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Introduction: Currently, it is still a challenge to detect single-trial P300 from

electroencephalography (EEG) signals. In this paper, to address the typical

problems faced by existing single-trial P300 classification, such as complex,

time-consuming and low accuracy processes, a single-trial P300 classification

algorithm based on multiplayer data fusion convolutional neural network (CNN)

is proposed to construct a centralized collaborative brain-computer interfaces

(cBCI) for fast and highly accurate classification of P300 EEG signals.

Methods: In this paper, two multi-person data fusion methods (parallel data

fusion and serial data fusion) are used in the data pre-processing stage to fuse

multi-person EEG information stimulated by the same task instructions, and then

the fused data is fed as input to the CNN for classification. In building the CNN

network for single-trial P300 classification, the Conv layer was first used to extract

the features of single-trial P300, and then the Maxpooling layer was used to

connect the Flatten layer for secondary feature extraction and dimensionality

reduction, thereby simplifying the computation. Finally batch normalisation is

used to train small batches of data in order to better generalize the network and

speed up single-trial P300 signal classification.

Results: In this paper, the above new algorithms were tested on the Kaggle

dataset and the Brain-Computer Interface (BCI) Competition III dataset, and

by analyzing the P300 waveform features and EEG topography and the four

standard evaluation metrics, namely Accuracy, Precision, Recall and F1-score,it

was demonstrated that the single-trial P300 classification algorithm after two

multi-person data fusion CNNs significantly outperformed other classification

algorithms.

Discussion: The results show that the single-trial P300 classification algorithm

after two multi-person data fusion CNNs significantly outperformed the single-

person model, and that the single-trial P300 classification algorithm with

two multi-person data fusion CNNs involves smaller models, fewer training

parameters, higher classification accuracy and improves the overall P300-cBCI

classification rate and actual performance more effectively with a small amount

of sample information compared to other algorithms.
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Introduction

Brain-Computer Interface is a new way of human-computer
interaction, which provides a direct communication link between
the brain and a computer or other external devices (McFarland and
Wolpaw, 2011). The Event-Related potential (ERP) is a time-locked
measure of electrical activity of the cerebral surface representing a
distinct phase of cortical processing (Patel and Azzam, 2005), and
it is an endogenous potential linked to a person’s reaction to some
stimuli or specific events. Typical examples of ERP are N200 and
P300. P300 (Sutton et al., 1967), which is a positive peak waveform
displayed at about 300 ms after being evoked by a small probability
event, is one of the most studied, widely used and most prominent
components of ERP (David et al., 2020; Kirasirova et al., 2020).

P300 classification detection is the focus of P300-BCI research,
and fast and accurate recognition is crucial to improving the
performance of P300-BCI (Huang et al., 2022). The P300 usually
exhibits a low signal-to-noise ratio (SNR) (Zhang et al., 2022).
In order to highlight its time-locked component and minimize
the background noise, P300-BCI demands collecting, aggregating
and averaging data from multiple trials to obtain a reliable
output (Liu et al., 2018), which is time consuming and inefficient.
Therefore it is a great challenge to correctly classify P300 in
a single-trial. Up to now, the accuracy records of the single-
trial P300 classification algorithms are as follows: Krusienski’s
average classification accuracy using stepwise linear discriminant
analysis (SWLDA) is about 35%. Hoffmann’s average classification
accuracy using Bayesian Linear Discriminant Analysis (BLDA)
is about 60%. Blankertz applied Shrinking Linear Discriminant
Analysis (SKLDA) and achieved an average classification accuracy
of about 70%. Zhang adopted spatiotemporal discriminant analysis
(STDA) and attained an average classification accuracy of about
61%. The average classification accuracy of the support vector
machine (SVM) algorithm developed by Kaper reaches 64.56%.
And that value of discriminative canonical pattern matching
(DCPM) proposed by Xiao comes to 71.23%, demonstrating that
DCPM significantly outperformed other traditional methods in
single-trial P300 classification with smaller training sample (Xu
et al., 2018, 2021; Xiao et al., 2019a,b, 2021; Wang et al., 2020).
Ma et al. (2021) proposed a capsule network-based model that
improved the detection accuracy of single-trial P300, however,
the calculation became complicated due to the increase in size.
Zhang et al. (2022) filtered the data with xDAWN to improve
the signal-to-noise ratio of EEG signals, but the spatial filtering
method required manual selection of significant features after
feature extraction, and then classifying them. It is highly specific
to particular factors; however, the algorithm is often complex and
its accuracy is influenced by feature selection (Zhang et al., 2022).

