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Microglia, the brain resident macrophages, are multifaceted glial cells that belong

to the central nervous and immune systems. As part of the immune system,

they mediate innate immune responses, regulate brain homeostasis and protect

the brain in response to inflammation or injury. At the same time, they can

perform a wide array of cellular functions that relate to the normal functioning

of the brain. Importantly, microglia are key actors of brain development. Indeed,

these early brain invaders originate outside of the central nervous system

from yolk sac myeloid progenitors, and migrate into the neural folds during

early embryogenesis. Before the generation of oligodendrocytes and astrocytes,

microglia thus occupy a unique position, constituting the main glial population

during early development and participating in a wide array of embryonic and

postnatal processes. During this developmental time window, microglia display

remarkable features, being highly heterogeneous in time, space, morphology

and transcriptional states. Although tremendous progress has been made in our

understanding of their ontogeny and roles, there are several limitations for the

investigation of specific microglial functions as well as their heterogeneity during

development. This review summarizes the current murine tools and models used

in the field to study the development of these peculiar cells. In particular, we focus

on the methodologies used to label and deplete microglia, monitor their behavior

through live-imaging and also discuss the progress currently being made by the

community to unravel microglial functions in brain development and disorders.
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Introduction

Microglia, the central nervous system (CNS) resident macrophages remained poorly
studied until an exponential growth in interest during the last two decades led to fascinating
insights into the origin of microglia, their functions, as well as dysfunctions in pathological
conditions (Mosser et al., 2017; Hammond et al., 2018; Hoeffel and Ginhoux, 2018; Li and
Barres, 2018; Thion et al., 2018a; Prinz et al., 2019). Contrary to most brain cells, microglia
were shown to originate from mesodermal yolk sac (YS) macrophage progenitors that travel
to reach the CNS during early embryonic development, around Embryonic day (E)9 in mice
and gestational week 4/5 in humans (Monier et al., 2007; Ginhoux et al., 2010; Verney
et al., 2010; Menassa et al., 2022). As such, these brain invaders constitute the main glial
population before the emergence of other glial cells such as oligodendrocytes and astrocytes.
After closure of the blood brain barrier around E14 in mice, microglia are believed to be
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enclosed in the brain under steady-state conditions. These
pioneer microglia thus proliferate, seed the entire parenchyma
and progressively mature in symbiosis with the neural tissue
microenvironment (Matcovitch-Natan et al., 2016; Thion et al.,
2018b; Kracht et al., 2020) before self-renewing throughout life.
This situation is different in zebrafish where microglia are fully
replaced by another source of microglia by adulthood (Xu et al.,
2015; Ferrero et al., 2018). A key aspect of their development is
the high heterogeneity in their colonization patterns, morphologies
and molecular properties. In particular, microglial colonization
of the brain parenchyma is a long-lasting process that spans
embryogenesis until the end of the second postnatal week,
following a very stereotypical and uneven spatiotemporal pattern
(Swinnen et al., 2013; Squarzoni et al., 2014; Menassa et al., 2022).
These cells transiently accumulate at specific hotspots such as
the cortico-striatal-amygdalar boundary and are excluded from
others regions such as the cortical plate. In addition, they display a
variety of morphologies (ameboid, poorly ramified, and elongated)
associated with different brain localizations. Finally, owing to high
throughput approaches, microglia have been shown to exhibit
different transcriptomic states, specifically during development, in
both mice and humans (Hammond et al., 2019; Li et al., 2019;
Sankowski et al., 2019; Kracht et al., 2020). This high developmental
heterogeneity contrasts with a relatively uniform distribution
in the whole parenchyma alongside homogeneously ramified
morphologies and molecular signatures at adult stages. Finally,
sex-specific microglial features have been highlighted in postnatal
steady-state conditions but also in response to environmental
challenges (Schwarz et al., 2012; Lenz et al., 2013; Rebuli et al., 2016;
Hanamsagar et al., 2017; Guneykaya et al., 2018; Thion et al., 2018b;
Villa et al., 2018; VanRyzin et al., 2019).

