
TYPE Original Research

PUBLISHED 20 March 2023

DOI 10.3389/fnins.2023.1132269

OPEN ACCESS

EDITED BY

Malu Zhang,

National University of Singapore, Singapore

REVIEWED BY

Pengfei Sun,

Ghent University, Belgium

Zihan Pan,

Institute for Infocomm Research (A*STAR),

Singapore

*CORRESPONDENCE

Tielin Zhang

tielin.zhang@ia.ac.cn

Bo Xu

xubo@ia.ac.cn

†These authors have contributed equally to this

work and share first authorship

SPECIALTY SECTION

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

RECEIVED 27 December 2022

ACCEPTED 03 March 2023

PUBLISHED 20 March 2023

CITATION

Jia S, Zhang T, Zuo R and Xu B (2023) Explaining

cocktail party e�ect and McGurk e�ect with a

spiking neural network improved by

Motif-topology. Front. Neurosci. 17:1132269.

doi: 10.3389/fnins.2023.1132269

COPYRIGHT

© 2023 Jia, Zhang, Zuo and Xu. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Explaining cocktail party e�ect
and McGurk e�ect with a spiking
neural network improved by
Motif-topology

Shuncheng Jia1,2†, Tielin Zhang1,2*†, Ruichen Zuo3 and Bo Xu1,2,4*

1Institute of Automation, Chinese Academy of Sciences, Beijing, China, 2School of Artificial Intelligence,

University of Chinese Academy of Sciences, Beijing, China, 3School of Information and Electronics,

Beijing Institute of Technology, Beijing, China, 4Center for Excellence in Brain Science and Intelligence

Technology, Chinese Academy of Sciences, Shanghai, China

Network architectures and learning principles have been critical in developing

complex cognitive capabilities in artificial neural networks (ANNs). Spiking neural

networks (SNNs) are a subset of ANNs that incorporate additional biological

features such as dynamic spiking neurons, biologically specified architectures, and

e�cient and useful paradigms. Here we focus more on network architectures in

SNNs, such as themeta operator called 3-node networkmotifs, which is borrowed

from the biological network. We proposed a Motif-topology improved SNN (M-

SNN), which is further verified e�cient in explaining key cognitive phenomenon

such as the cocktail party e�ect (a typical noise-robust speech-recognition task)

and McGurk e�ect (a typical multi-sensory integration task). For M-SNN, the Motif

topology is obtained by integrating the spatial and temporal motifs. These spatial

and temporal motifs are first generated from the pre-training of spatial (e.g.,

MNIST) and temporal (e.g., TIDigits) datasets, respectively, and then applied to the

previously introduced two cognitive e�ect tasks. The experimental results showed

a lower computational cost and higher accuracy and a better explanation of some

key phenomena of these two e�ects, such as new concept generation and anti-

background noise. This mesoscale network motifs topology has much room for

the future.

KEYWORDS

spiking neural network, Motif topology, reward learning, cocktail-party e�ect, McGurk

e�ect

1. Introduction

Spiking neural networks (SNNs) are considered the third generation of artificial neural

networks (ANNs) (Maass, 1997). The biologically plausible network architectures, learning

principles, and neuronal or synaptic types of SNNs make them more complex and powerful

than ANNs (Hassabis et al., 2017). It has been reported that even a single cortical

neuron with dendritic branches needs at least a 5-to-8-layer deep neural network for finer

simulations (Beniaguev et al., 2021), whereby non-differential spikes and multiply-disperse

synapsesmake SNNs powerful on tools for spatially-temporal information processing. In the

field of spatially-temporal information processing, there has been much research progress

significant amounts of research into SNNs for auditory signal recognition (Shrestha and

Orchard, 2018; Sun et al., 2022) and visual pattern recognition (Wu et al., 2021; Zhang M.

et al., 2021).
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This paper highlights two fundamental elements of SNNs

and the main differences between SNNs and ANNs: specialized

network design and learning principles. The SNNs encode spatial

information using fire rate and temporal information using spike

timing, providing hints and inspiration that SNNs can integrate

into visual and audio sensory data.

For the network architecture, specific cognitive topologies

developed via evolution are highly sparse and but efficient in SNNs

(Luo, 2021), whereas equivalent ANNs are densely recurrent. Many

researchers attempt have tried to understand the biological nature

of efficient multi-sensory integration by focusing on the visual

and auditory pathways in biological brains (Rideaux et al., 2021).

These structures are adapted for some specific cognitive functions,

e.g., efficient actions. For example, an impressive sparse network

filtered from the C. Elegans connectome can outperform other

dense networks during reinforcement learning of the Swimmer

task. Some biological discoveries can further promote the research

development of structure-based artificial operators, including but

not limited to lateral neural interaction (Cheng et al., 2020), the

lottery hypothesis (Frankle and Carbin, 2018), and meta structure

of network motif (Hu et al., 2022; Jia et al., 2022). ANNs using

these structure operators can then be applied in different spatial or

temporal information processing tasks, such as image recognition

(Frankle et al., 2019; Chen et al., 2020), auditory recognition, and

heterogeneous graph recognition (Hu et al., 2022). Furthermore,

when only focusing on the learning of weight, the weight agnostic

neural network (Gaier and Ha, 2019; Aladago and Torresani, 2021)

is a representative of the methods that only train the connections

instead of weights.

For the learning principles, SNNs are more tuned affected by

learning principles from biologically plausible plasticity principles,

such as spike-timing dependent plasticity (STDP) (Zhang et al.,

2018a), short-term plasticity (STP) (Zhang et al., 2018b), and

reward-based plasticity (Abraham and Bear, 1996), instead of by

the pure multi-step backpropagation (BP) (Rumelhart et al., 1986)

of errors in ANNs. The neurons in SNNs will be activated once

the membrane potentials reach their thresholds, which makes them

energy efficient. SNNs have been successfully applied on to visual

pattern recognition (Diehl and Cook, 2015; Zeng et al., 2017; Zhang

et al., 2018a,b, 2021a,b), auditory signal recognition (Jia et al.,

2021; Wang et al., 2023), probabilistic inference (Soltani andWang,

2010), and reinforcement learning (Rueckert et al., 2016; Zhang D.

et al., 2021).

For the two classic cognitive phenomena, the cocktail party

effect describes the phenomenon that in a high-noise environment

(e.g., noise from the environment or other speakers), the listener

learns to filter out the background noise (including music noise

and sounds from other speakers) and concentrate on only the target

speaker, as shown in Figure 1A. The McGurk effect introduces the

concept that the voice may be misclassified when the auditory

stimulus conflicts with visual cues. A classic example of theMcGurk

effect describes how the new concept [da] can be generated by the

integration of specific auditory input [ba] and visual cues [ga], as

shown in Figure 1B.