Deep learning is end-to-end learning with a simple structure
that can be ported to a variety of tasks with high classification
accuracy but high requirements for sample data. Nowadays, deep
learning methods have made great progress in EEG-based target
detection technology (Li et al., 2021), and based on this, some
scholars have proposed other approaches for P300 classification,
such as transfer learning (Wei et al., 2020), EEG Data Fusion
(Panwar et al., 2020), Incep A-EEGNet (Xu et al., 2022), Combined
Classifier (Yu et al., 2021), Principal Component Analysis (PCA)
(Li et al., 2020) etc. At present, Daniela used CNN (Cecotti and

Graser, 2010) with a large number of training samples to obtain
an average accuracy of 78.19% for single-trial P300 (De Venuto and
Mezzina, 2021) classification; For multiple trial P300 classification,
Gao et al. (2021), proposed learning invariant patterns based on
a CNN and big EEG data with an average accuracy of 80%. Liu
et al. (2021) proposed a machine learning model based on one-
dimensional convolutional capsule network (1D CapsNet), which
attained a classification accuracy around 80%.

Currently, single-person BCI systems often fail to achieve the
desired results because of significant individual differences and
erratic execution due to the physical condition of the subjects. P300
usually has different temporal and spatial feature information, and
to solve the single-trial P300 detection problem, suitable signal
processing and classification algorithms are required to extract
discriminative information from single-trial data (Zheng et al.,
2020). Existing P300-BCI classification algorithms do not extract
sufficient spatial and temporal information at the data level in
feature extraction, and data must be collected from multiple trials
to obtain summary and average values. With the development
of complex BCI systems, the concept of multi-person cBCI has
been proposed to improve overall BCI performance by fusing
brain activity obtained from multiple subjects. Wang and Jung
(2011) demonstrated that cBCI can improve the performance
of single-trial P300 measurements by fusing brain activity from
multiple subjects. Zheng et al. (2020) introduced an cross-
session EEG dataset to improve the performance and utility of a
collaborative RSVP-based BCI system. Song et al. (2022) proposed
a Mutual Learning Domain Adaptation Network (MLDANet) cBCI
framework with information interaction, dynamic learning, and
individual transfer capabilities that exhibited superior population
detection performance. Li P. et al. (2022) applied migration
learning-based CNNs to steady-state visual evoked potentials
(SSVEP). Li C. et al. (2022) proposed a fourth-order cumulative
volume feature extraction method (CUM4-CSP) based on the
common spatial pattern (CSP) algorithm.

In terms of BCI systems, Tian and Wang (2019) developed
a multi-brain collaboration-based BCI music therapy system to
help people with disabilities enjoy music and receive rehabilitation
training services in the arts. Zhang et al. (2021) compared
different group sizes, variations in integration strategies and their
effects on group performance. Liu (2022) proposed a concrete
mapping model based on human perception of sound and aesthetic
transformation from sound to visual expression, forming a design
representation method for interactive sound visualization practice.
Currently, multi-person cBCI systems are not widely used in
interactive control (Miao et al., 2020). Therefore, the research in
this field can promote the development of BCI technology (Gu
et al., 2021; Zhang et al., 2021).

Current research divides cBCI into two paradigms, namely
distributed cBCI and centralized cBCI systems (Wang and Jung,
2011; Li P. et al., 2022). In distributed cBCI, the EEG information of
the subjects is collected separately through the corresponding BCI
subsystems for subsequent data pre-processing, feature extraction
and pattern recognition. The results corresponding to each subject
are then transmitted to the integrated classifier and the final
decision is generated through a voting mechanism at the decision
level, while in the centralized cBCI (Li P. et al., 2022), as shown in
Figure 1, subjects’ EEG information was collected individually for
data pre-processing. The pre-processed EEG data from all subjects
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FIGURE 1

Structure of centralized collaborative brain-computer interfaces (cBCI) system.

were fused together for CNN classification identification to make
the final decision for the group. The model used in this study
is a centralized cBCI system, which does not rely on the voting
mechanism of a distributed system, and classification is performed
by a CNN-based algorithm model.

