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Modality-specific brain 
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A central question in affective science and one that is relevant for its clinical 
applications is how emotions provided by different stimuli are experienced and 
represented in the brain. Following the traditional view emotional signals are 
recognized with the help of emotion concepts that are typically used in descriptions 
of mental states and emotional experiences, irrespective of the sensory modality. 
This perspective motivated the search for abstract representations of emotions 
in the brain, shared across variations in stimulus type (face, body, voice) and 
sensory origin (visual, auditory). On the other hand, emotion signals like for 
example an aggressive gesture, trigger rapid automatic behavioral responses 
and this may take place before or independently of full abstract representation 
of the emotion. This pleads in favor specific emotion signals that may trigger 
rapid adaptative behavior only by mobilizing modality and stimulus specific brain 
representations without relying on higher order abstract emotion categories. To 
test this hypothesis, we presented participants with naturalistic dynamic emotion 
expressions of the face, the whole body, or the voice in a functional magnetic 
resonance (fMRI) study. To focus on automatic emotion processing and sidestep 
explicit concept-based emotion recognition, participants performed an unrelated 
target detection task presented in a different sensory modality than the stimulus. 
By using multivariate analyses to assess neural activity patterns in response to the 
different stimulus types, we reveal a stimulus category and modality specific brain 
organization of affective signals. Our findings are consistent with the notion that 
under ecological conditions emotion expressions of the face, body and voice may 
have different functional roles in triggering rapid adaptive behavior, even if when 
viewed from an abstract conceptual vantage point, they may all exemplify the 
same emotion. This has implications for a neuroethologically grounded emotion 
research program that should start from detailed behavioral observations of how 
face, body, and voice expressions function in naturalistic contexts.
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Introduction

In reasoning about emotion expressions and their functional and brain basis, we tend to use 
abstract categories and to lump together different signals presumably referring to their shared 
meaning. Yet the specific conditions of subjective experience of an emotional stimulus in the 
natural environment often determine which affective signal triggers the adaptive behavior. For 
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example, an angry body posture alerts us already from a distance 
while an angry facial expression can only be seen from closer by and 
personal familiarity may play a role in how we react to it. Thus, the 
angry body expression viewed from a distance and the angry face 
expression seen from close by may each trigger a different reaction as 
adaptive behavior needs to fit the concrete context. Thus, another 
dimension of emotion signals besides the familiar abstract concept 
representation is related to their role in adaptive action. Given this 
essential role in triggering rapid automatic behavioral responses, 
sensory modality specific, local and context sensitive brain 
representations may play a role, suggesting that face, body, and voice 
expression perception may each have sensory modality specific 
emotion representations. Such a functional brain representation of 
affective signals that is sensitive to the naturalistic spatiotemporal 
contexts may exist besides the abstract higher order concept 
representations traditionally envisaged by emotion theorists (Ekman 
and Cordaro, 2011; but see Lindquist et al., 2012). Emotion perception 
in naturalistic conditions is often driven by a specific context that is 
relative to a behavioral goal. This specific context includes aspects that 
are currently not yet envisaged in human emotion research like for 
example the spatial parameters that matter for threat perception (de 
Borst et al., 2020) and convey a different behavioral status to signals 
from face, the body and the voice that, from an abstract vantage point, 
all have the same meaning. For example, since facial expressions can 
only be seen from sufficiently close by, decoding of facial expression 
may rely on processes related to personal memory more than this is 
the case for perception of voice or body expressions.

Previous studies comparing how the face, or the face and the voice 
and only in a few cases also the whole body convey emotions were 
motivated to find the common representations, variously referred 
amodal, supramodal or abstract, underlying these different 
expressions. They concentrated on where in the brain abstract 
representations of emotion categories are to be found (Peelen et al., 
2010; Klasen et al., 2011). Such representations were found in high-
level brain areas known for their role in categorization of mental states 
(Peelen et al., 2010). Specifically, medial prefrontal cortex (MPFC) and 
superior temporal cortex (STS) have been highlighted as representing 
emotions perceived in the face, voice, or body at a modality-
independent level. Furthermore, these supramodal or abstract 
emotion representations presumably play an important role in 
multisensory integration by driving and sustaining convergence of the 
sensory inputs toward an amodal emotion representation (Gerdes 
et  al., 2014). However, the existence of supramodal emotion 
representations was based on measurements of brain activity during 
explicit emotion recognition (Peelen et al., 2010; Klasen et al., 2011). 
As emotion perception in daily life is often automatic and rapid, it 
remains unclear whether supramodal emotion representations also 
emerge in the absence of explicit emotion processing.

To clarify the goal of our study it is important to distinguish the 
investigation of perpetual representations of emotion signals from 
studies on the neural basis of emotional experience, on how reward 
related processes are involved in processes shaping behavioral 
reactions and many related questions (Rolls, 2014, 2019). Clearly, 
perceptual representations of emotion signals do not be themselves 
define the emotional experience, its neural or its phenomenal basis. 
Other non-sensory brain areas like importantly orbitofrontal cortex 
are involved in defining how perception of an emotional signal 
ultimately gives rise to experience and behavior but these higher order 
issues are out of the scope of the present study.

To increase the ecological validity of our study of emotion 
processing in the human brain, we used naturalistic dynamic stimuli 
showing various emotion expressions of the body, the face or the 
voice. Importantly, to avoid explicit emotion recognition and verbal 
labeling, neither of which are normally part of daily emotion 
perception, participants performed a task related to another modality 
than that of the stimulus of interest. We used multivariate pattern 
analysis to identify cortical regions containing representations of 
emotion and to assess whether emotion representations were of 
supramodal nature or specific to the modality or stimulus. Following 
the literature we defined abstract or supramodal representation areas 
as regions that code what is common to a given emotion category 
regardless of the sensory modalities and thus have neither stimulus 
nor modality specific components. Our results show that during such 
automatic, implicit emotion processing, neuronal response patterns 
for varying emotions are differentiable within each stimulus type (i.e., 
face, body, or voice) but not across the stimulus types. This indicates 
that the brain represents emotions in a stimulus type and modality 
specific manner during implicit, ecologically valid emotion 
processing, as seemingly befits the requirements of rapid 
adaptive behavior.