This work focuses on the key characteristics of SNNs

in information integration, categorization, and cognitive

phenomenon simulation. We analyzed Motifs (Milo et al.,

2002) in SNNs to reveal the essential functions of key meta-circuits

in SNNs and biological networks and then used Motif structures

to build loop modules in SNNs. Furthermore, a Motif-topology

improved SNN (M-SNN) is proposed for simulating cocktail party

effects and McGurk effects. To the best of our knowledge, we

are the first to solve the problem using combinations of highly

abstract Motif units. The following are the primary contributions

of this paper:

• Networks with specific spatial or temporal types of Motifs

can improve the accuracy of spatial or temporal classification

tasks compared with networks without Motifs, making the

multi-sensory integration easier by integrating two types of

Motifs.

• We propose a method to mix different Motif structures

and use them to simulate cognitive phenomena, including

cocktail party effects and McGurk effects. In addition, the

Motif topologies are critical, and networks with Motifs could

effectively simulate these two effects (higher accuracy and

better cognitive phenomenon simulation). (We specifically

picked the MNIST and TIDigits datasets to simulate audio-

visual inputs due to the lack of audio-visual-consistent

datasets for classification testing.)

• During the network training process for various simulation

experiments, the M-SNN can achieve a lower training

computational cost than other SNNs without using Motif

architectures. This result demonstrates that the M-SNN can

achieve more human-like cognitive functions at a lower

computational cost with the help of prior knowledge of multi-

sensory pathways and biologically inspired reward learning

methods.

The remaining parts are grouped as follows: Section 2 reviews

the research about on the architecture, learning paradigms, and

two classic cognitive phenomena. Section 3 describes the pattern

of Motifs, the SNN model with neuronal plasticity, and learning

principles. Section 4 verifies the convergence, the advantage of M-

SNN in simulating cognitive phenomena, and the computational

cost. Finally, a short conclusion is given in Section 5.

2. Related works

For the architecture, the lateral interaction of neural networks,

the lottery hypothesis, and the network motif circuits are

novel operators in structure research. In the research on lateral

interaction, most studies have taken the synapse as the basic

unit, including the lateral interaction in the convolutional neural

network (Cheng et al., 2020) or that in the fully connected network

(Jia et al., 2021). However, these methods take synaptic connections

as the basic unit and only consider learning effective structures

without considering meta-structure composition.

Network motifs (Milo et al., 2002; Prill et al., 2005) use

primary n-node circuit operators to represent the complex network

structures. The feature of the network (e.g., visual or auditory

pathways) could be reflected by the number of different Motif

topologies, which is calledMotif distribution. To calculate theMotif

distribution, the first Motif tool is mfinder, which implements the

algorithm of full enumeration (randomly picking the edges from
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FIGURE 1

The network structure for multi-sensory integration and two cognitive phenomena. (A) McGurk e�ect. New concepts arise when the receiver

receives di�erent audio-visual input information. (B) Cocktail party e�ect. When the receiver’s brain focuses on one speaker, it filters out the sounds

and noise from others. (C) Input and output transformation matrix of reward learning. (D) The spiking neuron has a variable membrane potential. (E)

The M-SNN network for single-sensory or multi-sensory integration tasks. (F) The example of 3-node Motifs.

the graph and counting the probability of n-node subgraphs). Then

the FANMOD (Wernicke and Rasche, 2006) was introduced as a

more efficient tool for finding reliable network motifs.

For learning paradigms, there are many methods have been

proposed, such as the ANN-to-SNN conversion (i.e., directly

training ANNs and then equivalently converting to SNNs;

Diehl et al., 2015), proxy gradient learning (i.e., replacing the

non-differential membrane potential at firing threshold by an

infinite gradient value; Lee et al., 2016), and the biological-

mechanism inspired algorithms [e.g., the SBP (Zhang et al.,

2021a) which was inspired by the synaptic plasticity rules in

the hippocampus, the BRP (Zhang et al., 2021b), which was

inspired by the reward learning mechanism, and the GRAPES,

that inspired by the synaptic scaling (Dellaferrera et al., 2022)].

Compared to other learning algorithms, biologically inspired

algorithms are more similar to the process of how the human

brain learns.

For the cocktail party effect, many effective end-to-end neural

network models have been proposed (Ephrat et al., 2018; Chao

et al., 2019; Hao et al., 2021; Wang et al., 2021). However, the

analysis of why these networks work is very difficult since the

functional structures in these black-box models are very dense

without clear function diversity. As a comparison, the network

motif constraint in neural networks might resolve this problem to

some extent, which until now and as far as we know, however this

has not yet been well-introduced.
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For the McGurk effect, only a limited number of research

papers have discussed the artificial simulation of it, partly caused by

the simulation challenge, especially on the conflict fusion of visual

and auditory inputs (McGurk and MacDonald, 1976; Hirst et al.,

2018), e.g., self-organized mapping (Gustafsson et al., 2014).

3. Methods

3.1. Spiking dynamics

The leaky integrated-and-fire (LIF) neuron model is

biologically plausible and is one of the simplest models to

simulate spiking dynamics. It includes non-differential membrane

potential and the refractory period, as shown in Figure 1D. The LIF

neuron model simulates the neuronal dynamics with the following

steps.

First, the dendritic synapses of the postsynaptic LIF neuron

will receive presynaptic spikes and convert them to a postsynaptic

current (Isyn). Second, the postsynaptic membrane potential will

be leaky or integrated, depending on its historical experience. The

classic LIF neuron model is shown as the following Equation (1).

τm
dVt

dt
= − (Vt − VL) −

gE

gL
(Vt − VE) +

Isyn

gL
, (1)

where Vt represents the dynamical variable of membrane

potential with time t, dt is the minimal simulation time slot (set

as 0.01ms), τm is the integrative period, gL is the leaky conductance,

gE is the excitatory conductance, VL is the leaky potential, VE is

the reversal potential for excitatory neuron, and Isyn is the input

current received from the synapses in the previous layer. We set

values of conductance (gE, gL) to be 1 in our following experiments

for simplicity, as shown in Equation (3).

Third, the postsynaptic neuron will generate a spike once its

membrane potential Vt reaches the firing threshold Vth. At the

same time, the membrane potential V will be reset as the reset

potential Vreset , shown as the following Equation (2).

if (Vt > Vth)

{

Vt = Vreset

Tref = T0
, (2)

where the refractory time Tref will be extended to a larger

predefined T0 after firing.

In our experiments, the three steps for simulating the LIF

neurons were integrated into the Equation (3).