A series of experiments (Wang and Jung, 2011; Li et al., 2020,
Li P. et al., 2022; Song et al., 2022) demonstrate that centralized
cBCI improves overall BCI performance by fusing data from
multiple subjects. To further improve the accuracy of single-trial
classification, this paper combines a combination of centralized
cBCI data fusion and CNN classification algorithm to identify
single-trial P300. The two centralized cBCI data fusions, namely
parallel data fusion and serial data fusion, can increase the effective
information on the temporal and spatial domains of single-trial
P300, and the CNN classification algorithm can effectively extract
features on P300, hence improving the total classification accuracy
and stability of P300-cBCI in the small sample case.

Materials and methods

Introduction to source datasets

Dataset I is derived from the Kaggle dataset, which includes
raw data collected by electrodes, row/column numbers flickering
as stimuli, and start and end time of flickers. The experimental
subjects were eight healthy participants of different ages and
genders, left-handed or right-handed. The experimental data
acquisition process used a standard 6 × 6 Donchin and
Farewell’s P300 speller matrix stimulation interface with an
interstimulus interval (ISI) of 0.125 ms. In the experiment,
the acquisition channel selected eight lead channels Fz, Cz,
P3, Pz, P4, PO7, PO8, Oz according to the international
standard 10–20 system electrode location, and 35 alphanumeric
characters were used for data acquisition. the stimulation went
as follows: each row and column flickered once in a random
order in one round of stimulation, so each stimulus includes 12
flickering rows/columns, and a subject was required to choose
the correct row number and column number corresponding
to a designated character, so as to produce 2 P300 signals.
The stimulation repeated 10 times for each character, so the
experimenter collected 4,200 (12∗10∗35) samples in total, among
which 700 (2∗10∗35) were target stimuli. All subjects performed
the same P300 stimulation evoked experiments. The stimulation

FIGURE 2

P300 speller matrix and corresponding row/column labels.

interface and numbered row/column of the dataset are shown in
Figure 2.

Dataset II is derived from BCI Competition III, including
50-min EEG recordings and speller matrix information of two
subjects (subject A and B). One round of flickering of all the
rows and columns is referred to as one trial, so each trial includes
12 row or column flickerings. Within each trial, the row or
column flickers for 100 ms, with 75 ms interval between two
flickering stimuli. The experiment repeats 15 times, producing 180
(12∗15) row/column flickerings. The stimuli interface adopts the
P300 speller matrix illustrated by Figure 2 and the corresponding
row/column labels.

Data preprocessing and fusion

The P300 EEG signal has a very low signal-to-noise ratio
and mainly lies within a specific frequency range of 0.5–
7.5 Hz. Collected EEG signals often include fundamental noises
in various frequencies, such as industrial frequency noise, or
random noise. To remove the impact of these invalid noises
and improve the signal-to-noise ratio of the P300 EEG signal,
an individual trial’s data extracted from a dataset are usually
filtered and preprocessed with a 50 Hz trap filter and a
(0.1–30 Hz) Butterworth bandpass filter. Besides the main
300 ms peak after stimulation, other peaks around it are
also important, so the EEG signal in Dataset I is divided
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into 1 s windows using 352 timestamps to better capture
key information.

Downsampling is applied on data to reduce the data
transmission rate and data size. Each element value is Xi,j, where
0 ≤ i ≤ Nelec, 0 ≤ j ≤ Nt . Nelec denotes the number of lead
channels, Nt denotes the sampling frequency, and the sampling
frequency used in the experiment is 240 Hz. The downsampling
begins with data dimensionality reduction, specifically the data
time domain sampling frequency is reduced from 240 Hz to
120 Hz. Then the data are normalized to prevent overfitting and
avoid different data performing nearly identically in the same
neural network. The calculation method is shown in formula (1).

Xi,j =
Xi,j − X

σi
(1)

In Formula (1), X represents the mean value of EEG signal
recorded by electrode i and σi represents the standard
deviation recorded by electrode i (Cecotti and Graser,
2010).

