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Purpose: Brain glymphatic dysfunction is involved in the pathologic process of

acute ischemic stroke (IS). The relationship between brain glymphatic activity and

dysfunction in subacute IS has not been fully elucidated. Di�usion tensor image

analysis along the perivascular space (DTI-ALPS) index was used in this study to

explore whether glymphatic activity was related to motor dysfunction in subacute

IS patients.

Methods: Twenty-six subacute IS patientswith a single lesion in the left subcortical

region and 32 healthy controls (HCs) were recruited in this study. The DTI-

ALPS index and DTI metrics (fractional anisotropy, FA, and mean di�usivity, MD)

were compared within and between groups. Spearman’s and Pearson’s partial

correlation analyses were performed to analyze the relationships of the DTI-ALPS

index with Fugl-Meyer assessment (FMA) scores and with corticospinal tract (CST)

integrity in the IS group, respectively.

Results: Six IS patients and two HCs were excluded. The left DTI-ALPS index of

the IS group was significantly lower than that of the HC group (t = −3.02, p =

0.004). In the IS group, a positive correlation between the left DTI-ALPS index and

the simple Fugl-Meyer motor function score (ρ = 0.52, p= 0.019) and a significant

negative correlation between the left DTI-ALPS index and the FA (R = −0.55, p =

0.023) and MD (R = −0.48, p = 0.032) values of the right CST were found.

Conclusions: Glymphatic dysfunction is involved in subacute IS. DTI-ALPS could

be a potential magnetic resonance (MR) biomarker of motor dysfunction in

subacute IS patients. These findings contribute to a better understanding of the

pathophysiological mechanisms of IS and provide a new target for alternative

treatments for IS.

KEYWORDS

glymphatic system, ischemic stroke, analysis along perivascular space, corticospinal tract,

motor dysfunction

1. Introduction

Ischemic stroke (IS) remains one of the leading causes of disability and death worldwide

(Campbell et al., 2019; Campbell and Khatri, 2020; Fukuta et al., 2022). Approximately 69.6%

of stroke incidents in China are IS, similar to the global average (WangW. et al., 2017; Feigin

et al., 2018). The most common symptom associated with IS sensorimotor dysfunction

(Langhorne et al., 2009; Alawieh et al., 2018), which can recover spontaneously within 3

months (Kwakkel et al., 2006; van der Vliet et al., 2020). A previous study has pointed out
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that, throughout the recovery process, early subacute IS is a critical

period for neuroplasticity and recovery (Bernhardt et al., 2017).

Previous research demonstrated that brain lymphatic activity

not only contributed to the pathologic process of IS but also

influenced its recovery. The glymphatic system is the perivascular

network used for the exchange between cerebrospinal fluid

(CSF) and interstitial fluid (ISF) in the brain (Iliff et al., 2012;

Klostranec et al., 2021). It consists of three main structures (Iliff

et al., 2012; Benveniste et al., 2019): para-arterial CSF influx

channels, para-venous ISF efflux channels, and astrocyte exchange

channels connecting the two channels (aquaporin-4, AQP4). Brain

glymphatic dysfunction is involved in the pathologic process of

acute IS (Iliff et al., 2014; Chen S. et al., 2021). We proposed

that pathological changes in subacute IS were associated with

brain glymphatic dysfunction in subacute IS. The brain glymphatic

system is involved in the clearance of brain metabolic waste (Choi

et al., 2021). However, the brain glymphatic pathway attenuates

brain edema by clearing cellular debris from ISF and promotes

central nervous system (CNS) recovery after IS (Benveniste et al.,

2019; Li et al., 2019; Zhou et al., 2021). Studies used variant

animal models of cerebral ischemia to examine ischemia-induced

functional changes at different time points and the role of AQP4

in brain edema after IS and found that the inhibition of AQP4

reduced cerebral edema and improved motor recovery and long-

term prognosis (Hirt et al., 2017; Liu et al., 2017). Further

research is needed to confirm whether glymphatic dysfunction in

humans is related to motor dysfunction and altered white matter

microstructure in subacute IS in order to understand the role of the

glymphatic system in the pathophysiology of IS.