Methods

Participants

Thirteen healthy participants (mean age = 25.3y; age 
range = 21–30y; two males) took part in the study. Participants 
reported no neurological or hearing disorders. Ethical approval was 
provided by the Ethical Committee of the Faculty of Psychology and 
Neuroscience at Maastricht University. Written consent was obtained 
from all participants. The experiment was carried out in accordance 
with the Declaration of Helsinki. Participants either received credit 
points or were reimbursed with a monetary reward after their 
participation in the scan session.

Stimuli

Stimuli consisted of color video and audio clips of four male 
actors expressing three different emotional reactions to specific 
events (e.g., fear in a car accident or happiness at a party). Images 
of such events were shown to the actors during their video 
recordings with the goal of triggering spontaneous and natural 
reactions of anger, fear, happiness, and an additional neutral 
reaction. Importantly, the vocal recordings were acquired 
simultaneously with the bodily or facial expression to obtain the 
most natural match between visual and auditory material. A full 
description of the recording procedure, the validation and the 
video selection is given in Kret et al. (2011a), see Figure 1 top panel 
for several examples of the stimulus set. In total there were 16 
video clips of facial expressions, 16 video clips of body expressions, 
and 32 audio clips of vocal expressions, half of which were recorded 
in combination with the facial expressions and half of which were 
recorded in combination with the body expressions (i.e., two audio 
clips per emotional expression per actor). All actors were dressed 
in black and filmed against a green background under controlled 
lighting conditions.
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Video clips were computer-edited using Ulead, After Effects, and 
Lightworks (EditShare). For the body stimuli, faces of actors were 
blurred with a Gaussian mask such that only the information of the 
body was available. The validity of the emotional expressions in the 
video clips was measured with a separate emotion recognition 
experiment (emotion recognition accuracy >80%). For more 
information regarding the recording and validation of these stimuli, 
see Kret et al. (2011a,b).

Experimental design and behavioral task

In a slow-event related design, participants viewed series of 1 s 
video clips on a projector screen or listened to series of 1 s audio clips 
through MR-compatible ear buds (Sensimetrics S14) equipped with 
sound attenuating circumaural muffs (attenuation >29 dB). The 

experiment consisted of 12 runs divided over 2 scan sessions. Six runs 
consisted of face and voice stimuli, followed by six runs consisting of 
body and voice stimuli. Each run was split in two halves where either 
auditory (consisting of 18 audio clips) or visual (consisting of 18 
video clips) stimuli were presented. The 18 trials within each run half 
comprised 16 regular trials (consisting of 4 times 3 different emotion 
expressions and 4 times one neutral expression,) with an inter-
stimulus interval of 10.7–11.3 s and two catch trials requiring a 
response. This design of using an orthogonal task was selected to 
divert attention from the modality of interest by blocking explicit 
recognition of the emotional expression and tap into automatic 
perception of the affective content (Vroomen et al., 2001; Rolls et al., 
2006). The task instructions stipulated whether attention was to 
be allocated to the visual or to the auditory modality. During visual 
stimulus presentations, participants were instructed to detect an 
auditory change, and during auditory stimulus presentations, 

FIGURE 1

(A) Example stimuli from the body (top row) and face (middle row) set. The full set of stimuli can be accessed at: https://osf.io/7d83r/?view_only=a772
df287d5a42d1ae7269d1eec4a14e. (B) Decoder trained to classify stimulus type, for the two sessions separately, results derived from thresholding the 
volume map at p  <  0.05, FWE corrected. (C) Decoder trained to classify emotion from all stimuli (yellow), all visual stimuli (face and body, red) and all 
voice stimuli (blue), The displayed results are label maps derived from the volume map thresholded at p  <  0.001 uncorrected, with a minimum cluster 
size threshold of k  =  25 voxels. Angular G, angular gyrus; A1, primary auditory cortex; STS, superior temporal cortex; PCG, posterior cingulate gyrus.
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participants were instructed to detect visual change catch trials. For 
the auditory catch trial task, a frequency modulated tone was 
presented and participants had to respond whether the direction of 
frequency modulation was up or down. For the visual distractor task, 
participants indicated whether the fixation cross turned lighter or 
darker during the trial. A separate localizer session was also 
performed where participants passively viewed stimuli of faces, 
bodies, houses, tools and words in blocks; see Zhan et al. (2018) 
for details.

Data acquisition

We measured blood-oxygen level-dependent (BOLD) signals with 
a 3 Tesla Siemens Trio whole body MRI scanner at the Scannexus MRI 
scanning facilities at Maastricht University (Scannexus, Maastricht). 
Functional images of the whole brain were obtained using 
T2*-weighted 2D echo-planar imaging (EPI) sequences [number of 
slices per volume = 50, 2 mm in-plane isotropic resolution, repetition 
time (TR) = 3,000 ms, echo time (TE) = 30 ms, flip angle (FA) = 90°, 
field of view (FoV) = 800 × 800 mm2, matrix size = 100 × 100, multi-
band acceleration factor = 2, number of volumes per run = 160, total 
scan time per run = 8 min]. A three-dimensional (3D) T1-weighted 
(MPRAGE) imaging sequence was used to acquire high-resolution 
structural images for each of the participants [1-mm isotropic 
resolution, TR = 2,250 ms, TE = 2.21 ms, FA = 9°, matrix 
size = 256 × 256, total scan time = 7 min approx.]. The functional 
localizer scan also used a T2*-weighted 2D EPI sequence [number of 
slices per volume = 64, 2 mm in-plane isotropic resolution, 
TR = 2,000 ms, TE = 30 ms, FA = 77, FoV = 800 × 800 mm2, matrix 
size = 100 × 100, multi-band acceleration factor = 2, number of volumes 
per run = 432, total scan time per run = 14 min approx.].

Analysis

Pre-processing
Data were preprocessed and analyzed with BrainVoyager QX 

(Brain Innovation, Maastricht, Netherlands) and custom Matlab code 
(Mathworks, United States) (Hausfeld et al., 2012, 2014). Preprocessing 
of functional data consisted of 3D motion correction (trilinear/sync 
interpolation using the first volume of the first run as reference), 
temporal high pass filtering (thresholded at five cycles per run), and 
slice time correction. We  co-registered functional images to the 
anatomical T1-weighted image obtained during the first scan session 
and transformed anatomical and functional data to the default 
Talairach template.