Two brain data fusion methods are proposed in this paper
to merge the preprocessed data information in spatial and
temporal domains. Specifically, both parallel data fusion and
serial data fusion are performed on the data evoked by repeated
identical experimental stimuli. As shown in Figure 3, n subjects
labeled Single 1 to Single n were fused in two ways, and (n-
2) sets of data were omitted from a total of n groups of
data. Parallel data fusion increases the spatial domain feature
information by fusing multi-person data stimulated by the
same task, thus improving the overall performance of BCI.
Serial data fusion can achieve the same goal by fusing multi-
person data stimulated by the same task and adding feature
information in the time domain without changing the number
of leads.

Characteristic analysis

Two individual subjects’ data was randomly selected from data
set I, which was evoked by the same stimulus experiment. Then
starting with the small probability stimulus moment, the wave
form during 0–500 ms after the filtered small probability stimulus
evoked response was drawn, and the single-trial P300 amplitude
features and EEG topographic map in single-person mode and two-
person centralized data fusion mode were analyzed and compared.
As shown in Figures 4, 5. In Figure 4, different colored curves
in each graph correspond to different lead signals. The position
of the leads is shown in the upper left corner of the diagram, the
upper right corner is the amplitude color scale measured in µv, the
horizontal axis represents the time and the vertical axis represents
the signal amplitude of each lead. Figures 4A,B represent the EEG
signals of each lead for both subjects in single-person mode. As
can be seen in Figure 4, the P300 EEG signal treated with the two
centralized data fusion has a more pronounced wave at around
300 ms. In this case, Figure 4C shows the centralized parallel data
fusion, as the international standard 10–20 lead system was used,
so by assigning the eight leads Fz, Cz, P3, Pz, P4, PO7, PO8, Oz
to the eight leads FCz, CPz, CP1, CP2, P5, P6, PO3, PO4, it was
possible to draw 16 lead waveforms. The increase in lead (spatial
domain) information by centralized parallel data fusion is evident
in Figure 4C. Figure 4D shows the centralized serial data fusion.
As the centralized serial data fusion is the information added in the
time domain, in terms of the lead wave crest characteristics, it is first
shown as the first one of the two fusion individuals.

Figure 5 illustrates the change in amplitude corresponding to
each lead position in the EEG topography in single-person mode
and two-person centralized data fusion mode, with Figures 5A,B
representing single-person mode, Figure 5C representing two-
person centralized parallel data fusion and Figure 5D representing

FIGURE 3

Schematic diagram of parallel data fusion and serial data fusion of multi-person data.
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FIGURE 4

P300 characteristic distribution. (A,B) Single-person model. (C) Centralized parallel data fusion. (D) Centralized serial data fusion.

FIGURE 5

Electroencephalographic topography. (A,B) Single-person model. (C) Centralized parallel data fusion. (D) Centralized serial data fusion.

two-person centralized serial data fusion. It can be seen from
Figures 4, 5 that this method is feasible.

CNN classification

In this paper, Dataset I was first used, referring to the
CNN structure proposed by Cecotti and Graser (2010), and

the network structure parameters were adjusted based on the
data characteristics of Dataset I. Taking two-person parallel data
fusion as an example, the 8-Lead data set is fused into 16
leads, which increases the characteristics of lead information and
spatial domain. The CNN structure is composed of Input layer,
Convolution layer, Dropout layer, Maxpooling layer, Flatten layer,
and Dense layer. In the CNN structure, the first and third layers
are the convolutional layers, and the convolutional operation can
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TABLE 1 Convolutional neural network (CNN) structure of two-person
parallel data fusion.

Layer Input Type Output #Parameters

L1 (None,351,16,1) Conv2D+ReLU (None,351,16,16) 1,040

L2 (None,351,16,16) Dropout (None,351,16,16) 0

L3 (None,351,16,16) Conv2D+ReLU (None,351,16,32) 18,464

L4 (None,351,16,32) MaxPooling2D (None,175,8,32) 0

L5 (None,175,8,32) Flatten (None,44800) 0

L6 (None,44800) Dense+ReLU (None,64) 2,867,264

L7 (None,64) Dense+ReLU (None,8) 520

L8 (None,8) Dense+softmax (None,2) 18

be regarded as the inner product of the input samples and the
convolutional kernel, as shown in the formula (2).