The corticospinal tract (CST) is the primary descending motor

pathway carrying movement-related information and has been

widely studied after stroke (Liu et al., 2020), with the main

research directions being the correlation between CST injury

and motor dysfunction and the prediction of motor function

recovery using CST integrity after stroke (Lim et al., 2020;

Hayward et al., 2022). Diffusion tensor image (DTI) metrics are

currently the most common indices depicting the microstructural

integrity of white matter. Among them, fractional anisotropy (FA)

represents axonal alterations (Tavazzi et al., 2022), and mean

diffusivity (MD) is associated with cerebral edema (Chormai

et al., 2022). Previous studies showed that DTI metrics are the

reliable quantitative metrics of CST that correlate with motor

function outcomes and Fugl-Meyer assessment (FMA) scores

in stroke rehabilitation (Haque et al., 2021; Lee et al., 2021).

Although DTI metrics play an important role in describing

the anatomical and pathological changes caused by IS, the lack

of biological specificity and interpretation of pathophysiological

disease information (for example, the mechanism of cerebral

edema after IS) limit its clinical applications (Ji et al., 2021;

Kamagata et al., 2021; Andica et al., 2022). Recently, a study

on an epileptic seizure exploring differences in white matter

integrity and glymphatic function indicated that the impairment of

the glymphatic system may precede white matter microstructure

in the early stage of epilepsy and implicated the potential role

of measuring brain lymphatic activity in the expression and

comprehensive understanding of early pathological changes of

brain disorders (Salimeen et al., 2021). Therefore, quantitative

measurement of changes in stroke-related lymphatic activity in CST

may help explain the mechanism underlying motor disruption in IS

patients and provide possible medical interference of stroke for IS

patients with motor dysfunction.

Diffusion tensor image analysis along the perivascular space

(DTI-ALPS) is a non-invasive method for evaluating glymphatic

system function in individual subjects based on diffusion tension

imaging (Taoka et al., 2017). DTI-ALPS has been demonstrated

to produce results within minutes with good stability and intra-

observer consistency (Si et al., 2022) and can be used as an

alternative to DTI for wider use in clinical practice (Taoka et al.,

2022a). Using both glymphatic magnetic resonance imaging (MRI)

and DTI-ALPS methods, Zhang et al. (2021) measured and

compared glymphatic clearance function and found a significant

correlation between the DTI-ALPS index and the brain glymphatic

clearance rate calculated by classical glymphatic MRI, indicating

that DTI-ALPS might represent the precise function of brain

glymphatic clearance (Siow et al., 2022). The DTI-ALPS index

has been used to assess variations in the glymphatic system

in several diseases, such as Alzheimer’s disease, type 2 diabetes

mellitus, idiopathic normal pressure hydrocephalus, Parkinson’s

disease, cancer pain, and other diseases (Taoka et al., 2017; Yang

et al., 2020; Bae et al., 2021; Heo et al., 2021; Ma et al., 2021;

Okada et al., 2021; Toh and Siow, 2021a; Wang et al., 2022).

Zhang et al. (2022) used the DTI-ALPS method in patients with

hemorrhagic stroke and found the impairment of the ipsilateral

glymphatic system function on the lesion side. Another study used

the same method to investigate glymphatic system function in

patients with ischemic stroke (Toh and Siow, 2021b) and found

similar results of glymphatic system dysfunction. However, these

two studies did not address the relationship between glymphatic

system dysfunction and stroke-related clinical symptoms, which

requires further research.

In this study, we used the DTI-ALPS method to investigate

glymphatic activity and white matter integrity of CST in subacute

IS patients with motor dysfunction. We assumed that glymphatic

activity was impaired after subacute IS, which might be related to

motor dysfunction and changes in white matter microstructure.