C
dVi,t

dt
= g

(

Vi,t − Vrest

) (

1− Si,t
)

+

N
∑

j = 1

Wi,jXj,t , (3)

where C is the capacitance parameter, Si,t is the firing flag of

neuron i at timing t, Vi,t is the membrane potential of neuron i

at timing t, Vrest is the resting potential, and Wi,j represents the

synaptic weight between the neuron i and j.

3.2. Motif topology

The n-node (n ≥ 2) meta Motifs have been proposed in past

research. Here, we use the typical 3-node Motifs to analyze the

networks, which have been widely used in biological and other

systems (Milo et al., 2002; Shen et al., 2012; Zhang et al., 2017).

Figure 1F displayed all 13 varieties of 3-node Motifs. In previous

studies, network topology had been transformed into parameter

embeddings in the network (Liu et al., 2018). In our SNNs, the

Motifs were used by the Motif masks and then applied into the

recurrent connection at the hidden layer. The typical Motif mask is

a matrix padded with 1 or 0, where 1 and 0 represent the connected

and non-connected pathways, respectively. We introduce theMotif

circuits into the hidden layer, and the Motif mask in the r-

dimension hidden layer l at time t is represented as the Mr,l
t as

shown in Equation (4). As shown in Figure 2, we show some

examples of Motifs (Figure 2A) and their corresponding Motif

masks (Figure 2B). TheMotif masks are generated by binary square

matrices where only one (with connection) and zero (without

connections) values are designed.

Mr,l
t =









f (m1,2) · · · f (m1,r)
...

. . .
...

f (mr,1) · · · f (mr,r)









, (4)

where f (·) is the indicator function. Once the variable in f (·)

satisfies the conditions, the function value would be set as one;

otherwise, zero.mi,j, (i, j = 1, · · · r) are elements of synaptic weight

Wr,l
t .

The network motif distribution is calculated by counting the

occurrence frequency of network motif types. We enumerate

every 3-node assembly (including Motifs and other non-Motif

types) and only count the 13-type 3-node connected subgraphs of

Motifs with the help of FANMOD (Wernicke and Rasche, 2006).

In order to integrate the Motifs learned from different visual

and auditory datasets, we propose a multi-sensory integration

algorithm by integrating Motif masks with different types learned

from visual or auditory classification tasks. Hence, the integrated

Motif connections have both visual and auditory network patterns,

as shown in Figure 2. Equation (5) shows the integrated equation

with visual and auditory Motif masks.

Mr,l
t = Mr,l

t (s) ∪Mr,l
t (t), (5)

where Mr,l
t (s) is the spatial mask that learned from the visual

dataset,Mr,l
t (t) is the temporal mask that learned from the auditory

dataset, and Mr,l
t is the integrated mask. “∪” means the OR

operation for every element of the visual Motif mask and auditory

Motif mask.

For forming the network motifs in SNN, the Motif mask is used

to mask the lateral connections in the neural network. The lateral

and sparse connections between LIF neurons are usually designed

to generate network-scale dynamics. As shown in Figure 1E, we

design a four-layer SNN architecture, containing an input layer

(for pre-encoding visual and auditory signals to spike trains), a

convolutional layer, a multi-sensory integration layer, and a readout

layer. The synaptic weights are adaptive while the Motif masks
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FIGURE 2

Schematic diagram of an example for integrating Motif masks. (A)

Schematic for Motifs of the M-SNN. (B) Schematic for Motif masks

of the M-SNN.

are not. The membrane potentials in the hidden multi-sensory-

integration layer are updated by both feed-forward potential and

recurrent potential, shown in the following Equation (6):



























Si,t = S
f
i,t + Sri,t

Vi,t = V
f
i,t + Vr

i,t

C
dV

f
i,t

dt
= g(Vi,t − Vrest)(1− Si,t)+

∑N
j = 1 W

f
i,jXj,t

C
dVr

i,t

dt
=

∑N
j = 1 W

r
i,jSi,t ·M

r,l
t

, (6)

where C is for capacitance, Si,t is the firing flag of neuron

i at time t, S
f
i,t and Sri,t are the firing flags of neuron i in

the feedforward process and recurrent process, respectively, Vi,t

denotes the membrane potential of neuron i at timing t, which

includes feed-forward V
f
i,t and recurrent Vr

i,t , Vrest is the resting

potential,W
f
i,j is the feed-forward synaptic weight from the neuron

i to the neuron j, and Wr
i,j is the recurrent synaptic weight from

the neuron i to the neuron j. Mr,l
t is the mask incorporating Motif

topology to further alter feed-forward propagation further. The

historical information is saved in the forms of recurrent membrane

potential Vr
i,t , where spikes are created after the potential reaches a

firing threshold, as illustrated in Equation (7).



















V
f
i,t = Vreset , S

f
i,t = 1 if (V

f
i,t = Vth)

Vr
i,t = Vreset , S

r
i,t = 1 if

(

Vr
i,t = Vth

)

S
f
i,t = 1 if

(

t − tsf < τref , t ∈ (1,T1)
)

Sri,t = 1 if
(

t − tsr < τref , t ∈ (1,T2)
)

, (7)

where V
f
i,t , V

r
i,t , S

f
i,t , and Sri,t are introduced in the previous

Equation (6). Vreset is the reset membrane potential. τref is the

refractory period. tsf is the previous feed-forward spike timing

and tsr is the previous recurrent spike timing. T1 and T2 are time

windows.

3.3. Neuronal plasticity and learning
principle

We use three key mechanisms during network learning:

neuronal plasticity, local plasticity, and global plasticity.

Neuronal plasticity emphasizes spatially-temporal information

processing by considering the inner neuron dynamic characteristics

(Jia et al., 2021), different from traditional synaptic plasticities such

as STP and STDP. The neuronal plasticity for SNNs approaches

the biological network and improves the learning power of the

network. Rather than being a constant value, the firing threshold

is set by an ordinary differential equation shown as follows:

dai,t

dt
= (α − 1)ai,t + β(S

f
t + Srt ), (8)

where S
f
t is the input spikes from the feed-forward channel. Srt

is the input spikes from the recurrent channel. ai,t is the dynamic

threshold, which has an equilibrium point of zero without input

spikes or− β
α−1 with input spikes S

f +Sr from the feed-forward and

recurrent channels. Therefore, the membrane potential of adaptive

LIF neurons is updated as follows:

C
dVi,t

dt
= g

(

Vi,t − Vrest

)

(

1− S
f
t − Srt

)

+

N
∑

j = 1

Wi,jXj,t − γ ai,t ,

(9)

where the dynamic threshold ai,t is accumulated during the

period from the resetting to the membrane potential firing and

finally attains a relatively stable value a∗i,t =
β

1−α
(S

f
t + Srt ). Because

of the −γ ai,t , the maximum firing threshold could reach up to

Vth + γ ai,t .