Y l
j = f (

∑
i∈Mj

Y l−1
i ∗ ωl

ij + Blj) (2)

In Formula (2), Y l
j is the j th characteristic map of the l th

convolution layer, f () represents the activation function, ReLU
activation function is used in this network, Mj represents all
input characteristic maps, ωl

ij represents the convolution kernel
matrix between i and j, Blj represents offset, and ∗ represents
convolution operation.

The Dropout layer is used after the first convolution layer
to prevent a decrease in sensitivity of the network model due
to overfitting. The Maxpooling layer is added after the second
Conv layer, which compresses the features obtained from the
preceding layer with a pooling function, and selects the maximum
value of all elements in each specific region of the feature map
as the feature value of that region. This procedure resembles a
secondary feature extraction process, retaining the main features
of the data while of the data while lowering the dimensionality
the dimensionality of the data, thus reducing the computational
effort (He et al., 2020). So Maxpooling can effectively reduce
the training parameters and over-fitting problems to form the
final features. The Flatten layer is then connected with the
Maxpooling layer to map the feature space calculated by the
previous layer (convolution, pooling, etc.) to the sample marker
space to produce the final classification result, and improve the
generalization ability of the model. The specific parameters are
shown in Table 1.

Also taking two-person serial data fusion as an example, the
preprocessed single-person data is fused without changing the
specific data of two person. Serial data fusion is mainly carried
out in the time domain. That is, the time domain information
can be greatly expanded without changing the number of leads.
When constructing the CNN structure of two-person serial data
fusion, in order to avoid errors caused by other reasons, only the
corresponding time domain parameters are changed. The CNN
structure and specific parameters of two-person serial data fusion
are shown in Table 2.

The ReLU function is used as the activation function of the
neurons in the CNN. This method can solve the gradient vanishing
problem with fast calculation speed and fast convergence speed. As
shown in formula (3), when the input x takes a negative value, the

TABLE 2 Convolutional neural network (CNN) structure of two-person
serial data fusion.

Layer Input Type Output #Parameters

L1 (None,702,8,1) Conv2D+ReLU (None,702,8,16) 1,040

L2 (None,702,8,16) Dropout (None,702,8,16) 0

L3 (None,702,8,16) Conv2D+ReLU (None,702,8,32) 18,464

L4 (None,702,8,32) MaxPooling2D (None,351,4,32) 0

L5 (None,351,4,32) Flatten (None,44928) 0

L6 (None,44928) Dense+ReLU (None,64) 2,875,456

L7 (None,64) Dense+ReLU (None,8) 520

L8 (None,8) Dense+softmax (None,2) 18

output is 0, and when it takes a positive value, the output remains
that value of x.

ReLU(x) = max(x, 0) (3)

The last layer of neurons uses the softmax function for binary
classification. The function is given in formula (4) as follows, where
xi is the input.

Softmax(x) =
exi∑
i exi

(4)

In this paper, the CNN adopts the most robust network optimizer
for the neural network. Adam, and the cross-entropy function as
the loss function. The learning rate is set at 0.001, the number
of trainings is set as 75, and the random mini-batch size gradient
descent is set to 32, which can enable the network to be well
generalized and achieve faster classification.

Results

In order to evaluate the performance of the P300 classification
algorithm, relevant evaluation criteria are considered. The standard
metric for evaluating the P300 classification algorithm usually is
the accuracy rate, and the formula for P300 recognition accuracy
rate is given in Equation (5), which includes True Positive (TP),
True Negative (TN), False Positive (FP), and False Negative (FN).
TP indicates the number of samples correctly identified as positive
in positive samples, TN indicates the number of samples correctly
identified as negative in negative samples, FP indicates the number
of samples misidentified as positive in negative samples, and
FN indicates the number of samples misidentified as negative
in positive samples (Cecotti and Graser, 2010; De Venuto and
Mezzina, 2021; Liu et al., 2021).

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

The eight subjects contained in Dataset I were labeled in turn as
Subjects 1–8, and their data was divided into four sets marked as
C1, C2, C3, and C4, respectively, each including the data of two
subjects. Then the four sets of data were used for parallel data
fusion or serial data fusion. Table 3 lists the results of CNN’s single-
trial P300 classification of two centralized multi-person data fusion
methods and single-person mode, respectively.