2. Materials and methods

2.1. Participants and clinical information

From November 2020 to December 2021, 26 IS and 32 healthy

controls (HCs) were recruited for this cross-sectional study. The

inclusion criteria for patients with IS were as follows: (1) age

being 18 years or older; (2) a single lesion in the left subcortical

regions; (3) magnetic resonance (MR) images collected 7–40 days

after stroke onset (Kang et al., 2012); (4) the modified Fazekas

scale for white matter hyperintensities ≤2 (Fazekas et al., 1987);

and (5) right-handed before stroke onset. The exclusion criteria

were as follows: (1) the T2-weighted fluid-attenuated inversion

recovery (FLAIR) sequence showed an ischemic lesion (Figure 1)

involving regions of interest (ROI) at the level of the lateral

ventricle (the largest slice of projection and association fibers shown

simultaneously); (2) recurrent stroke defined by clinical history and
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FIGURE 1

An example of the left thalamic infarct on FLAIR (A) and DWI (B). FLAIR, fluid-attenuated inversion recovery; DWI, di�usion-weighted imaging.

MRI evaluation; (3) a history of major neuropsychiatric disorders

(i.e., Alzheimer’s disease, Parkinson’s disease, schizophrenia, and

epilepsy); (4) contraindications to MRI (metallic foreign body,

electronic implants, or shunt pumps in the brain and body); and (5)

participation in drug clinical trials. The human study protocol was

approved by the medical research ethics committee of Xi’an Daxing

Hospital (No. Dxll2020-153), and informed consent was obtained

from all participants prior to examination.

The FMA (Busk et al., 2021) was used to evaluate motor (range:

0–100 score) and sensation (range: 0–24 score) function (Sullivan

et al., 2011) in stroke patients. All assessments were completed

the day before the MRI examination. FMA was performed on

a one-to-one basis with the patient by an occupational therapist

(Gladstone et al., 2002).

2.2. MR image acquisition

Image data from all participants were acquired using a

3.0T MRI scanner (MAGNETOM Prisma, Siemens Healthineers,

Germany) with a 64-channel head/neck coil. Participants were

placed in a supine position, and the coil was filled with a

sponge pad to keep the head stationary during the examination.

Conventional MR images (including T2-FLAIR images) were

acquired to identify stroke lesions and other brain abnormalities.

Diffusion spectrum imaging (DSI) scans were obtained with

an echo planar imaging (EPI) sequence, and multiple b-values

(repetition time = 3,300ms, echo time = 73ms, field of view

= 220mm × 220mm, matrix = 110 × 110, slice thickness

= 2mm, number of slices = 60, and in-plane resolution =

2mm)were performed. Using amultiband sequence (Simultaneous

Multi-Slice = 2, GRAPPA = 2), a total of 129 DWI volumes

were acquired, with 18 different b-values ranging from b =

0 to b = 3,000 s/mm2 and 128 different diffusion encoding

orientations (the b table of one patient’s DSI data is provided in

Supplementary Table S1).

2.3. DSI processing

Diffusion spectrum images were processed using the DSI Studio

software (version chen “ ” build 13 January 2022, http://dsi-studio.

labsolver.org). The FSL’s (version 6.0.5.3, https://fsl.fmrib.ox.ac.uk/

fsl/fslwiki) (Smith, 2002) eddy was used for eddy current and

motion correction. The brain extraction tool (BET) was used to

remove the whole brain’s scalp and skull and generate masks. The

generalized q-sampling imaging (GQI) (Yeh et al., 2010) with a

diffusion sampling length ratio of 1.25 was used to reconstruct an

individual space to generate a color-coded FA map. To calculate

the diffusivity of water molecules in the perivascular space in

axial slices, DSI volumes with a b-value of no more than 1,150

s/mm2 were used to form the DTI model. Automated tractography

methods were used to reconstruct and visualize bilateral CSTs. FA,

MD, and water diffusivity along the x, y, and z axes were calculated.

Finally, FLAIR images were imported into the DSI studio and

recorded in the DSI space to observe lesions (refer to Figure 2 and

Supplementary Table S1 for the detailed process).