We set α = 0.9 to guarantee that the coefficient of ai,t is −0.1,

β = 0.1 to ensure that the spike has the same weight as ai,t , and

set γ to the common value of 1. Accordingly, the stable a∗t = 0 for

no input spikes, a∗t = 1 for one input spike, and a∗t = 2 for input

spikes from two channels. When ai,t < (S
f
t + Srt ), the threshold ai,t

will increase, otherwise, the threshold ai,t will decrease. It is clear

that the threshold will change in the process of the neuron’s firing,

and as the firing frequency of the neuron increases, the threshold

will also elevate, or vice versa.

For local plasticity, the membrane potential at the firing time is

a non-differential spike, so local gradient approximation (pseudo-

BP) (Zhang et al., 2021b) is usually used to make the membrane

potential differentiable by replacing the non-differential part with a

predefined number, shown as follows:

Gradlocal =
∂Si,t

∂Vi,t
=

{

1 if
(
∣

∣Vi,t − Vth

∣

∣ < Vwin

)

0 else
, (10)

where Gradlocal is the local gradient of membrane potential at

the hidden layer, Si,t is the spike flag of neuron i at time t, Vi,t

is the membrane potential of neuron i at time t, and Vth is the

firing threshold. Vwin is the range of parameters for generating

the pseudo-gradient. This approximation makes the membrane

potential Vi,t differentiable at the spiking time between an upper

bound of Vth + Vwin and a lower bound of Vth − Vwin.
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For global plasticity, we used reward propagation, which has

been proposed in our previous work (Zhang et al., 2021b). As

shown in Figure 1C, the gradient of the hidden layer in training

is generated from the input type-based expectation value and

output error-based expectation value by transformed matrix (input

type-based expectation matrix and output error-based expectation

matrix), respectively, then the gradient signal will be directly given

to all hidden neurons without layer-to-layer backpropagation,

shown as follows:































GradRl = B
f ,l

rand
· Rt − hf ,l

GradRL = Bf ,L · ef ,L

1W
f ,l
t = −ηf (GradRl )

1Wr,l
t = −ηr

(

Gradt+1 + GradRl
)

·Mr,l
t

1W
f ,L
t = −ηf (GradRL )

, (11)

where hf ,l is the current state of layer l and, Rt is the predefined

input-type based expectation value. A predefined random matrix

B
f ,l

rand
is designed to generate the reward gradient GradRl . GradRL is

the gradient of the last layer, Bf ,L is the predefined identity matrix,

and ef ,L is the output error. W
f ,l
t represents the synaptic weight at

layer l in feed-forward phase, 1Wr,l
t is the recurrent-type synaptic

modification at layer l which represents defined by both GradRl
by reward learning and Gradt+1 by iterative membrane-potential

learning, and the Gradt+1 means the gradient obtained at t + 1

moment (Werbos, 1990). TheMr,l
t is the mask incorporating Motif

topology to influence the propagated gradients further.

3.4. The learning procedure of M-SNN

The overall learning procedures of the M-SNN were shown in

Algorithm 1, including the raw signal encoding, Motif structure

integration, and cognitive effect simulation.

4. Experiments

4.1. Visual and auditory datasets

The MNIST dataset (LeCun, 1998) was selected as the visual

sensory dataset. The MNIST dataset contains 60,000 28×28 one-

channel grayscale images of handwritten digits from zero to nine

for training, and there are also 10,000 of the same type of data

for testing. The TIDigits dataset (Leonard and Doddington, 1993)

was selected as the auditory sensory dataset, containing 4,144

spoken digit recordings from zero to nine. Each recording was

sampled at 20 kHz for around one second and then transformed

to the frequency domain with 28 frames and 28 bands by the

Mel Frequency Cepstral Coefficient (MFCC) (Sahidullah and Saha,

2012). Some examples were shown in Figure 1E.

4.2. Experimental configurations

The SNNs were built in Pytorch, and the network architectures

for MNIST and TIDigits were the same, containing one input

encoding layer, one convolutional layer (with a kernel size of

1. Initialize the network by resetting weights

and all related parameters. e.g., initial membrane

potential Vi, simulation time T, learning rates

η = ηf = ηr.

2. Encode raw numbers of datasets to spike trains.

3. Learn the synaptic weights wij and Motif

masks Mr,l
t by BP (Rumelhart et al., 1986) in two

single-sensory tasks to get the spatial mask Mr,l
t (s)

and temporal mask Mr,l
t (t).

4. Synthesize Motif masks and train the synaptic

weight wij on multi-sensory integration tasks.

4.1 Synthesize the integrated masks Mr,l
t from

spatial and temporal masks, where Mr,l
t = Mr,l

t (s) ∪Mr,l
t (t).

4.2 Initialize a new network and embed the Motif

mask Mr,l
t .

4.3 Only learn the synaptic weight wij with local

Pseudo-BP and global reward learning (Zhang et al.,

2021b).

5. Test the performance of SNNs using these new

masks in the multi-sensory classification tasks

and simulate the cocktail party effect and McGurk

effect.

Algorithm 1. The M-SNN algorithm.

5×5, and two input channels constructed by convolutional layer),

one full-connection integrated layer (with 200 LIF neurons), and

one output layer (with ten output neurons). Among the network,

the capacitance C was 1µF/cm2, conductivity g was 0.2 nS, time

constant τref was 1 ms, and resting potential Vrest was equal to reset

potential Vreset with 0 mV. The learning rate was 1e-4, the firing

threshold Vth was 0.5 mV, the simulation time T was set as 20 ms,

and the gradient approximation range Vwin was 0.5 mV.

As shown in Figure 1E, for the visual dataset, before being given

to the input layer, the raw data were encoded to spike trains first by

comparing each number with a random number generated from

Bernoulli sampling at each time slot of the time window T. For the

auditory dataset, the input data would first be transformed to the

frequency spectrum in the frequency domain by the MFCC (Mel

frequency cepstrum coefficient; Sahidullah and Saha, 2012). Then

the spectrumwould be split according to the time windows. Finally,

the sub-spectrum would be converted into normalized value and

randomly sampled with Bernoulli sampling to spike trains.

There are two SNNs concluded in our experiment as follows:

• M-SNN. The Motif mask is generated randomly and then

updated during the learning of synaptic weights in a Standard-

SNN.

• Standard-SNN. The standard feed-forward SNN without

Motif masks acts as the control algorithm for comparing

M-SNN.