As shown in Table 3, the classification accuracy of single-trial
P300 based on the fusion of two centralized multi-person data is
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TABLE 3 Results of convolutional neural network (CNN) single-trial P300 classification for centralized multi-person data fusion and
single-person mode.

CNN Subject 1 2 3 4 5 6 7 8 Average

Accuracy (%) 60.72 75.00 71.43 71.43 75.00 71.43 75.00 78.57 72.32

CNN+Parallel data fusion Subject C1 C2 C3 C4 Average

Accuracy (%) 78.57 82.14 85.71 85.67 83.03

CNN+Serial data fusion Subject C1 C2 C3 C4 Average

Accuracy (%) 71.43 78.57 78.57 85.71 78.57

FIGURE 6

Single-trial P300 classification results of a centralized multi-person
data fusion convolutional neural network (CNN) for groups with
different numbers of participants.

higher than that of single-trial P300 based on the single-person
mode. Specifically, the average accuracy of CNN for single-trial
P300 of single-person is 71.88%, while the average classification
accuracy of CNN with parallel data fusion reaches 83.03%, and that
value of CNN with serial data fusion reaches 78.57%.

Figure 6 compares the single-trial P300 classification results
of the two data fusion methods for two-person, three-person and
four-person groups and the counterpart results of the single-person
mode CNN. The dotted line 75% is the highest classification
accuracy of the single-trial P300 given by the single-person mode
CNN. It can be seen from Figure 6, as the number of participants in
the experiment increases, the average classification accuracy of the
centralized multi-person data fusion method for single-trial P300
keeps improving, and both of them exceed the dotted line 75%.
When the number of participants was four-person, the average
classification accuracy reached 89.13% for parallel data fusion and
82.14% for serial data fusion.

In addition to accuracy, some mainstream performance metrics
for binary classification problems, such as Recall, Precision, and
their summed average F1- score, are also considered relevant for
further feature recognition (Cecotti and Graser, 2010; De Venuto
and Mezzina, 2021; Liu et al., 2021). The calculation formula is
shown in (6), (7), and (8):

Recall =
TP

TP + FN
(6)

TABLE 4 Single-trial P300 classification results of a centralized
multi-person data fusion convolutional neural network (CNN) for
different numbers of participants.

Method N-
participants

Recall
(%)

Precision
(%)

F1- score
(%)

CNN 1 66.7 72.7 69.6

CNN+Parallel
data fusion

2 81.2 72.2 76.5

81.2 78.5 86.7

68.7 70.5 81.4

75.1 75.2 85.7

Average 76.5 74.1 82.5

3 75.3 85.7 83.3

62.5 71.4 66.7

66.7 75.6 75.0

Average 68.1 77.5 75.0

4 51.2 66.7 70.6

51.4 66.9 70.8

Average 51.3 66.8 70.7

CNN+Serial
data fusion

2 75.1 71.4 76.9

74.5 71.2 75.6

68.7 66.7 75.8

62.5 66.7 76.9

Average 70.2 69.0 76.3

3 75.2 85.7 76.9

62.5 83.3 71.4

66.7 75.6 75.0

Average 68.1 81.5 74.4

4 51.2 66.7 70.6

51.4 66.9 70.8

Average 51.3 66.8 70.7

Precision =
TP

TP + FP
(7)

F1− score = 2
Recall ∗ Precision
Recall+ Precision

(8)

Precision is the proportion of genuinely positive samples in all
(P300) samples that are identified as positive, and Recall is the
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TABLE 5 Results of centralized multi-person electroencephalography (EEG) data fusion convolutional neural network (CNN) and other
classification algorithms.