2.4. Regions of interest

Based on measurement satisfaction, ROIs (volume size =

12mm × 4mm × 2mm) were placed in the projection and

association fiber regions of the bilateral hemisphere on the color-

coded FA map in the horizontal plane of the lateral ventricle body

(Taoka et al., 2017) to calculate DTI-ALPS (Figure 3). The ROIs

(volume size = 4mm × 4mm × 2mm) of the CST were placed

in the same section. We used FLAIR images to avoid placing
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FIGURE 2

Flowcharts for DSI image processing. BET, brain extraction tool; GQI, generalized q-sampling imaging; DSI, di�usion spectrum images; DTI, di�usion

tensor image; CST, corticospinal tract; DTI-ALPS, di�usion tensor image analysis along the perivascular space; ROI, regions of interest.
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FIGURE 3

The concept of the di�usion tensor image analysis along the perivascular space (DTI-ALPS) method. (A) The DTI color map shows the direction of

the projection fibers (z-axis, blue), association fibers (y-axis, green), and subcortical fibers (x-axis, red). Two regions of interest (ROIs) are placed to

measure the di�usivities of the projection (projection area) and association (association area) fibers. (B) The schematic diagram indicates the

relationship between the direction of the perivascular space (gray cylinder) and the direction of the fibers. Note that the direction of the perivascular

space is perpendicular to the projection and association fibers (Taoka et al., 2017).

ROIs over visibly damaged tissue (infarct foci or white matter

hyperintensity). If the lesion involved the ROI regions, the subject

was excluded. To investigate whether commissural fibers that travel

in the left and right directions affect the ALPS index, we placed

the ROIs (volume size = 4mm × 4mm × 2mm) of the corpus

callosum (CC) on the same level as the bilateral hemisphere’s

projection and association fiber regions on the color-coded FAmap,

respectively (Supplementary Figure S2).

2.5. Calculation of the DTI-ALPS index

The DTI-ALPS index was proposed by Taoka et al. (2017),

which was calculated as the ratio between the MD in the area of

projection fibers (Dxx−proj) and association fibers (Dxx−assoc) on the

x-axis and that of the projection fibers (Dyy−proj) on the y-axis and

the association fibers (Dzz−assoc) on the z-axis as follows:

DTI − ALPS index =
mean (Dxx−proj, Dxx−assoc)
mean (Dyy−proj, Dzz−assoc)

# (1)

The DTI-ALPS index was calculated for each subject to assess the

activity of the glymphatic system in the native space.

2.6. Statistics

R statistics software (https://cran.r-project.org/, version 4.0)

was used to perform demographic data analysis, intergroup

comparison, and correlation analysis. All continuous data were

reported as mean± SD.

Two-sample t-test or Pearson’s χ2 test was used to compare

the differences between the IS and HC groups, including the

demographic data and DTI-ALPS indices.

A paired t-test was used to study whether there was

a lateralization effect on DTI-ALPS and CST metrics within

each group.

We used Spearman’s correlation to analyze the relationship

between bilateral DTI-ALPS index and FMA scores (simple Fugl-

Meyer motor function score and Fugl-Meyer sensory score) in

the IS group. Controlling for age and time since stroke onset, the

correlation of the DTI-ALPS index with CST metrics was assessed

using Pearson’s partial correlation analysis.

The relationship between the left ALPS and the left

FA of CC and the right ALPS and the right FA of CC

in the two groups was analyzed using Pearson’s partial

correlation analysis. In addition, the relationship between

bilateral ALPS and the mean FA of bilateral CC was

also analyzed.

If a p-value was <0.05, the results were considered statistically

significant after multiple comparison corrections.

3. Results

3.1. Demographics and clinical information

Initially, 6 of the 26 subcortical IS patients were excluded due

to ischemic lesions involving ROI regions (n = 5) or the modified

Fazekas scale for white matter hyperintensities >2 (n= 1), and two

HC participants were excluded due to poor image quality. Finally,

20 IS (16 men; age range: 33–83 years; mean age: 59.2 ± 12.1

years) and 30 HCs (20 men; age range: 42–66; mean age: 54.6 ±

7.4 years) were included. The two groups were matched in terms

of age (t = 1.50, p = 0.146) and gender (χ2 = 0.50, p = 0.479).