4.3. Analysis of spatial and temporal Motif
topology during learning

The visual and auditory Motif masks were shown in Figure 3,

which were trained from the MNIST and TIDigits datasets. After
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FIGURE 3

Network convergence with SNNs using Motifs in di�erent datasets. (A, B) Motif masks of MNIST (A) and TIDigits (B) after training. (C, D) Plausible

Frequency of Motif distributions of MNIST (C) and TIDigits (D) datasets after training. (E, F) Convergence curve of classification task of MNIST (E) and

TIDigits (F) datasets.

training, the generated visual and temporal Motif masks were

shown in Figures 3A, B, where the black dot in the visualization of

the Motif mask indicated that there was a connection between the

two neurons shown at the X-axis and Y-axis. The white dot meant

there was not.

This result showed that the visual Motif mask connections

were sparse, with only about half of the neurons being connected.

Furthermore, the connection in the Motif mask is 64.39% for

auditory TIDigits dataset, and 28.24% for visual MNIST dataset.

For the temporal TIDigits dataset, the generated temporal Motif

mask after training was shown in Figure 3B, where the learned

Motif mask was denser than that on the visual MNIST in Figure 3A.

It is consistent with the biological finding that temporal Motifs are

denser than visual ones (Vinje and Gallant, 2000; Hromádka et al.,

2008). These differences between spatial and temporal Motif masks

indicated that the network needed a more complex connection

structure to deal with sequential information. In addition, the

connection points in the spatial and temporal Motif masks in

Figures 3A, B seemed to be divided into several square regions,

similar to the brain regions, which, to some extent, shows the

similarity between artificial and biological neural networks at the

brain region scale.

The information presented by Motif masks is relatively limited.

For further analysis of the Motif structures by Motif distribution,

we used the “Plausible Frequency” instead of the standard

frequency to calculate the significant Motifs after comparing them

to the random networks. The “Plausible Frequency” was defined

by multiplying the occurrence frequency and 1 − P, where the P

was the P-value of a selected Motif after comparing it to 2,000

repeating control tasks with random connections. The “repeating

control tasks” meant generating many matrixes (e.g., 2000) that

each element was sampled from a uniformly random distribution.

Furthermore, the P-value index showed the statistical significance

of the concerning results, whereas a lower P-value indicated the

more plausible result.

The Motif distributions corresponding to the Motif masks were

shown in Figures 3C, D, where the spatial and temporal Motifs

were distributed differently. For spatial Motifs, the 3rd, 6th, 7th,

and 10th units were all prominent in spatial Motifs, while the 13th

Motif was the most prominent in temporal Motifs. The abundant

3rd, 6th, 7th, and 10th Motifs in SNN revealed the balance of

feedforward and recurrent connections for the spatial tasks. The

Motif distribution reveals the difference in the abundance of

micro-loops in different networks, indicating that temporal tasks

require more complex network connections than spatial tasks. To

some extent, the Motif distribution here can mitigate the “black

box” problem of ANNs by clearly showing loop-level network

differences. The plausible frequency eliminated the interference

from the random connection. Figures 3E, F showed that M-SNN

networks using Motif topologies can be convergent, where the

accuracy of M-SNN was significantly higher than the accuracy of

Standard-SNN after a few training epochs.

4.4. M-SNN contribute to solving the
cocktail party e�ect

The cocktail party effect consists of two conditions. The first

condition involves focusing on one person’s conversation and
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FIGURE 4

Simulation of cocktail party e�ect. (A) A simulation and results in which both visual and auditory inputs have interfered. (B) A simulation and results in

which only the voice has interfered. All figures are averaged over five repeating experiments with di�erent random seeds.

excluding other conversations or noise in the background. Second,

it refers to the response of our hearing organs to a certain stimulus.

The human attention mechanism has much to do with how the

cocktail party effect happens. In our SNN, we simulated the first

situation of the cocktail party effect. We used the MNIST dataset to

represent the visual input and the TIDigits dataset for the phonetic

input. We modeled two scenes to simulate the simplified cocktail

party effect. The first scene was a simulation of the cocktail party

effect, where both the visual and auditory inputs were messed up by

random noise. The second scene simulated a cocktail party effect in

which the visual and auditory inputs were simultaneously disrupted

by the real image and voice.

4.4.1. Visual and auditory inputs are interfered
with the stochastic noise

In our experiment, we trained the network with pure image

and voice inputs and tested the network with input disturbed by

stochastic noise. In the simulation process, we used the method

of superimposing random numbers between [0, 1] into the image

or speech input to simulate the interference effect of noise. With

the different values of the added random numbers, different

interference effects were formed, ranging from 0 to 90%, and the

influence gradually increased. As shown in Figure 4A, when the

influence of noise was relatively low, whether to adding Motifs into

the network had little effect on the experimental results (99.00 ±

0.00% for the network with Motifs, 98.50 ± 0.22% for Standard-

SNN, and 99.14± 0.03% for LISNN; Cheng et al., 2020). As shown

in Figure 4A, with the increase of noise ratio, the recognition ability

of the network to the input target signal decreased gradually. When

the proportion of noise was increased to 60%, the accuracy of the

M-SNN was 95.64 ± 0.29%, which was markedly higher than the

accuracy of Standard-SNN (57.84 ± 0.68%) and was comparable

with LISNN (93.88 ± 0.46%). The higher accuracy indicated

that the Motifs in M-SNN had a positive effect on solving the

cocktail party effect compared with Standard-SNN. Furthermore,

LISNN with lateral interaction in the convolution layer could get a

comparable effect with M-SNN.

4.4.2. Visual and auditory inputs are interfered
with the real image and voice

We used the MNIST and TIDigits datasets without noise when

training the network. We used “8” from the handwritten digital

image and human voice in the simulation process instead of the

stochastic noise as interference. As shown in Figure 4B, in the
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FIGURE 5

Simulation of McGurk e�ect. (A, B) Distribution in the integrated layer after reward learning with Motifs (A) and without Motifs (B) of di�erent

combinations of input. (C, D) Distribution in integrated layer after BP learning with Motifs (C) and without Motifs (D) of di�erent combinations of input.

case of a few other interfering sounds, the effect of M-SNN on

maintaining accuracy was insignificant. However, with the increase

in the proportion of different interfering sounds, the impact of M-

SNN on maintaining the recognition of the network was becoming

more and more significant. When the noise ratio reached 50%, the

recognition accuracy of M-SNN became 77.77 ± 3.94 %, while

the Standard-SNN could only reach the an accuracy of 56.75 ±

0.67%, and the accuracy achieved by LISNN was 67.83 ± 1.58%.

In these situations, the maximal increased accuracy was 7.5% when

the proportion of “8” was 50%.