Method Subject Accuracy (%) Recall (%) Precision (%) F1- score (%)

ConvLSTM
(Joshi et al., 2018)

A 75.1 64.3 36.1 46.2

B 80.2 63.4 44.0 54.0

BN3
(Liu et al., 2018)

A 73.0 63.7 33.6 44.0

B 79.7 67.0 42.9 52.3

CNN-1
(Cecotti and Graser, 2010)

A 70.4 67.4 31.7 43.1

B 78.2 67.8 40.7 50.9

BN3(ns)+ConvLSTM
(De Venuto and Mezzina, 2021)

A 75.7 63.4 36.8 46.7

B 82.3 65.2 47.8 55.2

Autoencoded CNN
(De Venuto and Mezzina, 2021)

A 75.1 67.2 36.6 47.4

B 82.7 66.5 48.6 56.2

Autoencoded CNN no LBP
(De Venuto and Mezzina, 2021)

A 75.2 65.0 36.3 46.6

B 81.7 66.3 46.6 54.7

CNN+Parallel data fusion P(A+B) 82.4 71.1 56.6 66.7

CNN+Serial data fusion S(A+B) 81.4 75.1 44.4 53.3

proportion of positive samples that are detected from genuinely
positive samples, where Precision and Recall influence each other,
with both metrics being high if the detection algorithm is ideal.
However, usually it is difficult to optimize both of them, when one
is high the other will be low, so F1- score can be chosen as their
combined metric. In Table 4, the bold values represent the average
values of the three indicators in the single-person mode and the
average values of the three indicators in the two centralized multi-
person data fusion CNN for different participants. Since there are
eight individual data in the data set, data fusion was carried out
for four two-person groups, three three-person groups, and two
four-person groups. In three-person group case, only two people
were left for the last group, so one person was randomly selected
from the other two groups that were already fused so as to make up
three members. Then the single-trial P300 classification evaluation
indicators Precision, Recall and F1- score for the two data fusion
methods with two-person, three-person, and four-person groups
were calculated, and the average value after centralized data fusion
is taken in each case. The results are shown in Table 4. In Table 4,
N-participants represent the number of participants in a group for
centralized data fusion. In Table 4, N-participants represent the
number of people who have undergone centralized data fusion.
Since there are eight single persons in the data set, they are
divided into four groups when the number of people fused is two,
three groups when there are three, and two groups when there
are four, and the average value after centralized data fusion is
taken.

N-participants in Table 4 is 1, which represents the mean
classification of single-trial P300 by the CNN in single-person
mode. Although it can be seen from Figure 6 that the average
classification accuracy of the two centralized data fusions increases
as the number of participants increases, the three metrics Precision,
Recall and F1-score all decrease to varying degrees as the
number of participants increases. The reason behind this fact
is that P300 and non-P300 data in the EEG data is unevenly
distributed, even if all the recognition is made for non-P300

signals, the model can still achieve high accuracy, so the accuracy
alone is not enough to achieve a scientific and persuasive
evaluation, and all the four indicators should be considered
comprehensively.

It can be seen from Table 4 that when the number of group
member goes from 2 to 3 and 4, the recall of both centralized
data fusions The highest recall rates are achieved in two-person
group case with an average of 76.5% for parallel data fusion and
70.2% for serial data fusion. The F1- score averages for both
centralized data fusion CNNs also reach the highest value in
two-person group case, with parallel data fusion averaging 82.5%
and serial data fusion averaging 76.3%. In two-person or three-
person group cases, all the three metrics improved compared with
those for the single-trial P300 classification in single-person mode.
However, in four-person group case, the recall and precision of
both centralized data fusions are slightly lower than the mean in
the single-person mode, and the mean of F1- score is higher than
in the single-person mode. In summary, the centralized multi-
person data fusion classification algorithm has obvious advantages
over the single-person mode classification algorithm. When the
data of individual participants in the centralized data fusion is
divided into four two-person groups, the F1–score reaches the
highest when compared with the single-person mode and the
number of group members is three and four, Combining the two
indicators of Accuracy and F1-score, when the group members
of individual participants in centralized data fusion are two, the
classification single-trial P300 has the best effect. To explain the
better experimental results using a data fusion group size of two
compared with three and four, one possible reason could be the
over-fitting of multi-dimensional data; another reason could be
that the noisy nature of the EEG signal leads to saturation of
the classification performance, resulting in reduced accuracy. EEG
artifacts include electrode contact loosening, head movements,
eye movements and muscle activity. It is known that noise levels
may affect linear classification performance (Yun and Stoica,
2016).
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Validation of the model on dataset I indicates that the best
number of group members is two for the two centralized data
fusion CNNs in single-trial P300 classification. In order to test
the reproducibility of this method, this paper then applies the
algorithm to the data of Dataset II. Each subject’s single-trial
P300 information of 15 repeated experiments was extracted, and
two subjects’ single-trial data is fused with the above-mentioned
method to calculate the average classification accuracy after fusion.
For consistency, the results of other advanced single-trial P300
classification algorithms analyzing the same dataset and using the
same CNN structure were compared in terms of accuracy, recall,
precision and F1-score. As shown in Table 5. In Table 5, bold values
represent the highest two values of each column.