Several seminal studies have demonstrated that, beyond their
immune functions, microglia also perform a wide array of cellular
functions that relate to the normal functioning of the brain
and importantly to its development. In particular, they interact
with synapses to mediate remodeling, pruning and transmission
but have also been involved in synaptogenesis (Andoh and
Koyama, 2021). They further participate to neurogenesis and
oligodendrogenesis, partly through their regulation of cell death
and survival (Sierra et al., 2010; Cunningham et al., 2013;
Hagemeyer et al., 2017; Wlodarczyk et al., 2017; Nemes-Baran
et al., 2020; Sherafat et al., 2021; Cserep et al., 2022). They
also contribute to the refinement of axonal tracts (Pont-Lezica
et al., 2014; Squarzoni et al., 2014) and to the development of
cortical inhibitory circuits (Squarzoni et al., 2014; Thion et al.,
2019; Favuzzi et al., 2021; Yu et al., 2022). Besides, microglia
express various pattern recognition, purinergic, chemokine and
cytokine receptors, collectively described as the sensome (Hickman
et al., 2013), enabling them to detect and integrate environmental
changes. Importantly and consistently with their wide array of
cellular functions, microglial dysfunction has been associated with
the etiology of neurodevelopmental disorders, including autism
spectrum disorders and schizophrenia in humans and mouse
models (Lukens and Eyo, 2022). Therefore, during this crucial
period of development, it is key to better grasp their functions,
the regulatory mechanisms underpinning their heterogeneity and
how their molecular states may regulate their roles. Furthermore,
elucidating how external signals can impact on these fundamental
processes is a major challenge. This will be crucial to illuminate
specific and diverse microglial contributions to brain wiring as well

as shed light on pathological mechanisms of neurodevelopmental
disorders.

Beside microglia, other non-parenchymal macrophages called
Border-Associated Macrophages (BAMs) are present at the
interfaces of the brain: the meninges, choroid plexus and
perivascular space (Lee et al., 2021; Figure 1). Although microglia
and BAMs originate from yolk-sac derived progenitors and seed
the brain during embryogenesis, some of them are further replaced
by monocyte-derived cells, arising from hematopoietic stem cells
(Goldmann et al., 2016; Mrdjen et al., 2018; Van Hove et al., 2019;
Utz et al., 2020; Masuda et al., 2022). Moreover, while generally
referred to as BAMs, they display age- and tissue-specific signatures
(Kierdorf et al., 2019; Mildenberger et al., 2022). Most of the well-
recognized microglial markers, reporter mouse lines and models
that currently exist to label and deplete microglia can also target
a large part of macrophages such as the BAMs in the CNS but
also populations of peripheral macrophages (Green et al., 2020).
Consequently, despite intense research efforts, these limitations
prevent the identification and characterization of specific microglia
functions, especially during development. Herein, we discuss about
the current murine tools and models available to label or deplete
microglia and subsequently assess their developmental functions in
physiological and disease conditions.