Univariate analysis
We estimated a random-effects General Linear Model (RFX 

GLM) in BrainVoyager 21.21 with a predictor for each stimulus 
condition of interest (12 conditions in total): four emotion conditions 
times three stimulus categories (face, body, voice). Additionally, 
we included predictors for the trials indicating the start of a new block 

1 https://www.brainvoyager.com/

and the catch trials. Predictors were created by convolving stimulus 
predictors with the canonical hemodynamic function. Finally, 
we  included six motion parameters resulting from the motion 
correction as predictors of no interest. For this analysis, data was 
spatially smoothed with a 6 mm full-width half-maximum (FWMH) 
Gaussian kernel. To assess where in the brain the two different 
experimental factors had an influence, an ANOVA was run with either 
modality or emotion as a factor.

Multivariate analysis
We first estimated beta parameters for each stimulus trial and 

participant with custom MATLAB code by fitting an HRF function 
with a GLM to each trial in the time series. These beta values were 
then used as input for a searchlight multivariate pattern analysis 
(MVPA) with a Gaussian Naïve Bayes classifier (Ontivero-Ortega 
et al., 2017) which was also performed at the individual level. The 
searchlight was a sphere with a radius of five voxels. The Gaussian 
Naïve Bayes classifier is an inherently multi-class probabilistic 
classifier that performs similar to the much-used Support Vector 
Machine classifier in most scenarios, but it is computationally more 
efficient. The classifier was trained to decode (1) stimulus modality 
(visual or auditory); (2) stimulus emotion (e.g., fear in all stimulus 
types vs. angry in all stimulus types); (3) within-modality emotion 
(e.g., body angry vs. body fear); (4) cross-modal emotion (e.g., classify 
emotion by training on body stimuli and testing on the voice stimuli 
from the body session). As the GNB classifier is multi-class by design, 
the accuracies are calculated as the ratio of correct predictions to the 
total number of predictions regardless of class.

Classification accuracy was computed by averaging the decoding 
accuracy of all folds of a leave one-run out cross-validation procedure. 
We tested the significance of the observed decoding accuracies at the 
group level with a one-sample t-test against chance-level and corrected 
accuracy maps from each participant for multiple comparisons with 
the SPM Family Wise Error (FWE) procedure at p < 0.05 (Penny et al., 
2011) (modality chance level = 50%, corresponding to two classes; 
emotion chance level = 25%, corresponding to four classes) with 
SPM12.2 For visualization purposes, the group volume maps were 
mapped to the cortical surface. As this operation involves resampling 
the data (during which the original statistical values get lost), surface 
maps are displayed with discrete label values instead of continuous 
statistical values. Therefore, we do not include a color bar in the surface 
map figures.

An additional permutation analysis was performed to further 
investigate the robustness of the decoding results. In this method, 
decoding accuracies can be  compared to results from permuted 
emotion labels (i.e., random decoding accuracies) at the group level. 
To accomplish this, we generated a set of randomized results (n = 100), 
by randomly permuting the emotion labels (these randomizations 
were the same for all participants). For each of the randomizations, 
the decoding accuracies were calculated for each participant by 
repeating the full leave one-run out cross-validation procedure of the 
main method at the single subject level with the randomized labels. 
These accuracy maps were then tested against the true label accuracies 
by performing a paired sample t-test over participants. By using a 

2 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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paired t-test at the group level, we are able to assess how the true 
distribution of the decoding accuracies compare to random 
(supposedly chance level) accuracies at each voxel. Note that this 
method differs from the standard permutation method where the 
number of occurrences of the true accuracy being higher than the 
randomly sampled ones is counted (resulting in a p-value for each 
participant and voxel), but that we  use it here because it enables 
assessing true vs. random accuracies directly at the group level. At the 
final stage, the t-maps were averaged for all participants resulting in a 
single averaged t-value group map, and thresholded at t > 3.9. This 
map was then qualitatively compared to the t-map of the main analysis 
described above.

ROI analysis
Lastly, to gain more insight into details of the responses regions 

known to be relevant for (emotional) sensory processing (V1, fusiform 
gyrus, EBA, A1 and amygdala), as well as regions known to 
be important for emotion or multi-modal integration: the STS and 
mPFC (Peelen et al., 2010), we extracted beta values from these ROIs.

Specifically, we used data of an independent localizer to identify, 
early visual cortex, rEBA, and rFFA. Multi-sensory regions pSTS and 
mPFC were located based on an anatomical definition of these areas. 
That is, we utilized a spherical ROI with a radius of 5 voxels centered 
on the reported cluster peak locations in Peelen et al. (2010). Finally, 
the amygdala was identified using an anatomic definition from the 
SPM Anatomy toolbox atlas where left and right Amygdala were 
combined in one ROI (Eickhoff et al., 2007). Early auditory cortex was 
defined bilaterally anatomically by a 5 mm sphere at the peak location 
for A1 reported in Warrier et al. (2009).

See Table 1 for details on location and size of the ROIs. From the 
ROI’s we made several plots that (1) display the mean beta values for 
each of the 12 conditions; (2) display the multivoxel representational 
dissimilarity matrix (Kriegeskorte et  al., 2008) constructed by 
calculating the 1-r (=Pearson’s correlation coefficient) distance metric 
for all pairs of category averaged stimuli. The decoding accuracy of all 
the ROI voxels for stimulus modality, taken as the average of the 
accuracies for decoding of body vs. voice (of the body session) and 
face vs. voice (of face session) conditions is presented in Table 2. This 
table also includes the decoding accuracies for emotion from all 
stimuli, voice, face and body separately, and the crossmodal decoding 
accuracies for training the classifier on one modality (e.g., body 
emotion) and testing on the voice modality. Statistical results in this 
table are FDR corrected (Benjamini and Hochberg, 1995).