4.5. M-SNN for explainable McGurk e�ect

The McGurk effect described the psychological phenomenon

that occurs when human speech input and image input are

inconsistent, whereby most people would judge the input as neither

a speech label nor a visual label but a novel concept. It had been

shown that, for adults, the error rate in judging inconsistent audio-

visual input as novel concepts was more than 90% (McGurk and

MacDonald, 1976). For example, when the speech input was [ba]

and the visual input was [ga], a new concept [da] was generated

(Tiippana, 2014). During the simulation, we used handwritten digit

images [2],[3] as the visual input, while speech digits [tu:],[θri:]

were used to represent the corresponding pronunciation.

First, consistent audio-visual inputs were used to train the

network weights. After training, the inconsistent audio-visual

information would be fed into the network. In the integrated

layer, we used TSNE (Maaten and Hinton, 2008) to reduce the

dimension of the high-dimensional features. We conducted four

experiments to verify the influence of learning rules and structures

on the McGurk effect simulation: networks trained with reward

learning with Motif (Figure 5A), networks trained with reward

learning without Motif (Figure 5B), networks trained with BP

learning with Motif (Figure 5C), and networks trained with BP

without Motif (Figure 5D). As shown in Figure 5, the histogram

showed the distribution of samples with different labels in the

integration layer. The x-axis represents the distance between the

feature point and the reference point on the 2D plane (using

TSNE for clustering). For the Standard-SNN, there were two

prominent feature distributions: [θri:,3] and [tu:,2]. However,

for the learning results of M-SNNs, a clear feature distribution

of [tu:,3] emerged between the distributions of [θri:,3] and

[tu:,2]). This distribution corresponding to [tu:,3] characterized

the new concept (McGurk effect). These results showed that

Motifs in SNNs are important for generating the McGurk effect,

and neither of these learning principles alone can produce the

McGurk effect.

For comparing the stimulating effect of the McGurk effect, we

compared additional algorithms as shown in Table 1. According

to our knowledge, the SOM approach in the paper (Gustafsson

et al., 2014) is the only unsupervised learningmethod that replicates

the McGurk effect. In contrast, our M-SNN is the only supervised

learning method.

Frontiers inNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fnins.2023.1132269
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jia et al. 10.3389/fnins.2023.1132269

4.6. Lower computational cost for M-SNN
during training

We referred to the method in paper (Zhang et al., 2021a) to

calculate the computational cost of the network during training for

algorithm i, (i=1, 2), where the average training cost of the network

was represented by the average epoch multiplied by the number of

parameters of the network. A schematic for the mean epoch was

shown in Figure 6A, and the equation was shown as follows:

Costi =
1

N

N
∑

l=1

Argmini
(

fi(x) = Accl
)

× O(n)i, (12)

where Argmini(·) is the argument when · is the minimum, fi(x)

is the accuracy function of training epoch x, Accl is the selected

accuracy in [f1(x), f2(x)], O(n)i is the algorithmic complexity of

algorithm i, and N is the number of repetitions. The upper bound

is Min[Max[f1(x), f2(x)]] and the lower bound is Max[Min[f1(x),

f2(x)]], where Max and Min represents the maximum and the

minimum, respectively. In our experiment, N = 5 and for

the network with m, n, k input, hidden, and output neurons,

respectively, theO(n) of M-SNN is (m×n+n×n+n× k) and the

O(n) of Standard-SNN is (m× n+ n× k).

TABLE 1 Performance of di�erent algorithms on simulating McGurk

e�ect (“+” indicates that such a correspondence exists, while “−” indicates

not).

Standard

-SNN

LISNN

(Cheng

et al., 2020)

SOM

(Gustafsson

et al., 2014)

M -SNN

Simulated

McGurk

− − + +

Supervised

learning

+ + − +

We calculated the computational cost of training for different

proportions of noise. The results of M-SNN and Standard-

SNN computational costs were shown in Figure 6B, indicating

that the increased noise ratio brought a higher computational

cost to the network. In addition, the result showed that the

Motifs in M-SNN could save on computational cost when

network training (the training cost convergence curves of M-

SNN was always below the convergence curves of Standard-

SNN). When the noise ratio was 10%, M-SNN achieved the

maximum cost-saving ratio of 72.6%. M-SNN achieved the most

significant absolute cost savings (save 4.1 × 107) when the noise

ratio reached 30%.

5. Conclusion

In this paper, we propose a model of Motif-topology improved

SNN (M-SNN), exhibiting three main important features. First,

M-SNN could improve recognition accuracy in multi-sensory

integration tasks. Second, M-SNN could better simulate the

cocktail party and McGurk effects than Standard-SNN. Compared

with the common Standard-SNN and other SNN methods,

M-SNN had a better function of filtering noise from other

speakers in different proportions. Furthermore, compared with

SNN without Motifs, M-SNN could better handle the McGurk

effect with auditory and visual Motif topologies and visual

ones. Third, compared with Standard-SNN, M-SNN has a lower

computational cost during training in different noise ratios of the

background, and the maximum computational cost-saving ratio

is 72.6%.

A more profound analysis of the Motifs helps us understand

more about the critical functions of the structures in SNNs. This

inspiration from Motifs describes the sparse connection in the cell

assembly that reveal the importance of the micro-scale structures.

Motif topologies are patterns for describing the topologies of a

system (e.g., biological cognitive pathways), including the n-node

meta graphs that uncover the bottom features of the networks. We

find that biological Motifs are beneficial for improving the accuracy

FIGURE 6

M-SNN in training for lower computational cost. (A) Schematic diagram depicting how to calculate the mean epoch during training. (B) The

computational cost of network training under di�erent proportions of noise.
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of networks in visual and auditory data classification. Significantly,

the 3-node Motifs are typical and concise, which could assist in

analyzing the function of different network modules.

The research on the variability of Motifs will give us

more ideas and inspiration toward buildings for a better

network. The simulation of different cognitive functions by SNNs

with biologically plausible Motifs has much in store to offer

in future.
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Dellaferrera, G., Woźniak, S., Indiveri, G., Pantazi, A., and Eleftheriou, E. (2022).
Introducing principles of synaptic integration in the optimization of deep neural
networks. Nat. Commun. 13:1885. doi: 10.1038/s41467-022-29491-2

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit recognition
using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9:99.
doi: 10.3389/fncom.2015.00099

Diehl, P. U., Neil, D., Binas, J., Cook, M., Liu, S.-C., and Pfeiffer, M. (2015).
“Fast-classifying, high-accuracy spiking deep networks through weight and threshold
balancing,” in The 2015 International Joint Conference on Neural Networks (IJCNN-
2015) (Killarney), 1–8. doi: 10.1109/IJCNN.2015.7280696

Ephrat, A., Mosseri, I., Lang, O., Dekel, T., Wilson, K., Hassidim, A., et al. (2018).
Looking to listen at the cocktail party: a speaker-independent audio-visual model for
speech separation. CoRR, abs/1804.03619. doi: 10.1145/3197517.3201357

Frankle, J., and Carbin, M. (2018). The lottery ticket hypothesis: finding
sparse, trainable neural networks. arXiv [Preprint]. arXiv:1803.03635.
doi: 10.48550/arXiv.1803.03635

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M. (2019). Linear mode
connectivity and the lottery ticket hypothesis. arXiv [Preprint]. arXiv: abs/1912.05671.
doi: 10.48550/arXiv.1912.05671

Gaier, A., and Ha, D. (2019). “Weight agnostic neural networks,” in Advances in
Neural Information Processing Systems (Vancouver), 32.