The demographic and clinical characteristics of participants are

summarized in Table 1.
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TABLE 1 Demographic and clinical characteristics of 50 participantsa.

Stroke patients Healthy controls χ2/tb p-value

Number of cases 20 30 – –

Mean age± SD (year) 59.2± 12.1 54.6± 7.4 1.50 0.146

Men (%) 16 (80%) 20 (67%) 0.50 0.479

Time after stroke (day)c 9 (7–40) – – –

Lesion location Left hemisphere – – –

Infarct volume (mm3) 216–6,928 – – –

Simple FM motor function scorec 88.5 (14–100) – – –

FM sensory scorec 22 (11–24) – – –

Education (years) 8.5± 1.8 8.2± 1.6 0.45 0.656

Stroke risk factors

Diabetes 5 (25%) 3 (10%) – –

Hypertension 17 (85%) 21 (70%) – –

Coronary artery disease 1 (5%) 0 – –

Current smoker 15 (75%) 18 (60%) – –

Carotid artery disease 19 (95%) 15 (50%) – –

Atrial fibrillation 2 (10%) 0 – –

aData are presented as the number of patients (%) or mean± standard deviation (SD).
bData are calculated by student’s t-test or Pearson’s χ2 test.
cData are presented as median (range).

SD, standard deviation; FM, Fugl-Meyer.

3.2. Comparison of the DTI-ALPS index
within and between the two groups

In the IS group, the DTI-ALPS index was 1.424 ± 0.132 (left

side) and 1.381 ± 0.172 (right side); in the HC group, the index

was 1.565± 0.197 (left side) and 1.454± 0.107 (right side) (refer to

Supplementary Table S2).

The left DTI-ALPS index in the IS group was significantly lower

than the same side in the HC group (t =−3.02, p= 0.004), but the

right DTI-ALPS difference between the groups was not significant

(t =−1.87, p= 0.067).

Since there was a significant lateralization effect of DTI-ALPS

for the HC group, the left-side DTI-ALPS was higher than that

on the right-side DTI-ALPS (t = 3.62, p = 0.001). However, this

effect was not observed in the IS group (t = 1.81, p = 0.087)

(Figure 4).

3.3. Associations between the DTI-ALPS
index and FMA scores

We found that a higher left DTI-ALPS index was associated

with a better simple Fugl-Meyer motor function score (ρ = 0.52,

p = 0.019, Figure 5) and Fugl-Meyer sensory score (ρ = 0.44, p =

0.052) in the IS group. There was no significant association between

the right DTI-ALPS index and simple Fugl-Meyer motor function

score (ρ = 0.20, p= 0.396) and the Fugl-Meyer sensory score (ρ =

−0.07, p= 0.759).

3.4. Comparison of bilateral FA and MD of
CST in subacute IS

In the subacute IS group, FA (t = −0.36, p = 0.721) and

MD (t = −1.69, p = 0.102) on the left were reduced more than

those on the right. There was no significant correlation between the

bilateral CST metrics and simple Fugl-Meyer motor function score

in patients with IS (refer to Supplementary Figure S1).

3.5. Associations between the DTI-ALPS
index and CST metrics

After controlling for age and time since stroke onset, there were

significant negative correlations between the left DTI-ALPS index

and the white matter microstructure integrity indices of the right

CST: FA (R = −0.55, p = 0.023) and MD (R = −0.48, p = 0.032)

(Figure 6). There was no significant correlation between the left

DTI-ALPS index and the left CST: FA (R = 0.056, p = 0.82) and

MD (R=−0.041, p= 0.86).

3.6. The influence of FA of CC on the
DTI-ALPS index

The results showed no significant correlations between

the DTI-ALPS index and FA of CC in the IS group

(Supplementary Figure S3): the left DTI-ALPS index and FA

of the left CC (R = 0.13, p = 0.57), the right DTI-ALPS index and
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FIGURE 4

The graph shows a significantly lower DTI-ALPS index in the

left/stroke side of the brain in patients with IS than in HCs (t =

−3.02, p = 0.004). The left side was also significantly higher than the

right side in HCs (t = 3.62, p = 0.001). Statistics shown in the graph

were p-values. DTI-ALPS, di�usion tensor image analysis along the

perivascular space; IS, ischemic stroke; HC, healthy controls.