Results

Modality-specific processing of face, body, 
and voice stimuli

First, we performed a univariate analysis of sensory-specific (i.e., 
visual vs. auditory) and emotion-specific neural processing. Using 
beta values estimated with an RFX GLM on the entire data set (see 
Methods), we  ran an ANOVA with factors “stimulus type” and 
“emotion.” Our results did not show an interaction between emotion 
and stimulus type (p > 0.01, FDR corrected for multiple comparisons). 
However, as expected, the F-map for stimulus type 
(Supplementary Figure S1) revealed significant activation clusters 
(p < 0.01, FDR corrected for multiple comparisons) with differential 
mean activation across stimulus types in primary and higher-order 
auditory and visual regions, as well as in motor, pre-motor and dorsal/
superior parietal cortex. We did not observe significant activation 
clusters for emotion (p > 0.01, FDR corrected). We then tested whether 
emotions were processed differentially within stimulus type, i.e., for 
faces, bodies and voices separately. These ANOVAs did not reveal an 
effect of emotion for any stimulus type (p < 0.01, FDR corrected).

Multivariate pattern analysis of modality 
related emotion processing

Next, we performed a more sensitive multivariate pattern analysis 
(MVPA) using a searchlight approach (Ontivero-Ortega et al., 2017; 
see Methods). We  sought to confirm the results of the univariate 
analysis and to assess whether more fine-grained emotion 
representations could be revealed either within a specific stimulus type 
or in a supramodal manner. To this end, we began by training the 
MVP classifier to decode stimulus type, i.e., visual vs. auditory stimuli. 
The classifier was trained separately for the two sessions: body vs. 
voice (session 1) and face vs. voice (session 2). In line with 
expectations, the classifier could accurately identify stimulus type in 
auditory and visual sensory cortices (chance level is 50%, p < 0.05, 
FWE corrected for multiple comparisons). In addition, we  found 
clusters of above chance level decoding accuracy in fusiform cortex 
and large parts of the lateral occipital and temporo-occipital cortex, 
presumably including the extrastriatal body area (EBA; see Figure 1 
bottom panel).

We then tested whether the MVP classifier trained to discriminate 
emotions on all stimulus types (i.e., face, body and voice combined) 
could accurately identify emotion from neural response patterns. Yet, 
like the results of the univariate analysis, we did not find classification 
accuracies above chance at the group level (that is, at p < 0.05, FWE 
corrected). Thus, while neural response patterns for stimulus type 
could be differentiated well by a MVP classifier, we did not observe a 
similarly robust, differentiable representation of emotions across 
stimulus types.

We then proceeded to evaluate our main hypothesis using the 
MVP classifier, that is, whether emotion specific representations 
emerge within modality specific neural response patterns. Specifically, 
we  trained and tested the classifier to decode emotions within a 
specific stimulus modality. The visual stimulus modality consisted of 
the combined face and body stimuli and the auditory modality of the 
voice stimuli. Within the visual modality (i.e., faces and bodies), the 

TABLE 1 Size and location of the ROIs.

ROI Size x y Z

FFA 1,784 39 −52 −26

EV 4,248 −12 −94 −8

EBA 5,488 45 −67 7

A1 L/R 6,152 −57/56 −17/−17 5/8

MPFC 2,976 11 48 17

pSTS 3,256 −47 −62 8

Amygdala L/R 784 −21/20 −6/−6 −10/−9

Size is in mm3, location is in MNI coordinates.
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classifier could accurately (although not significantly, based on p < 0.05 
FWE corrected) discriminate emotions in STS, cingulate gyrus and 
angular gyrus (p < 0.001 uncorrected, cluster size threshold = 25), but 
not in visual cortex. Within the auditory modality (i.e., voices), the 
classifier discriminated emotions accurately in primary and secondary 
auditory cortical regions (including the superior temporal gyrus 
[STS], and in the precuneus (Figure 1, bottom panel and Table 3) at 
p < 0.001 uncorrected, cluster size threshold = 25). When the classifier 
was trained and tested to decode emotion within a specific visual 
stimulus type, that is, either the face stimuli or body stimuli, 
classification performance was at chance level.

Additionally, we  performed a permutation analysis on the 
obtained classification results to assess the robustness of the decoding 
results (see Methods). The permutation test confirmed that the 
classifier can accurately discriminate emotions (compared to 
randomized stimulus labels) based on neural activity patterns in 
response to stimuli in the auditory modality (voices). For the visual 
stimulus modality, the permutation analysis yielded slightly different 
results. More specifically, the classifier could discriminate emotions 
accurately (compared to randomized stimulus labels) only within 
either face stimuli (in STS and PCC) or body stimuli (in ACC), but 
not when trained or tested on all visual stimuli combined 

(Supplementary Figure S4). Classification results for the classifier 
trained and tested on all sensory modalities (i.e., voice, face and body) 
were not above the accuracy levels of the randomized stimulus labels 
in any region. The results show that in this study no evidence was 
found for visual–auditory modality independent representations.

Finally, we performed an additional MVP classification analysis 
to evaluate whether supramodal emotion processing regions can 
be identified in the brain by training a classifier to decode emotion 
across stimulus modalities. Being able to predict emotion by training 
on one modality and testing on another modality would be a strong 
indication of supramodal emotion encoding in the brain. Therefore, 
the cross-modal classifier was trained (or tested) on either the body or 
face stimuli and tested (or trained) on the voice stimuli from the body 
or face session, respectively. Thus, four whole-brain searchlight 
classifiers were trained in total (training on body and testing on voice, 
training on voice, and testing body, training on face and testing on 
voice, training on voice and testing on face). In contrast to the 
successful and significant decoding of modality and the successful 
decoding of emotion within stimulus type, none of these cross-modal 
classifiers resulted in accurate decoding of emotion (p < 0.05 FWE 
corrected, as well as at p < 0.001 uncorrected with cluster size 
threshold = 25).

TABLE 2 Decoding accuracies group level p-values (FDR corrected) against chance level for the tested ROIs.