The comparison results in Table 5 show that the average
accuracy of the CNN based on centralized parallel data fusion
and serial data fusion in two-person group case reached 82.4 and
81.4%, respectively, both of which are slightly higher than that of
other advanced single-trial P300 recognition algorithms. And the
parallel data fusion always maintained the highest classification
accuracy. In terms of recall, both algorithms based on the two
centralized multi-person data fusion CNNs maintained a high
level, with serial data fusion reaching around 75%. Compared with
other methods, the proposed algorithms reached the higher level of
accuracy, although the data was imbalanced. The two centralized
brain data fusion CNNs also surpass the other algorithms in terms
of F1- score, with the F1- score for parallel data fusion also
maintaining the higher level. In summary, the method was shown
to be reproducible. Compared with other classification algorithms,
the spatial and temporal domain feature information of the single-
trial P300 data layer can be increased after fusion of multi-person
data, and the CNN constructed by connecting the Flatten layer with
the Conv layer and Maxpooling layer can better extract and classify
the features of the single-trial P300, which solves the problem of
complex and time consuming operation as well as low accuracy
in the process of recognizing the single-trial P300, thus achieving
better recognition results.

Discussion

The single-trial P300 classification algorithm based on
centralized multi-person data fusion CNN proposed in this paper
uses CNN to classify the single-trial P300 signal after centralized
parallel or serial fusion of multi-person EEG data. In the CNN
network structure, a Dropout layer is added after the first Conv
layer to prevent overfitting, and a Maxpooling layer is used after
the second Conv layer to connect the Flatten layer, extracting
the maximum of all elements in each region of the convolutional
layer feature map as the feature value of this region, preserving
the main features of the data while reducing the dimensionality
of the data. Batch Normalization is adopted to train the data in
small Batch, which makes it easier to generalize the network and
classify P300 signals faster. The purpose is to improve the existing
multi-trial P300 classification algorithm, which is time-consuming
and complex in calculation, and the single-trial P300 classification
algorithm which has low accuracy. This paper uses two centralized
multi-person data fusion CNN approaches to fuse the EEG data
of different number of participants ranging from 2 to 4 for P300
classification. The results are evaluated with four metrics, Accuracy,

Recall, Precision and F1- score, respectively, and compared with
those of single-person CNN model and other advanced single-
trial P300 classification algorithms, which are validated on the
available public dataset Kaggle dataset and BCI Competition III.
The experimental results demonstrate that the classification results
of both centralized multi-person data fusion CNNs outperform
the CNN classification results in single-person mode, and the four
metrics of Accuracy, Recall, Precision and F1-score for detecting
single-trial P300 are improved by different margins compared
with other classification algorithms, so the proposed approach can
achieve high accuracy in identifying single-trial P300. Comparison
among the results of fusing 2, 3, and 4 people’s data as a group
indicates that the best results are obtained for two-person groups.

Among the two data fusion methods used in this paper,
the centralized P300-cBCI with parallel data fusion is the better
choice in terms of applicability compared to the centralized P300-
cBCI with serial data fusion, as it involves a smaller model
and fewer training parameters. In summary, CNNs that undergo
centralized two-person parallel data fusion can be more effective
in improving the overall P300-cBCI classification accuracy and
practical performance at small amounts of sample information.
The single-trial P300 classification algorithm based on a centralized
multi-person data fusion CNN proposed in this paper can be
applied to online P300-cBCI systems, providing a new idea for
building a more efficient P300-cBCI system, but this requires
participating subjects to receive the same experimental stimuli
under the same experimental conditions, and the same pre-
processing of the data to be prepared for fusion. In the future,
online P300-cBCI systems are to be built to enable efficient, fast and
accurate classification of P300 for a number of applications, such as
helping patients with text communication. This will improve the
actual performance of the P300-cBCI system.
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