Gustafsson, L., Jantvik, T., and Paplinski, A. P. (2014). “A self-organized
artificial neural network architecture that generates the McGurk effect,” in 2014
International Joint Conference on Neural Networks (IJCNN) (Beijing), 3974–3980.
doi: 10.1109/IJCNN.2014.6889411

Hao, Y., Xu, J., Zhang, P., and Xu, B. (2021). “Wase: learning when to attend
for speaker extraction in cocktail party environments,” in ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Toronto,
ON), 6104–6108. doi: 10.1109/ICASSP39728.2021.9413411

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M.
(2017). Neuroscience-inspired artificial intelligence. Neuron 95, 245–258.
doi: 10.1016/j.neuron.2017.06.011

Hirst, R. J., Stacey, J. E., Cragg, L., Stacey, P. C., and Allen, H.
A. (2018). The threshold for the McGurk effect in audio-visual noise
decreases with development. Sci. Rep. 8, 1–12. doi: 10.1038/s41598-018-
30798-8

Hromádka, T., DeWeese, M. R., and Zador, A. M. (2008). Sparse
representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6:e16.
doi: 10.1371/journal.pbio.0060016

Frontiers inNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1132269
https://github.com/thomasaimondy/Motif-SNN
https://github.com/thomasaimondy/Motif-SNN
https://doi.org/10.1016/S0166-2236(96)80018-X
https://doi.org/10.1016/j.neuron.2021.07.002
https://doi.org/10.48550/arXiv.1906.05962
https://doi.org/10.1109/CVPR46437.2021.01604
https://doi.org/10.24963/ijcai.2020/211
https://doi.org/10.1038/s41467-022-29491-2
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1109/IJCNN.2015.7280696
https://doi.org/10.1145/3197517.3201357
https://doi.org/10.48550/arXiv.1803.03635
https://doi.org/10.48550/arXiv.1912.05671
https://doi.org/10.1109/IJCNN.2014.6889411
https://doi.org/10.1109/ICASSP39728.2021.9413411
https://doi.org/10.1016/j.neuron.2017.06.011
https://doi.org/10.1038/s41598-018-30798-8
https://doi.org/10.1371/journal.pbio.0060016
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Jia et al. 10.3389/fnins.2023.1132269

Hu, Q., Lin, W., Tang, M., and Jiang, J. (2022). Mbhan: motif-based heterogeneous
graph attention network. Appl. Sci. 12:5931. doi: 10.3390/app12125931

Jia, S., Zhang, T., Cheng, X., Liu, H., and Xu, B. (2021). Neuronal-plasticity and
reward-propagation improved recurrent spiking neural networks. Front. Neurosci.
15:654786. doi: 10.3389/fnins.2021.654786

Jia, S., Zuo, R., Zhang, T., Liu, H., and Xu, B. (2022). “Motif-
topology and reward-learning improved spiking neural network for
efficient multi-sensory integration,” in ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP) (Virtual
Event; Singapore), 8917–8921. doi: 10.1109/ICASSP43922.2022.97
46157

LeCun, Y. (1998). The Mnist Database of Handwritten Digits. Available online at:
http://yann. lecun. com/exdb/mnist/

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep
spiking neural networks using backpropagation. Front. Neurosci. 10:508.
doi: 10.3389/fnins.2016.00508

Leonard, R. G., and Doddington, G. (1993). Tidigits ldc93s10. Philadelphia, PA:
Linguistic Data Consortium.

Liu, H., Simonyan, K., and Yang, Y. (2018). Darts: differentiable architecture search.
arXiv [Preprint]. arXiv:1806.09055. doi: 10.48550/arXiv.1806.09055

Luo, L. (2021). Architectures of neuronal circuits. Science 373:eabg7285.
doi: 10.1126/science.abg7285

Maass, W. (1997). Networks of spiking neurons: the third generation of
neural network models. Neural Netw. 10, 1659–1671. doi: 10.1016/S0893-6080(97)0
0011-7

Maaten, L. v. d., andHinton, G. (2008). Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605. doi: 10.48550/arXiv.2108.01301

McGurk, H., and MacDonald, J. (1976). Hearing lips and seeing voices. Nature 264,
746–748. doi: 10.1038/264746a0

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., and Alon, U. (2002).
Network motifs: simple building blocks of complex networks. Science 298, 824–827.
doi: 10.1126/science.298.5594.824

Prill, R., Iglesias, P., and Levchenko, A. (2005). Dynamic properties of
network motifs contribute to biological network organization. PLoS Biol. 3:e30343.
doi: 10.1371/journal.pbio.0030343

Rideaux, R., Storrs, K. R., Maiello, G., and Welchman, A. E. (2021).
How multisensory neurons solve causal inference. Proc. Natl. Acad. Sci. U.S.A.
118:e2106235118. doi: 10.1073/pnas.2106235118

Rueckert, E., Kappel, D., Tanneberg, D., Pecevski, D., and Peters, J.
(2016). Recurrent spiking networks solve planning tasks. Sci. Rep. 6:21142.
doi: 10.1038/srep21142

Rumelhart, D. E., Hinton, G. E., andWilliams, R. J. (1986). Learning representations
by back-propagating errors. Nature 323, 533–536. doi: 10.1038/323533a0

Sahidullah, M., and Saha, G. (2012). Design, analysis and experimental evaluation
of block based transformation in MFCC computation for speaker recognition. Speech
Commun. 54, 543–565. doi: 10.1016/j.specom.2011.11.004

Shen, K., Bezgin, G., Hutchison, R. M., Gati, J. S., and Mcintosh, A. R. (2012).
Information processing architecture of functionally defined clusters in the macaque
cortex. J. Neurosci. 32, 17465–17476. doi: 10.1523/JNEUROSCI.2709-12.2012

Shrestha, S. B., and Orchard, G. (2018). “Slayer: spike layer error reassignment in
time,” in Advances in Neural Information Processing Systems (Montréal), 31.