Modality Emotion
Emotion 

Body
Emotion 

Face

Emotion 
voice 

session 1

Emotion 
voice 

session 
2

Emotion 
body ≥ 
voice

Emotion 
voice ≥ 

body

Emotion 
face ≥ 
voice

Emotion 
voice ≥ 

face

V1 0.0035 0.5235 0.5854 0.7936 0.5235 0.7002 0.7936 0.8732 0.0968 0.7002

FFA 0.0035 0.7936 0.713 0.893 0.1088 0.6185 0.6203 0.8732 0.7002 0.8147

EBA 0.0018 0.0661 0.3916 0.0968 0.7002 0.7002 0.8818 0.8818 0.7936 0.7936

A1 0 0.0445 0.9008 0.7936 0.2069 0.0168 0.1773 0.8732 0.7002 0.6203

MPFC 0.4624 0.7002 0.5477 0.713 0.5124 0.8392 0.7002 0.7936 0.5235 0.7002

pSTS 0.0445 0.8247 0.7466 0.7936 0.7009 0.7466 0.7002 0.7936 0.5124 0.7002

LR 

amy

0.689 0.6203 0.7936 0.8871 0.5854 0.0661 0.7002 0.168 0.5656 0.0968

Beta values of responses to the stimuli were extracted from an ROI and used to train and test a decoder on stimulus type and emotion from all stimuli or from a specific type and for 
crossmodal decoding. For these the header reading x ≥ y (e.g., body ≥ voice) indicated that the decoder was trained on body emotion and was tested on voice stimuli. The table shows 
uncorrected p-values as well an indication (*) where the p-value is significant at p < 0.05 after FDR correction.

TABLE 3 Results for the decoding of emotion.

Cluster 
size

Cluster 
p(unc)

Peak T Peak 
p(unc)

x y z

All stimuli

STS L 38 0.0536 5.8422 0.0000 −62 −34 2

Voice stimuli only

Planum temporale L 749 0.001 6.462 0.000 −58 −34 6

Posterior cingulate gyrus/precuneus 187 0.058 5.654 0.000 8 −34 30

Planum temporale R 210 0.046 5.206 0.000 62 −18 2

Face and body stimuli

STS L 59 0.0200 6.8069 0.0000 −54 −26 −4

Cingulate gyrus R 92 0.0052 6.5513 0.0000 16 −12 20

Angular gyrus R 27 0.0979 6.4339 0.0000 60 −50 34
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Assessing emotion representations in 
neural response patterns in regions of 
interest

As a last step, we evaluated whether primary sensory regions 
(A1 and V1) and regions that have been previously implicated in 
emotion processing (fusiform gyrus, EBA, amygdala) or in multi-
modal regions implicated in supramodal emotion processing 
(pSTS and mPFC; Peelen et  al., 2010) contained emotion 
processing using a more sensitive region-of-interest (ROI) analysis. 
In line with our approach in the previous analyses, we began by 
testing whether the classifier can discriminate sensory modality 
(visual vs. auditory) in the ROIs. The classifier could accurately 
identify the sensory modality of a stimulus in sensory cortices—as 
expected—but also in pSTS (p < 0.05, FDR corrected). We then 
assessed whether the classifier was able to discriminate emotion 
when trained and tested on all modalities together (face, body, 
voice). The classifier was successful only in primary auditory cortex 
(A1). Like our previous results, when the classifier operated on the 
data of each sensory modality in isolation, decoding accuracies 
were above chance level for voice session 2 emotion in A1. Emotion 
could not be decoded above chance level in the supramodal regions 
(mPFC and pSTS). Thus, while visual and auditory stimuli elicit 
distinct neural response patterns in the ROIs that can robustly 
be discriminated by a MVP classifier, the emotions used here do 
not elicit specific neural response patterns. A representational 
dissimilarity matrix (RDM) analysis confirms that most ROIs 
considered here exhibit a strong modulation by sensory modality, 
except for mPFC and amygdala. However, no robust emotion 
representations were observed in these ROIs (Figure  2, 
Supplementary Figure S2).

Discussion

This study addressed a central question in the emotion literature 
that arises once investigations of human emotion expressions move 
beyond the traditional focus on facial expression. Our goal was to 
investigate whether implicit, ecologically valid processing of emotion 
expressions in either the face, the voice or the whole body is specific 
for the stimulus category. We used MVPA to find evidence of abstract 
representations that would be  common to the different stimulus 
modality categories. Our results show that the brain contains several 
regions with emotion-specific representations. Importantly, in the 
absence of explicit emotion recognition instructions these emotion-
specific representations were restricted to the respective stimulus 
modality or category (i.e., face, body, voice) and we did not find 
evidence for abstract emotion representation. Our design was entirely 
motivated by the focus on the sensory processes useful for emotion 
decoding and not on the more traditional question of how emotions 
are represented in the brain or how emotions are subjectively 
experienced. In line with this, we  opted for a task that turned 
attention away from the stimulus presented. One may argue that the 
fact that we did not find modality general results for the emotion 
categories per se might have been due to this distracting task. But this 
was exactly the purpose as we  wanted to focus on attention 
independent processes.

Our study presents a novel approach to the neural mechanisms 
underlying implicit emotion processing because we used naturalistic 
stimuli from three different categories and a specific task paradigm 
that focused on implicit emotion processing. Our results, converging 
across analysis techniques, highlight the specific contributions and the 
neural basis of emotional signals provided by each sensory modality 
and stimulus category. In a departure from the few previous studies 
using a partially comparable approach, we found evidence for sensory 
specific rather than abstract supramodal representations during 
implicit emotion processing (different from recognition or experience) 
that sustain perception of various affective signals as a function of the 
modality (visual or auditory) and the stimulus category (face, voice, 
or body).

To understand our findings against the background of the 
literature, some specific aspects of our study must be highlighted. 
We used dynamic realistic face and body stimuli instead of point light 
displays or static images. The latter are also known to complicate 
comparisons with dynamic auditory stimuli (Campanella and Belin, 
2007). Next, our stimuli do not present prototypical emotion 
representations obtained by asking actors to portray emotions but 
present spontaneous face, voice and whole body reactions to images 
of familiar events. The expressions we used may therefore be more 
spontaneous and trigger more sensorimotor processes in the viewer 
than posed expressions. Third, many previous studies used explicit 
emotion recognition (Lee and Siegle, 2012), passive viewing (Winston 
et  al., 2003), implicit tasks like gender categorization (Dricu and 
Fruhholz, 2016) or oddball tasks presented in the same modality as 
the stimulus. In contrast, our modality specific oddball task is 
presented in the alternate modality of the stimulus presentation 
thereby diverting attention not only from the emotion content but also 
from the perceptual modality in which the target stimuli of that block 
are shown. We discuss separately the findings on the major research 
questions. However, before turning to detailed results we  clarify 
whether a different definition of amodal representation than adopted 
here and in the literature influences the conclusions.

