronic myeloid leukemia after tyrosine
kinase inhibitor-mediated BCR-ABLI inhibition (Bencomo-Alvarez
et al,, 2019). It has also been found that SIRT4 can hydrolyze the
lipoamide cofactors derived from DLAT, leading to a decrease in
pyruvate dehydrogenase activity (Xie et al., 2020). These’re not the
same as our prediction, and the correlation between DLAT expression
and AD needs to be thoroughly studied. The proto-oncogene MYC
encodes a nuclear phosphoprotein that is crucial for the progression of
the cell cycle, apoptosis, and transformation of cells (Casey et al., 2018).
Its amplification is often observed in human tumors, and many drugs
targeting the MYC pathway can be used for the treatment of tumors;
the therapeutic effect might be related to the ability to restore the
immune response (Casey et al., 2018). In addition, MYC expression is
temporarily upregulated in spinal microglia as a TF after nerve injury
to mediate early-phase proliferation of microglia, which is recognized
as a hallmark of AD (Tan et al., 2022). The above indirectly reveals the
possibility that MYC may participate in AD, but the diagnostic value
of MYC in our research results needs to be further verified.

In this study, the differential expression analysis results of the CDs
showed that the expression of CD44 was highly statistically significant
and that of MYC was statistically significant between different AD
subtypes. In the validation dataset GSE63060, ITGAX and SUCLA2
expression was markedly significantly different between the AD and
control groups, whereas DLAT expression was significantly different
between these two groups. The ROC curves of these three genes in the
dataset GSE63060 showed that the expression levels of DLAT, ITGAX,
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and SUCLA2 suggested a low correlation with study group. Thus,
we will further explore the biological role of these genes in AD in
the future.

In the last few decades, increasingly compelling evidence has
emerged showing that AD is associated with immune system
imbalance (Heneka et al., 2015; Lewcock et al., 2020). For example,
compared with healthy controls, patients with AD have higher
numbers of neutrophils, CD4+ T cells, and monocytes in the whole
blood (Ferretti et al., 2016; Sommer et al., 2017; Unger et al., 2020).
However, there remains a lack of clarity regarding the activation
pattern of immune cells in AD. In the current study, an in-depth
evaluation of AD immune cell infiltration was conducted using
CIBERSORT and ssGSEA to further understand the role of immune
responses in AD subtypes. The results of the CIBERSORT analysis
showed that the correlation between activated mast cells and
regulatory T cells was the highest in subtype A, whereas the correlation
between M0 macrophages and neutrophils was the highest in subtype
B. Similarly, the results of the ssGSEA showed that MDSCs had the
highest correlation with neutrophils, mast cells, and central memory
CD8+ T cells in subtype A, whereas the correlation between MDSCs
and activated dendritic cells was the highest in subtype B.

In addition, our data mining results further confirmed that
mitophagy and immunity may play key roles in the pathogenesis of
AD. According to recent research, the cellular components of the
immune system that may be modulated by mitophagy include natural
killer cells, macrophages, dendritic cells, and T and B lymphocytes
(Fang et al., 2019; Xu and Jia, 2021; Xie et al., 2022). Thus, we also
analyzed the correlation between the six identified MRHGs (CD44,
SUCLA2, DLAT, ITGAX, PPARG, and MYC) and infiltrating immune
cells. Our results showed that DLAT, PPARG, and SUCLA2 may
be significantly correlated with distinct immune cell subsets indicative
of different immune responses of AD subtypes. The correlation
heatmap of the CIBERSORT analysis showed that PPARG expression
was significantly positively correlated with follicular helper T cell
levels in subtype A, whereas DLAT expression was significantly
negatively correlated with the levels of activated dendritic cells in
subtype A and with those of y8 T cells in subtype B. The correlation
heatmap of the ssGSEA showed that SUCLA2 expression was
significantly positively correlated with the levels of effector memory
CD4+ T cells and immature dendritic cells and significantly negatively
correlated with the levels of activated B cells in subtype A, whereas
DLAT expression was significantly negatively correlated with activated
B cell levels in subtype B.

According to these findings, significant correlations exist between
most MRGs and immune cells, which may indicate that mitophagy
and immune responses interact in AD. This may further the
understanding of the MRG-dependent immune status and
microenvironment in AD. However, these assumptions require further
studies to clarify the molecular mechanisms of the complex interaction
between these genes and immune cells.

Clinically, AD can be divided into familial AD and sporadic AD
according to genetic history and into early-onset AD and late-onset
AD according to the age of onset. In this study, subtypes were only
based on bioinformatics clusters according to the gene expression
matrix. No other specific characteristics were taken into consideration,
but correlations with clinical AD classifications may exist. In the
future, we will aim to specify the degree of correlations and
connections. Moreover, we will collect samples from AD patients in
our hospital, record their clinical types, and determine whether
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clinical classifications are related to subtypes established by
bioinformatics approaches.

The biomarkers identified in this study have several advantages.
First, it is the first study to comprehensively explain the relationship
between biomarkers and AD from the perspective of mitophagy
compared with classic genetic biomarkers such as APP and PSENI.
Second, by combining three datasets, the sample number was sufficient,
and the interbatch differences in the datasets were eliminated, avoiding
data bias (see Figure 2). Finally, the validation using an external dataset
has further consolidated the conclusions of this study.

Qur research has some limitations. First, our research was
conducted using secondary mining and analysis of previously
published datasets. Second, the external validation was only
performed on one dataset, which was relatively small, although the
development set had sufficient whole-blood samples from patients
with AD and healthy controls. Third, although the AUC of the model
showed acceptable discrimination, the performance of the model
requires improvement. Therefore, it is vital to guarantee a large
sample size for independent research to verify and improve the
clinical practicability. Finally, the mechanisms and relationships of
MRGs are included in gene signatures, which needs further study.

5. Conclusion

We identified six MRHGs that may represent peripheral blood-
derived diagnostic biomarkers and may participate in the pathological
mechanisms of AD. Furthermore, a diagnostic model of AD based
on MRGs was constructed utilizing LASSO and logistic regression,
and it exhibited good diagnostic performance in internal and external
validation. Moreover, CIBERSORT and ssGSEA were used to analyze
the immune cell infiltration in patients with AD, and the correlation
analysis showed that mitophagy might modulate the immune
response of patients with AD. These findings expand our
understanding of the role of MRGs in AD. Our gene signatures may,
therefore, provide an accurate and reliable prediction method for the
diagnosis of patients with AD.
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