From broad microglial targeting to
specific states labeling

Catch me if you can: Microglia and other
brain macrophages

Historically, microglia were mainly identified either through
Iba1 immunostaining or using the Cx3cr1GFP/+ (Jung et al., 2000)
that labels many macrophages, including microglia and BAMs.
Similarly, the well-established Cx3cr1creERT 2 mouse lines have been
very useful to inactivate genes in these cells (Parkhurst et al., 2013;
Yona et al., 2013). Nevertheless, they are not specific to microglia
and may trigger microglial reactivity in neonates upon tamoxifen
administration (Sahasrabuddhe and Ghosh, 2022). Recent studies,
including single cell RNA sequencing analyses, highlighted more
specific homeostatic microglia markers including p2ry12, Sall1,
Tmem119, Hexb, Siglech (Gautier et al., 2012; Buttgereit et al.,
2016; Satoh et al., 2016; Cserep et al., 2020; Masuda et al., 2020)
allowing the use of specific antibodies to label either microglia
(P2ry12, Tmem119, and SiglecH) or BAMs (CD206, Lyve1, and
Siglec1) (Mrdjen et al., 2018; Figure 1). Fluorescent In Situ
Hybridization (FISH) has also been used to circumvent the absence
of specific antibodies, particularly by taking advantage of the
RNAscope technique (Matcovitch-Natan et al., 2016; Hammond
et al., 2019). To specifically visualize, manipulate and assess
microglia functions, reporter and creERT2-expressing lines were
generated with minor recombination in BAMs: Tmem119eGFP and
Tmem119creERT 2 (Kaiser and Feng, 2019), Tmem119tdTomato (Ruan
et al., 2020), HexbtdTomato and HexbcreERT 2 (Masuda et al., 2020),
p2ry12creERT 2 (McKinsey et al., 2020), Sall1GFP, and Sall1creERT 2

(Buttgereit et al., 2016), the latter recombining in neurons and other
glia (Chappell-Maor et al., 2020; Table 1). Nonetheless, since most
of these genes start to be expressed as microglia mature (Bennett
et al., 2016), it is important to stress that there are so far no
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FIGURE 1

Diversity of CNS macrophages in steady-state conditions. During steady-state, microglia are localized within the brain parenchyma and are highly
heterogeneous in morphologies, localization and molecular signatures throughout brain development. In particular, axon tract-associated microglia
(ATM)/proliferative-region-associated microglia (PAM)/Cd11c-positive microglia have been described during early postnatal development in the
corpus callosum and other white matter regions. Border-associated macrophages (BAMs) reside at distinct interfaces of the CNS such as the
meninges, choroid plexus and perivascular space (Goldmann et al., 2016; Mrdjen et al., 2018; Van Hove et al., 2019; Utz et al., 2020; Masuda et al.,
2022). Non-parenchymal microglia-like Kolmer’s epiplexus BAMs (CPepi) reside in the apical surface of the choroid plexus facing the cerebrospinal
fluid (CSF) and share some transcriptional features with microglia and ATM signature (Van Hove et al., 2019). In particular, meningeal MHCIIlow and
MHCIIhigh macrophages are localized in the dura matter while subdural macrophages (SDM) are restrained to the subdural area. Finally, while
perivascular macrophages (PVM) are found in the perivascular space, between the vascular basement membrane and the glia limitans of the
parenchyma, choroid plexus contains MHCIIlow and MHCIIhigh BAMs. The insets depict the most commonly used markers for microglia (green),
BAMs (blue), and common markers to both populations (black). ATM, axon tract-associated microglia; BAMs, border-associated macrophages;
CPepi, Kolmer’s epiplexus; CSF, cerebrospinal fluid; MHCII, major histocompatibility complex class II; PVS, perivascular space; PVM, perivascular
macrophage; SDM, subdural macrophage.

alternatives to the Cx3cr1GFP/+ or Cx3cr1creERT 2 lines to efficiently
target early embryonic microglia.

Targeting microglia more specifically is crucial, since studies
often assign a variety of roles to microglia using depletion
models that target both microglia and BAMs. Kim et al. (2021)
took advantage of an elegant “split cre” binary genetic construct
to generate the Cx3cr1ccre:Sall1ncre and Cx3cr1ccre:Lyve1ncre, to
selectively target microglia and BAMs, respectively. Furthermore,
several mouse lines including the Siglec1cre (Utz et al., 2020), Pf4-
Cre (McKinsey et al., 2020), Lyve1creERT 2, and Mrc1CreERT 2 lines
(Masuda et al., 2022) have been shown to specifically label BAMs
during development and thereby enable to follow their trajectory
(Table 1). In addition, while no circulating cells are thought to enter
in the brain parenchyma during steady-state after BBB closure,
monocyte infiltration can occur in disease, aging and injury, and
can be monitored using bone marrow chimeras (Mills et al.,
2022). These new tools will be important to decipher the relative
contributions of microglia, BAMs or infiltrating myeloid cells, but
still require thorough characterization with regards to efficiency
and rate of spontaneous recombination at different timepoints
along development.