FIGURE 5

Associations between DTI-ALPS and Fugl-Meyer assessments

(FMAs). A significant positive correlation was observed between the

DTI-ALPS index and the simple Fugl-Meyer motor function score in

patients with IS. DTI-ALPS, di�usion tensor image analysis along the

perivascular space.

FA of the right CC (R = 0.035, p = 0.88), the left DTI-ALPS index

and the mean FA of the left CC (R = 0.27, p = 0.26), and the right

DTI-ALPS index and the mean FA of the right CC (R = −0.22,

p = 0.24). In addition, there was also no significant correlation

between the DTI-ALPS index and FA of CC in the HC group (refer

to Supplementary Figure S4 for the detailed results).

4. Discussion

In this study, the IS group had a lower DTI-ALPS value on

the affected side of the CST than that of the HC group, reflecting

glymphatic dysfunction in patients with IS. In the IS group, a

higher DTI-ALPS index was associated with better Fugl-Meyer

scores, and there were significant negative associations between the

left DTI-ALPS and the right CST (FA and MD). These findings

suggest that ALPS can be an MR biomarker of motor dysfunction

in patients with subacute stroke and shed light on possible medical

interference for IS.

4.1. Damaged glymphatic system in stroke
patients

Structural changes induced by strokes can significantly alter

the characteristics of tissue water diffusion (Muñoz Maniega et al.,

2004). The characteristics of subacute IS are blood–brain barrier

damage and brain edema (Kanekar et al., 2012). Cerebral edema

is a serious complication of IS, and its severity can predict the

prognosis of long-term motor function of IS patients (Stokum

et al., 2016). Structural damage of the blood–brain barrier and

high expression of astrocyte aquaporins following stroke can

lead to disruption of lymphatic transport and reduced CSF flow,

which can exacerbate brain edema (Randolph et al., 2017; Chen

J. et al., 2021; Li et al., 2021) and thus affect motor function

outcomes. Animal studies have provided evidence that, in patients

with IS, the glymphatic system was seriously damaged and that

the clearance of ISF was reduced after IS (Arbel-Ornath et al.,

2013; Gaberel et al., 2014; Lin et al., 2020; Ji et al., 2021; Lv

et al., 2021). Our results found that patients with subacute IS had

lower ALPS indices, similar to the results observed in previous

studies (Wang M. et al., 2017; Toh and Siow, 2021b). Stroke is

one of the disorders that share the characteristics of dysfunction

of the glymphatic system or other mechanisms related to the

dynamics of the ISF (Taoka, 2021; Taoka et al., 2022b) and belongs

to the CNS interstitial fluidopathy. The new concept proposed

by Taoka contributes to the understanding of the pathogenic

mechanism of various diseases related to interstitial transport

or fluid dynamics (Taoka and Naganawa, 2021). This finding

indicated that patients with IS had a damaged glymphatic system,

which might be related to the dysfunction of ISF clearance in the

glymphatic system, resulting in delaying the subsidence of cerebral

edema and affecting the state of motor function. However, the

mechanism underlying the impairment of glymphatic function

after IS remains unknown. Possible reasons are decreased arterial

pulsation, enlarged perivascular space, changes in AQP4 expression

and distribution, or swollen astrocytes (Wang et al., 2023). Other

physiological glymphatic factors, such as meningeal lymphatic and

transvenous efflux rates and the CSF production rate, may also

change glymphatic function after IS (Li et al., 2022). More research
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FIGURE 6

Correlation analysis between the DTI-ALPS index and CST metrics. A significant negative correlation is observed between the left DTI-ALPS index and

FA (A), MD (B) of the right CST. There was no significant correlation between the left DTI-ALPS index and the left CST: FA (C), MD (D). DTI-ALPS,

di�usion tensor image analysis along the perivascular space; CST, corticospinal tract; FA, fractional anisotropy; MD, mean di�usivity.

is needed to look at pathophysiological changes in the brain

lymphatic system so as to discover the mechanism and therapeutic

target of brain edema after stroke.