Soltani, A., and Wang, X.-J. (2010). Synaptic computation underlying probabilistic
inference. Nat. Neurosci. 13, 112–119. doi: 10.1038/nn.2450

Sun, P., Zhu, L., and Botteldooren, D. (2022). “Axonal delay as a short-term
memory for feed forward deep spiking neural networks,” in ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Virtual
Event; Singapore), 8932–8936. doi: 10.1109/ICASSP43922.2022.9747411

Tiippana, K. (2014). What is the McGurk effect? Front. Psychol. 5:725.
doi: 10.3389/fpsyg.2014.00725

Vinje, W. E., and Gallant, J. L. (2000). Sparse coding and decorrelation
in primary visual cortex during natural vision. Science 287, 1273–1276.
doi: 10.1126/science.287.5456.1273

Wang, J., Lam, M. W., Su, D., and Yu, D. (2021). “Tune-in: training under negative
environments with interference for attention networks simulating cocktail party effect,”
in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35 (Virtual Event),
13961–13969. doi: 10.1609/aaai.v35i16.17644

Wang, Q., Zhang, T., Han, M., Wang, Y., and Xu, B. (2023). “Complex dynamic
neurons improved spiking transformer network for efficient automatic speech
recognition,” in Thirty-Seventh AAAI Conference on Artificial Intelligence (Virtual
Event).

Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it.
Proc. IEEE. 78, 1550–1560. doi: 10.1109/5.58337

Wernicke, S., and Rasche, F. (2006). Fanmod: a tool for fast networkmotif detection.
Bioinformatics 22, 1152–1153. doi: 10.1093/bioinformatics/btl038

Wu, J., Chua, Y., Zhang, M., Li, G., Li, H., and Tan, K. C. (2021). A tandem learning
rule for effective training and rapid inference of deep spiking neural networks. IEEE
Trans. Neural Netw. Learn. Syst 34, 446–460. doi: 10.1109/TNNLS.2021.3095724

Zeng, Y., Zhang, T., and Xu, B. (2017). Improving multi-layer spiking neural
networks by incorporating brain-inspired rules. Sci. China Inform. Sci. 60:052201.
doi: 10.1007/s11432-016-0439-4

Zhang, D., Zhang, T., Jia, S., and Xu, B. (2021). “Multiscale dynamic coding
improved spiking actor network for reinforcement learning,” in Thirty-Sixth AAAI
Conference on Artificial Intelligence (Virtual Event). doi: 10.1609/aaai.v36i1.19879

Zhang, M., Wang, J., Wu, J., Belatreche, A., Amornpaisannon, B., Zhang, Z., et
al. (2021). Rectified linear postsynaptic potential function for backpropagation in
deep spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33, 1947–1958.
doi: 10.1109/TNNLS.2021.3110991

Zhang, T., Cheng, X., Jia, S., Poo, M. M., Zeng, Y., and Xu, B. (2021a). Self-
backpropagation of synaptic modifications elevates the efficiency of spiking and
artificial neural networks. Sci. Adv. 7:eabh0146. doi: 10.1126/sciadv.abh0146

Zhang, T., Jia, S., Cheng, X., and Xu, B. (2021b). Tuning convolutional
spiking neural network with biologically plausible reward propagation. IEEE
Trans. Neural Netw. Learn. Syst. 33, 7621–7631. doi: 10.1109/TNNLS.2021.30
85966

Zhang, T., Zeng, Y., and Xu, B. (2017). A computational approach towards the
microscale mouse brain connectome from the mesoscale. J. Integr. Neurosci. 16,
291–306. doi: 10.3233/JIN-170019

Zhang, T., Zeng, Y., Zhao, D., and Shi, M. (2018a). “A plasticity-centric approach
to train the non-differential spiking neural networks,” in The 32th AAAI Conference
on Artificial Intelligence (AAAI-2018) (Virtual Event). doi: 10.1609/aaai.v32i1.
11317

Zhang, T., Zeng, Y., Zhao, D., and Xu, B. (2018b). “Brain-inspired balanced
tuning for spiking neural networks,” in IJCAI (Stockholm), 1653–1659.
doi: 10.24963/ijcai.2018/229

Frontiers inNeuroscience 12 frontiersin.org

https://doi.org/10.3389/fnins.2023.1132269
https://doi.org/10.3390/app12125931
https://doi.org/10.3389/fnins.2021.654786
https://doi.org/10.1109/ICASSP43922.2022.9746157
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.48550/arXiv.1806.09055
https://doi.org/10.1126/science.abg7285
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.48550/arXiv.2108.01301
https://doi.org/10.1038/264746a0
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1371/journal.pbio.0030343
https://doi.org/10.1073/pnas.2106235118
https://doi.org/10.1038/srep21142
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.specom.2011.11.004
https://doi.org/10.1523/JNEUROSCI.2709-12.2012
https://doi.org/10.1038/nn.2450
https://doi.org/10.1109/ICASSP43922.2022.9747411
https://doi.org/10.3389/fpsyg.2014.00725
https://doi.org/10.1126/science.287.5456.1273
https://doi.org/10.1609/aaai.v35i16.17644
https://doi.org/10.1109/5.58337
https://doi.org/10.1093/bioinformatics/btl038
https://doi.org/10.1109/TNNLS.2021.3095724
https://doi.org/10.1007/s11432-016-0439-4
https://doi.org/10.1609/aaai.v36i1.19879
https://doi.org/10.1109/TNNLS.2021.3110991
https://doi.org/10.1126/sciadv.abh0146
https://doi.org/10.1109/TNNLS.2021.3085966
https://doi.org/10.3233/JIN-170019
https://doi.org/10.1609/aaai.v32i1.11317
https://doi.org/10.24963/ijcai.2018/229
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Explaining cocktail party effect and McGurk effect with a spiking neural network improved by Motif-topology
	1. Introduction
	2. Related works
	3. Methods
	3.1. Spiking dynamics
	3.2. Motif topology
	3.3. Neuronal plasticity and learning principle
	3.4. The learning procedure of M-SNN

	4. Experiments
	4.1. Visual and auditory datasets
	4.2. Experimental configurations
	4.3. Analysis of spatial and temporal Motif topology during learning
	4.4. M-SNN contribute to solving the cocktail party effect
	4.4.1. Visual and auditory inputs are interfered with the stochastic noise
	4.4.2. Visual and auditory inputs are interfered with the real image and voice

	4.5. M-SNN for explainable McGurk effect
	4.6. Lower computational cost for M-SNN during training

	5. Conclusion
	Code availability statement
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