Amodal or supramodal representations

A supramodal representation of emotions in the brain is 
presumably a brain regions that exhibits activity patterns specific to 
the abstract meaning of the stimulus but that are independent from 
the sensory modality (visual, auditory) and the stimulus category 
(face, body, voice) as in Peelen et al. (2010). These authors speculated 
these areas possibly host abstract emotion coding neurons (Peelen 
et al., 2010). More recently, Schirmer and Adolphs (2017) also relate 
processing of face and voice expressions in pSTS and PFC to abstract 
emotion representations and emotional meaning.

However, it is important to underscore that those previous 
findings about amodal representations were obtained with an explicit 
recognition task that is very different from the orthogonal task 
we used here. Results obtained in emotion experiments are closely 
linked to the task used and this is certainly the case for measures of 
amygdalae activity (De Gelder et al., 2012). For example, in a recent 
study addressing the issue of explicit vs. implicit emotion tasks 
we  found major differences in the brain representation of body 
emotion expressions as a function of explicit vs. implicit recognition 
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FIGURE 2

Right column: Location of the ROI (see main text for abbreviations). Left column: Trial-wise beta values for all 16 conditions: 4xtype (body, face, voice 
session 1 and voice session 2) and 4x emotion (indicated by color: anger-happy-neutral-fear) averaged over the ROI and group. Error bars indicate SE. 
Middle column: Representational dissimilarity matrix for the ROI. Blue colors indicate that responses to a pair of categories were similar (1-Pearson’s r), 
yellow colors indicate dissimilarity. The matrices are ordered from top-left to bottom-right in blocks of 4 by 4 for the emotional expressions in order of 
angerhappy-neutral-fear. Blocks are ordered by stimulus type as indicated by the icons and text: body, face, voice session1 and voice session 2.
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(Marrazzo et al., 2020). Furthermore, in older studies of our group 
that do not use MVPA we  already systematically found that the 
similarities and differences between brain representation of face and 
body expressions is a function of the specific expression just as well as 
the stimulus category (Van de Riet et al., 2009; Kret et al., 2011a).

To put this issue in a boarder context, the notion of supramodal 
emotion representation has close conceptual links with the traditional 
theories of human emotions and mental states. Future experiments 
may start from other emotion theories focusing less on mental states 
and more on behavior and emotions as adaptive actions (de Gelder 
and Poyo Solanas, 2021). For example, it has long been argued that 
an action theory as opposed to a mental state theory of emotions 
(Frijda, 1987; De Gelder et al., 2004) implies a different picture of 
how the brain sustains emotional processes that the traditional 
notion of the six predefined basic emotions going back to Ekmans’ 
emotion theory.

In the domain of emotion studies support for modality 
independent or abstract representations goes back to Ekmans’ views 
but another area where this issue is debated is in studies on sensory 
deprivation. Studies of face, voice and whole body expressions in 
populations with sensory deprivation are very important to clarify and 
substantiate our findings underscoring the importance of category 
and modality specificity. Currently very few studies are available that 
address this issue. Interestingly, there is evidence for residual 
perception of face, body and voice perception in patients with cortical 
blindness following partial or complete striate cortex lesion (reviewed 
in Tamietto and De Gelder, 2010). These findings underscore the role 
of subcortical structures and draw attention to the fact that the issue 
is broader than that of cortical plasticity. Important as it is, this 
discussion is outside the scope of the present report.

An issue that is directly relevant is the following. Based on the 
literature it is not yet clear what findings for example from congenital 
blindness would constitute clear and direct evidence for abstract 
representations. The finding that congenitally blind individuals react 
to happy speech sounds by smiling (Arias et  al., 2021) provides 
evidence that production of facial expressions does not require 
learning. However, by itself this does not constitute evidence for 
abstract representations. Nor does it show that such abstract 
representations need to play a crucial role in triggering facial 
expressions when a congenitally blind individual is exposed to smiles 
in speech. Indeed, production of smiles in reaction to “hearing” smiles 
can be  explained parsimoniously by auditory-motor associations. 
Such an explanation does not require any crucial appeal to high order 
abstract representations. Undoubtedly, the many ways in which the 
brain processes information input from the different sensory systems 
is likely to involve also abstract layers of representations, depending 
or not on language. But their explanatory value is dependent on task 
settings and stimulus context.

Univariate analysis

Although our goal was to characterize neural responses with 
MVPA techniques, for the sake of comparisons with the literature, 
we also briefly discuss our univariate results. How do these results 
compare to findings and meta-analyses in the literature? In fact, there 
are no previous studies that used comparable materials (four emotion 

categories, three stimulus types, two modalities) and a different 
modality centered task as done here. The studies that did include 
bodies used only neutral actions, not whole body emotion expressions 
(Dricu and Fruhholz, 2016) except for one study comparing face and 
body expression videos by Kret et al. (2011a). Only the study by Peelen 
et al. used faces, bodies, and voices, but with a very different task as 
we discuss below (Peelen et al., 2010).

Compared to the literature, the findings of the univariate analysis 
present correspondences as well as differences. A previous study (Kret 
et al., 2011a) with face and body videos used only neutral, fear and 
anger expression and a visual oddball task. They reported that EBA 
and STS show increased activity to threatening body expressions and 
FG responds equally to emotional faces and bodies. For the latter, 
higher activity was found in cuneus, fusiform gyrus, EBA, tempo-
parietal junction, superior parietal lobe, as well in as the thalamus 
while the amygdala was more active for facial than for bodily 
expressions, but independently of the facial emotion. Here we replicate 
that result for faces and bodies and found highly significant clusters 
with differential mean activation across stimulus types in primary and 
higher-order auditory and visual regions, as well as in motor, 
pre-motor and dorsal/superior parietal cortex 
(Supplementary Figure S1). Regions sensitive to stimulus category 
were not only found in primary visual and auditory cortex as expected 
but also in motor, pre-motor and dorsal/superior parietal cortex 
consistent with the findings in Kret et al. (2011a). To summarize, this 
univariate analysis including three stimulus types and four emotion 
categories replicates some main findings about brain areas involved, 
respectively, in face, body and voice expressions.