Finally, cell-specific viral gene delivery has been extensively
used to target different CNS population but robust transduction
in microglia remained quite inefficient until recently (Maes
et al., 2019). In a ground-breaking study, Lin et al. (2022)

successfully targeted 80% of microglia in vivo using adeno-
associated viruses without inducing microglia reactivity or changes
in gene expression, although it remains elusive to what extend
BAMs were also affected. Such approach opens new avenues to
study microglia but also have tremendous translational potential.

Looking with new eyes

Along with new markers, mouse lines and viral approaches
to target microglia, technical advances in diverse fields shed new
light on ways to study microglia, in particular going from fixed
immobile imaging in brain slices to dynamic and global approaches.
First, tissue clearing methods are constantly improving, with some
of them perfectly preserving the signal from reporter lines and
antibodies [reviewed in Eme-Scolan and Dando (2020)]. This
allows visualization of microglia in whole intact brains. However,
while these techniques are becoming well-established and easier
to use routinely, the difficulty lies in the analysis of the generated
data. Annotated 3D atlases of the developing brain will offer
many exciting possibilities toward a more comprehensive study of
microglia development.

Another revolution in the field of microglia came with
two-photon live-imaging experiments, which revealed never
resting microglia with their processes constantly surveilling their
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TABLE 1 Tools to label, target and deplete microglia and BAMs.

Tagging models Microglia BAMs Prenatal and early postnatal Adulthood Remarks References

Cx3cr1GFP/+ Yes Yes GFP expressed by E9.5 >99% Targets peripheral immune cells and myeloid BM
progenitors

Jung et al., 2000

Cx3cr1creERT2 (1,2) Yes Yes 40H-Tam. E9.0: 99% efficiency at E10.5 (2) >99% Spontaneous recombination reported Parkhurst et al., 2013 (1);
Yona et al., 2013 (2)

Tmem119eGFP Yes Few GFP expressed by P1 >99% Transiently labels blood vessels at P1
Kaiser and Feng, 2019

Tmem119creERT2 Yes Few Tam. P2, P3 and P4: 90% efficiency by P14 >99% Targets few CD45+ cells in blood

Tmem119tdTomat Yes Few N.A. >95% Ruan et al., 2020

HexbtdTomato Yes Few TdTomato expressed by E12.5 >99% Labels few meningeal and perivascular BAMs
Masuda et al., 2020

HexbcreERT2 Yes Few Tam. P1 and P3: 90% efficiency at P42 ˜80% Targets peripheral macrophages in kidney

P2ry12creERT2 Yes Few Tam. E13.5, E15.5 and E17.5: robust efficiency by E18.5 in
microglia and subsets of BAMs (40% in choroid plexus, 10% in
meninges, few PVM)

90–95% Targets 20–25% of BAMs in choroid plexus and meninges
McKinsey et al., 2020

Sall1GFP Yes No GFP expressed in 20% microglia by E12.5, 69% by E14.5, 90%
by P2

>95% Targets <10% other CNS cells

Buttgereit et al., 2016; Utz et al., 2020

Sall1creERT2 Yes No Tam. E14.5 and E16.5: 75% efficiency at E18.5 >95% Targets <10% other CNS cells

Cx3cr1ccre :Sall1ncre Yes No N.A. ˜90%
Kim et al., 2021

Cx3cr1ccre :Lyve1ncre No Yes N.A. 20% of Lyve1+ cells

Lyve1CreERT2 No Yes 40H-Tam. E16.5: 50% efficiency in meningeal and perivascular
macrophages at P14

N.A. Targets lymphatic endothelial cells Masuda et al., 2022

Siglec1cre No Yes Efficiently floxes gene in BAMs at E18.5 N.A. Siglec1 expressed by 60% BAMs at E14.5, 100% at E18.5 Utz et al., 2020

Pf4-Cre Few Yes N.A. >99% McKinsey et al., 2020

Mrc1CreERT2 No Yes 40H-Tam. E9.0: 10% efficiency in BAMs and 5% in microglia by
E18.5

>95%
Masuda et al., 2022

Adenoviruses Yes N.A. N.A. 80% Lin et al., 2022
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TABLE 1 (Continued)

Depletion
models

Microglia BAMs Prenatal and early postnatal Adulthood Remarks References

Killing by numbers

Cx3cr1CreER :R26iDTR Yes Yes N.A. >99% Fast repopulation Parkhurst et al., 2013

IBA1-tTA::DTAtetO/tetO Yes Yes Withdrawal of doxycycline from maternal diet from P5: 50%
depletion at P8

˜90% in retina Fast repopulation Miyamoto et al., 2016;
Takeda et al., 2018

SiglechDTR/DTR Yes No Injection at E10.5: 80% depletion at E12.5, 60% at E14.5 80–85% Fast repopulation Konishi et al., 2017; Li et al., 2021

CSF-1R inhibitors

Anti CSF-1R antibodies Yes Yes Injections at E6 and E7: >98% depletion at E14.5 No effect Fast repopulation MacDonald et al., 2010;
Squarzoni et al., 2014

Anti CSF-1 antibodies Yes No Injections at E6 and E7: >50% depletion at P0.5 60% in white matter
region

Dose-dependent efficiency

Easley-Neal et al., 2019

Anti IL-34 antibodies Yes No Injections at E6 and E7: no effect at P0.5. Injection at P0.5: 30%
depletion at P4

50% in grey matter
region

Dose-dependent efficiency

PLX5622 Yes Yes Chow PLX from E3.5: 99% depletion at E15.5 >95% within 7 days Fast repopulation Huang et al., 2018; Rosin et al., 2018;
Marsters et al., 2020

PLX3397 Yes Yes Chow PLX from E14 followed by s.c. injections in pups: 90%
depletion at P5 in spinal cord

>99% within 7 days Fast repopulation Elmore et al., 2014; Li et al., 2020

Genetic models

Pu.1−/− Yes Yes 100% 100% Homozygotes die shortly after birth McKercher et al., 1996

Csf1op/op Yes Yes N.A. 0–30% Abnormal brain development Michaelson et al., 1996

Il34LacZ/LacZ (1,2) Yes N.A. >80% decrease at P2 (1); normal colonization of the brain from
E10.5 to newborn (2)

50% (1; 2) Wang et al., 2012 (1);
Greter et al., 2012 (2)

Csf1r−/− Yes Yes >99% 100% Shortened lifespan and abnormal brain development Erblich et al., 2011

Sall1CreER ;Csf1rfl/fl Yes No N.A. 70–90% Spatial variability in efficiency Buttgereit et al., 2016

HexbCreERT2 ;Csf1rfl/fl Yes No N.A. 60% Masuda et al., 2020

Csf1r1FIRE/1FIRE Yes Few Absence of CPepi in the choroid plexus, other BAMs reduced 100% Rojo et al., 2019; Munro et al., 2020

Nestincre ;Csf1fl/fl Yes N.A. 60% decrease in E17.5 cerebellum ˜50% in cerebellum Kana et al., 2019