Multivariate analysis

The goal of our multivariate approach was to reveal the areas that 
contribute most strongly to an accurate distinction between the 
modalities and the stimulus emotion. Our MVPA searchlight analysis 
results show that stimulus modality can be decoded from the early 
sensory cortices and that emotion can be decoded in STG for voice 
stimuli with relatively high accuracy. In STS, cingulate and angular 
gyrus emotion could be decoded for face and body stimuli but only 
with low accuracies and lenient thresholding at the group level. On the 
other hand, we could not clearly identify supramodal emotion regions, 
defined by voxel patterns where emotion could be decoded and that 
would show very similar voxel patterns for the same emotion in the 
different modalities. This indicates that the brain responds to facial, 
body and vocal emotion expression in a sensory specific fashion. Thus, 
the overall direction pointed to by our results seems to be that that 
being exposed to emotional stimuli (that are not task relevant and 
while performing a task requiring attention to the other modality than 
that in which the stimulus is presented) is associated with brain 
activity that shows both an emotion specific and a stimulus and 
modality specific pattern.

ROI analysis

To follow up on the whole-brain analysis we performed a detailed 
and specific analysis of several ROIs. For the ROIs based on the 
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localizer scans (early visual areas as well as FFA and EBA) stimulus 
type could be decoded and these results are consistent with the MVPA 
searchlight analysis. The A1 ROI showed above chance emotion 
decoding (from all stimuli or within a specific stimulus type/session). 
However, this region also displayed strong stimulus type decoding 
with no evidence of supramodal representations. Additionally, a 
strong effect of emotion is seen in the RDM plots in Figure 2; however, 
a correlational structure relating to emotion is not clearly visible 
within the stimulus type/session blocks. These results, together with 
the searchlight results, lead us to reject the hypothesis that the human 
brain has stimulus modality or type invariant representations of 
basic emotions.

Modality specific emotion representations

Two previous MVPA studies addressed partly similar issues 
investigated in this study using faces, bodies and voices (Peelen et al., 
2010) or bodies and voices and MVPA (Whitehead and Armony, 
2019). The first study reported medial prefrontal cortex (MPFC) and 
posterior superior temporal cortex as the two areas hosting abstract 
supramodal emotion representations. These two areas are not found 
in our MVPA searchlight analysis. To understand the present result, it 
is important to remember that in the above studies participants were 
instructed to label the perceived emotional expressions. One 
motivation was that explicit judgments would increase activity in 
brain regions involved in social cognition and mental state attribution 
(Peelen et al., 2010). In contrast, the motivation of the present study 
was to approximate naturalistic perception conditions where people 
often act before and independently of tagging a label on their 
experience. Our design and task were intended to promote 
spontaneous non-focused processes of the target stimuli and did not 
promote amodal conceptual processing of the emotion content. It is 
likely that using an explicit recognition task would have activated 
higher level representations, e.g., orbitofrontal cortex, posterior STS, 
prefrontal cortex and posterior cingulate cortex that would then feed 
back to lower level representations and modulate these toward more 
abstract representations (Schirmer and Adolphs, 2017). Note that no 
amygdala activity was reported in that study. The second study using 
passive listening or viewing of still bodies and comparing fear and 
neutral expressions also concludes about a distributed network of 
cortical and subcortical regions responsive to fear in the two stimulus 
types they used (Whitehead and Armony, 2019). Of interest is their 
finding concerning the amygdalae and fear processing. While in their 
study this is found across stimulus type for body and voice, the 
classification accuracy when restricted to the amygdalae was not 
significantly above chance. They concluded that fear processing by the 
amygdalae heavily relies on contribution of a distributed network of 
cortical and subcortical structures.

Our findings suggest a novel perspective on the role of the 
different sensory systems and the different stimulus categories that 
convey affective signals in daily life. Paying attention to sensory 
specificity of affective signals may reflect better the role of emotions 
as seen from an evolutionary perspective and it is compatible with an 
ecological and context sensitive approach to brain organization (Cisek 
and Kalaska, 2010; Mobbs et al., 2018; de Gelder and Poyo Solanas, 
2021). For comparison, a similar approach not to emotion concepts 
but to cognitive concepts was argued by Barsalou et al. (2003). This 
distributed organization of emotion representation may be more akin 

to what is at stake in the daily experience of affective signals and how 
they are flexibly processed for the benefit of ongoing action and 
interaction in a broader perspective of emotions as states of action 
readiness (Frijda, 2004).

Our results are relevant for two longstanding debates in the 
literature, one on the nature and existence of abstract emotion 
representations and basic categories and the other on processes of 
multisensory integration. Concerning the first one, our results have 
implications for the debate on the existence of basic emotions (Ekman, 
2016). Interestingly, modality specificity has rarely been considered as 
part of the issue as the basic emotion debate largely focusses on facial 
expressions. The present results might be viewed as evidence in favor 
of the view that basic emotions traditionally understood as specific 
representations of a small number of emotions with an identifiable 
brain correlate (Ekman, 2016) simply do not exist but that these are 
cognitive-linguistic constructions (Russell, 2003). On the one hand, 
our results are consistent with critiques of basic emotions theories and 
meta-analysis (Lindquist et  al., 2012) as we  find no evidence for 
representations of emotions in general or specific emotions within or 
across modality and stimuli. Affective information processing thus 
appears not organized as categorically, neither by conceptual emotion 
category nor by modality, as was long assumed. Emotion 
representation, more so even than object representation, may possibly 
be sensory specific or idiosyncratic (Peelen and Downing, 2017) and 
neural representations may reflect the circumstances under which 
specific types of signals are most useful or relevant rather than abstract 
category membership. This pragmatic perspective is consistent with 
the notion that emotions are closely linked to action and stresses the 
need for more detailed ethological behavior investigations (de 
Gelder, 2016).