Nestincre ;Il34fl/fl Yes N.A. N.A. ˜85% in striatum Badimon et al., 2020

Table summarizing the main mouse lines and tools available to label, target and deplete microglia and BAMs, indicating their specificity and efficiency in development and adulthood. BAMs, border-associated macrophages; BM, bone marrow; CNS, central nervous
system; CPepi, Kolmer’s epiplexus; DTA, diphtheria toxin fragment A; DTR, diphtheria toxin receptor; iDTR, inducible diphtheria toxin receptor; i.p., intraperitoneal; N.A., non-applicable; PVM, perivascular macrophages; s.c., subcutaneous; Tam, tamoxifen; 40H-Tam,
4-hydroxytamoxifen.
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environment as well as rapidly reacting in case of injury (Davalos
et al., 2005; Nimmerjahn et al., 2005). In combination with other
markers, it is thus possible to monitor microglial interaction with
blood vessels (Csaszar et al., 2022), radial glia (Rosin et al., 2021),
neuronal populations as well as track microglial processes and
their specific contact with synapses (Wake et al., 2009) or nodes
of Ranvier (Ronzano et al., 2021). While some experiments are
performed on brain slices, inducing tissue damage and possibly
altering microglial behavior, most studies use cranial windows
or skull thinning that allows microglial observation in their
homeostatic environment. For pups, adapted approaches are being
developed taking advantage of the thinness of the embryonic skull
to perform ex utero live-imaging of microglia and macrophages
in the brain of intact embryos (Hattori et al., 2020, 2022; Munz
et al., 2022), that will probably be critical to better characterize key
aspects of microglia development such as their entry in the brain
parenchyma (Stremmel et al., 2018).

As a self-renewing population arising from a restricted pool
of pioneer cells, the questions of microglial expansion during
development, their migration and turnover were raised–and still
retain some mystery. The “Microfetti” mice developed by Tay
et al. (2017) in which microglia express randomly one out of
four fluorophores after tamoxifen induction, highlighted clonal
expansion of adult microglia in pathology. In addition, Ratz et al.
(2022) developed the new TREX technique, which combines single-
cell and spatial transcriptomic coupled to early (E9.5) in vivo
barcoding, in order to analyze the lineage relationships between
mature cells and progenitors. Thereby, they highlighted drastic
microglial expansion from a limited pool of progenitors. Though
not extensively used yet, these tools for clonal analysis and lineage
tracing will be valuable in the context of development to better
understand microglial expansion, migration and final distribution
in the brain.

Targeting the different flavors of
microglia

Historically, microglia were classified as displaying either
a neurotoxic pro-inflammatory M1 or neuroprotective anti-
inflammatory M2 phenotype but this binary perspective has
been largely revisited (Paolicelli et al., 2022). The development
of high throughput technologies such as single cell and single
nucleus RNA sequencing (sc/snRNA-seq), cytometry by time-
of-flight (CyTOF), or multiplex error-robust fluorescent in situ
hybridization (MERFISH) revealed a richer heterogeneity in
microglial profiles. While microglia constitute a relatively
homogeneous population in adulthood, they display a striking
heterogeneity during prenatal/early postnatal development, aging
and neurodegeneration (Deczkowska et al., 2018; Hammond
et al., 2019; Li et al., 2019; Masuda et al., 2019; Sankowski et al.,
2019; Kracht et al., 2020; Marschallinger et al., 2020; Safaiyan
et al., 2021; Stogsdill et al., 2022). Nevertheless, we should not
underestimate the experimental bias introduced by cell dissociation
and sorting-strategies, sequencing technologies and subsequent
analyzes selected to characterize microglial heterogeneity (Marsh
et al., 2022; Paolicelli et al., 2022; Sankowski et al., 2022). To avoid
extensive confusion in the field, it remains crucial to be cautious
about the semantic implication of microglial heterogeneity and the

subsequent functional diversity associated with it (Paolicelli et al.,
2022).

Specific developmental microglial states are thus starting
to be described such as the Axon Tract-associated Microglia
(ATM), also known as Proliferative-region-Associated Microglia
(PAM), Cd11c-positive microglia, and Youth-Associated Microglia
(YAM). They are characterized by the expression of several
genes such as Spp1, Itgax, Gpnmb and were initially identified
in the postnatal white matter as regulators of the development
of oligodendrocyte precursors and of subsequent myelinogenesis
(Hagemeyer et al., 2017; Wlodarczyk et al., 2017; Hammond
et al., 2019; Li et al., 2019; Silvin et al., 2022). Interestingly,
there are remarkable similarities in transcriptomic signatures
between ATM and Disease Associated Microglia (DAM), initially
characterized in mouse models of Alzheimer’s disease (Keren-
Shaul et al., 2017; Krasemann et al., 2017), raising the question
of their potential similarities, differences–and relationship. Apart
from the use of specific antibodies or in situ hybridization
probes, the field lacks genetic tools to specifically label and target
microglia states. So far, only a CD11ccre line has been used to
target ATM (Wlodarczyk et al., 2017), but was unsuccessful in
depleting ATM in combination with Diphtheria Toxin strategies.
In addition, a novel Spp1tdTomato mouse line has been generated
and used to monitor SPP1 from perivascular macrophages (De
Schepper et al., 2022), and could constitute an interesting tool
for ATM-lineage studies. Based on their emerging molecular
characterization, novel mouse lines or viral approaches will
enable specific depletion or inactivation of microglial states
to further assess their fates and functions. Moreover, in-depth
characterization of transcriptomic, epigenomic, and metabolomic
landscapes in microglia would enable to better understand their
regulatory mechanisms, the transientness of these states and to
which extent they can be induced by the microenvironment at
different stages of life. Along these lines, the progress of spatial
transcriptomics toward increased structural resolution should
lead to a tremendous breakthrough to characterize microglial
heterogeneity (Stogsdill et al., 2022), in particular at hotspots
of accumulating microglia during development. Altogether, the
field is moving onto a specific targeting of developmental
microglial states which should shed new light on their regulatory
mechanisms, their plasticity and functions in steady-state and
disease conditions.

En route for specific depletion
approaches

Microglial functions in brain development, homeostasis and
diseases were historically assessed using in vivo depletion strategies
summarized in Table 1. Though a lot of techniques have been
developed, their diversity illustrates the difficulty to obtain a
specific, efficient and long-lasting depletion of microglia while
limiting its off-target effects.

Killing by numbers

The first strategies employed were aiming to directly trigger
microglial apoptosis by administration of clodronate liposomes,
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that are specifically phagocytosed by microglia and BAMs and
induce cell death upon cytoplasmic release (Green et al., 2020).
This approach is efficient in the early post-natal brain and in
adults, but the inability of the clodronate liposomes to cross the
blood brain barrier requires an intracerebral injection, inducing
an injury and possible release of inflammatory cytokines (Han
et al., 2019). Another approach uses the diphtheria-toxin (DT)
based systems, either with direct expression of the DTA or with DT
receptor, the latter needing administration of DT. The first studies
were performed in Cx3cr1CreER:R26iDTR and Iba1-tTA:DTAtetO/tetO

targeting both microglia and BAMs (Parkhurst et al., 2013;
Miyamoto et al., 2016; Takeda et al., 2018). On the contrary,
the use of the Siglechdtr/+ mice led to specific and transient
depletion of embryonic microglia, without affecting BAMs (Li et al.,
2021). Thus, the constitutive or inducible DTR/DTA expression,
combined with specific microglial lines provides a better temporal
control as well as selective effect, though their efficiency remains
variable.