Additionally, the notion that supramodal representations of basic 
emotions are the pillars of emotion processing in the brain and are the 
basis allow of smooth translation and convergence between the 
different sensory modalities is not fully supported by the literature. 
First, since the original proposal by Ekman (1992) and the 
constructivist alternative argued by Russell (2003) and most recently 
Lewis et al. (2010) and Barrett (2017), the notion of a set of basic 
emotions with discrete brain correlates continues to generate 
controversy (Kragel and LaBar, 2016; Saarimaki et al., 2016). Second, 
detailed meta-analyses of crossmodal and multisensory studies, 
whether they are reviewing the findings about each separate modality 
or the results of crossmodal studies (Dricu and Fruhholz, 2016; 
Schirmer and Adolphs, 2017), provide a mixed picture. Furthermore, 
these meta-analyses also show that several methodological obstacles 
stand in the way of valid comparisons across studies. That is, taking 
into account the role of task (incidental perception, passive perception, 
and explicit evaluation of emotional expression) and the use of 
appropriate control stimuli limits the number of studies that can validly 
be  compared. Third, findings from studies that pay attention to 
individual differences and to clinical aspects reveal individual 
differences in sensory salience and dominance in clinical populations, 
for example in autism and schizophrenia. For example Karle et al. 
(2018) report an alteration in the balance of cerebral voice and face 
processing systems and attenuated face-vs-voice bias in emotionally 
competent individuals. This is reflected in cortical activity differences 
as well as in higher voice-sensitivity in the left amygdala. 
Finally, even granting the existence of abstract supramodal 
representations—presumably in higher cognitive brain regions—it is 
unclear how they relate to earlier stages of affective processing where 
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the voice, the face and the body information are processed by different 
sensory systems comprising distinct cortical and subcortical structures. 
Based on previous literature general, supramodal or “abstract” 
representations might have been expected in brain regions such as the 
orbitofrontal and anterior cingulate cortex. But as noted above, these 
are most often reported in studies asking participants for explicit 
recognition and decisions on emotion categories. The modality-specific 
activations that were can thus not be compared with activations for 
abstract categories but they are interesting by virtue of their horizontal 
differences between each other.

It is important to make a clear distinction between supramodal 
perception and multisensory integration. Our study did not focus on 
multisensory perception, but our findings may have implications for 
theories of multisensory integration by challenging a strict hierarchical 
model. Studies reaching beyond facial expressions have primarily been 
motivated how the same emotion as defined by the facial expression 
may be communicated by different stimulus types. Our group has 
initiated studies on multi-stimulus and multi-modal perception and 
found rapid and automatic influence of one type of expression on 
another [face and voice (de Gelder et al., 1999); face and body (Meeren 
et al., 2005); face and scene (Righart and de Gelder, 2008; Van den 
Stock et  al., 2013); body and scene (Van den Stock et  al., 2014); 
auditory voice and tactile perception (de Borst and de Gelder, 2017)]. 
These original studies and subsequent ones (Müller et  al., 2012) 
investigated the impact of one modality on the other and targeted the 
area(s) where different signals converge. For example, Müller et al. 
(2012) report posterior STS as the site of convergence of auditory and 
visual input systems and by implication, as the site of multisensory 
integration. Different affective expression signals may have horizontal 
and context sensitive links rather that connections that presuppose 
abstract emotion representations.

Limitations

Our motivation to include three stimulus categories led to some 
limitations of the current design because two separate scanning 
sessions were required to have the desired number of stimulus 
repetitions. To avoid that the comparison of representations of stimuli 
from two different sessions was biased by a session effect, we did not 
include any results that referred to differences or commonalities of 
stimuli from different sessions (e.g., bodies vs. faces). Another possible 
limitation of our study is the relatively small sample but this is 
compensated for by the use of very sensitive methods (MVPA and 
crossvalidation). Furthermore, a familiar difficulty in investigating the 
processing of high-order emotion perception is the relation between 
low-level stimulus properties (in terms of spatial and temporal 
statistics) and higher order emotion categories. Conversely, human 
detection of emotion in visual or auditory samples might be based on 
low-level spatio-temporal properties, and matching samples for these 
properties might result in unnatural appearing stimuli. To remain with 
the characteristics derived from the expression production we used 
the vocalizations as they were produced together with the face and 
body expressions. As they were not controlled for low-level acoustic 
features across emotions, our results from the decoding of emotion 
from the voice stimuli may partly reflect these differences. But a 
proper control for low level features in turn requires a better 
understanding of the relative (in)dependence between lower and 
higher-level features. Presumably bottom-up and top-down 

interactions determine the course of affect processing as seen for 
visual features of whole body expressions (Vaessen et al., 2019; Poyo 
Solanas et al., 2020). An analysis of low-level stimulus characteristics 
(see Supplementary Figure S3) did not reveal strong correlations 
between emotion category and features. Conversely, this analysis 
revealed that within category (possibly due to different actors) and 
between emotion category variances were similar.

Conclusion

Our results show that the brain correlates of emotional signals 
from the body, the face of the voice are specific for the modality as 
well as for the specific stimulus. These findings underscore the 
importance of considering the specific contribution of each modality 
and each type of affective signal rather than only their higher order 
amodal convergence possibly related to explicit recognition task 
demands. We  suggest that future research may investigate the 
differences between the emotion signals and how they are 
complementary as a function of the context of action and not only at 
abstract, amodal similarity. Another source of representational 
variability that would need to be addressed is whether under natural 
conditions, the sensory modality carrying emotion information has 
its own preferred functionality such that, e.g., fear would more 
effectively conveyed by the face, anger by the body and happiness by 
the voice. If so, brain representation of emotions would 
be characterized by specific emotion, modality and spatial context 
combinations and behavioral relevance (Downar et al., 2001, 2002). 
These are highly relevant considerations for a future 
neuroethologically grounded research program that should start 
from detailed behavioral observations of how face, body, and voice 
expressions function in naturalistic contexts.
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