CSF-1R inhibitors

The CSF-1 receptor (CSF-1R) is expressed by microglia,
macrophages and their progenitors and its signaling is essential for
their survival and proliferation. It thus became a preferential target
in the quest for microglial depletion methods. Injections of an anti-
CSF-1R antibody performed at E6.5 and E7.5 lead to a drastic
depletion of myeloid progenitors, macrophages and microglia,
while repopulation spans the first postnatal week (Squarzoni et al.,
2014; Hoeffel and Ginhoux, 2015; Thion et al., 2019). On the
other hand, embryonic targeting of CSF-1, one of the two CSF-1R
ligands, through anti-CSF-1 antibody, leads to a drastic depletion
of forebrain microglia (Easley-Neal et al., 2019), with possible
off-target effects of the circulating antibodies. Pharmacological
inhibitors of the CSF-1R injected or delivered non-invasively via
food pellets have been broadly developed to deplete adult microglia,
such as PLX3397 and PLX5622, the latter having a higher specificity
and improved brain penetrance (Elmore et al., 2014; Green et al.,
2020) while it efficiently depletes embryonic microglia, enabling a
temporal control of the depletion during gestation (Rosin et al.,
2018; Marsters et al., 2020). Nevertheless, as this treatment can
affect lactation by depleting maternal macrophages essential for
mammary gland development (O’Brien et al., 2012), it can impact
pup survival following birth. For early postnatal depletion, direct
subcutaneous injections of PLX3397 or PLX5622 during the first
post-natal week allows for an efficient depletion of microglia (Li
et al., 2020; Favuzzi et al., 2021; Gesuita et al., 2022). Although
beyond the scope of this review, CSF-1R inhibitors are also used
in other species including humans, bringing novel therapeutic
approaches [reviewed in Han et al. (2022)]. Overall, targeting the
CSF-1R pathway has proven to be efficient and convenient, but
also affects peripheral macrophages and BAMs, preventing the
identification of specific microglial functions.

Genetic models

Different genetic models, including constitutive knock-outs
of fundamental transcription or survival factors, like Pu.1−/−

(McKercher et al., 1996) and Csf1r−/− (Erblich et al., 2011), fail
to develop microglia as well as most macrophages (Green et al.,
2020). This results in many off-target effects and early death in
Pu.1−/− and Csf1r−/−. On the other hand, the Csf1rfl/fl allows for a
more specific targeting of microglia, thanks to the microglia specific
mouse lines now available and their possible temporal induction.
This strategy has been used with Sall1CreER;Csf1rfl/fl (Buttgereit
et al., 2016) and HexbCreERT 2;Csf1rfl/fl mice (Masuda et al., 2020),
with a respective efficiency varying across brain regions from 70%
to 90% and of 60%.

An additional important model is the Csf1r1FIRE/1FIRE mice,
in which a Csf1r enhancer is deleted (Rojo et al., 2019; Munro
et al., 2020). This leads to the absence of microglia from the brain
parenchyma, and of resident macrophages of the skin, kidney,
heart and peritoneum; while other macrophages and monocytes
are unaffected. Importantly, these mice are healthy and fertile
in a mixed B6CBAF1/C57BL/6J background, and do not display
strong developmental defects described in the Csf1r−/−. So far,
they were used to investigate the role of resident microglia in
Alzheimer disease mice (Kiani Shabestari et al., 2022) and they
will provide a more specific and long-lasting model to explore
microglial functions.

Finally, full inactivation of CSF-1R ligands, Csf-1 (Chang et al.,
1994; Kondo and Duncan, 2009) or Il34 (Greter et al., 2012;
Wang et al., 2012), expressed by the neural tissue, results in
time- and region-dependent partial depletion of microglia albeit
there are still some controversies amongst studies and major
impact on peripheral macrophages (Green et al., 2020; Table 1).
Nevertheless, under the pan neuronal driver Nestincre that restricts
depletion to the nervous system, thus mainly affecting microglia,
the Nestincre;Csf1fl/fl and Nestincre;Il34fl/fl are respectively deprived
of microglia in the white matter and cerebellum or in the gray
matter highlighting region-specific dependency (Kana et al., 2019;
Badimon et al., 2020). On the other hand, macrophages are
unaffected in the yolk sac, fetal liver and fetal limbs. Last, because
the CSF-1R ligands are differentially expressed and required from
microglia through development, these lines provide promising
models to investigate local microglial functions.

Concluding remarks

Microglia now appear as key actors of brain development,
interacting with most brain cells and regulating several crucial
developmental processes. Nevertheless, these exciting advances
were done in models affecting both microglia and BAMs. Thus,
dissecting their respective contributions thanks to new specific
tools will be key to the field. In addition, further understanding
microglial diversity during development and the functions played
by specific states should bring new light on their importance
in neurodevelopmental pathologies and open new avenues for
therapeutic intervention.
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