4.2. Relationship between damaged
glymphatic system and motor dysfunction
in IS patients

The present study also found that there were significant positive

correlations between the DTI-ALPS index and FMA. Previous

studies have revealed that the modulation of brain lymphatic

activity could affect IS outcomes. AQP4, one of the components of

the glymphatic system, is involved in the formation and resolution

of edema. In AQP4 knockout mice, brain edema after ischemia was

reduced by 35% (Manley et al., 2000). Moreover, acute inhibition

of AQP4 with TGN-020 could promote sensorimotor recovery

in the subacute stage (Sun et al., 2022). There is evidence that

meningeal glymphatic vessels connect with deep cervical lymph

nodes (Aspelund et al., 2015; Louveau et al., 2015). Then, in

the animal model of focal cerebral ischemia, surgical resection

of superficial cervical lymph nodes connected with meningeal

glymphatic vessels could block systemic inflammation caused by

damaged brain signals, improve post-stroke inflammation, and

reduce brain injury (Esposito et al., 2019). All these findings

showed that the improvement of glymphatic activity after IS could

effectively reduce brain edema and promote recovery from motor

dysfunction, which explained the connection between glymphatic

activity and motor dysfunction. One of the principles of the

treatment of IS is to remove harmful metabolites (Zhu et al.,

2022). Recent studies have found that voluntary wheel operation

accelerated the clearance of glymphatic function and protected

mouse synaptic function (He et al., 2017). Some studies have shown

that the treatment via the extracellular space of the brain after

stroke can reduce cerebral vasospasm (Zhang et al., 2012), vascular
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permeability (Zhou et al., 2013), and brain edema (Yan et al.,

2012), which was beneficial for improving neurological function

(including motor sensory function) (Xu et al., 2011). This research

provides an association between glymphatic dysfunction and IS,

which may provide a theoretical basis for the development of

new clinical therapeutics. Our finding demonstrated that lymphatic

function was abnormal during the period of subacute IS, which

is consistent with prior studies. Extensive reactive astrogliosis

occurred 14 days following diffuse IS; during this time, global

lymphatic function returned to normal as AQP4 expression

returned to the baseline levels (Wang et al., 2012), while focal

glymphatic impairment might persist for a long time (Wang M.

et al., 2017). Related studies have shown that the glymphatic injury

persisted 28 days after the brain injury (Iliff et al., 2014). These

findings indicated that changes in glymphatic activity and motor

dysfunction after ISmay be related to time since stroke onset, which

needs to be confirmed by longitudinal studies.

4.3. Association between damaged
glymphatic system and CST in stroke
patients

In this study, there were significant negative correlations

between the left DTI-ALPS index and the right CST (FA and

MD). We found that the integrity of CST on the affected side

was impaired after stroke, which was consistent with a previous

study (Peters et al., 2021). Longitudinal studies showed that FA

in infarcts decreased gradually from the acute to the subacute

phase, while MD initially decreased and then increased (Kern et al.,

2022). Decreased FA might be related CST axonal damage and

degeneration (Chang et al., 2017), and increased MD might be

associated with vasogenic edema after stroke (Kern et al., 2022; Lee

S.-Y. et al., 2022), which has a great impact on motor dysfunction

after stroke.

Diffusion tensor image metrics can be used as an imaging

evaluation index for monitoring motor function impairment (Yang

et al., 2022) or motor recovery after stroke (Puig et al., 2017).

Findlater et al. (2019) found that low CST-FA was associated

with poor motor performance 1 month after stroke. Research

on hypoxic-ischemia-induced stroke thrombosis model in adult

mice and chronic stroke patients showed that the FA values of

bilateral CSTs decreased after stroke due to the loss of axonal

or CST integrity (Yu et al., 2009; Shereen et al., 2011; Lakhani

et al., 2017). Most studies have reported axonal remodeling

during spontaneous recovery after stroke (Wahl et al., 2014,

2017). Growing evidence suggested that CST axonal remodeling

in the contralateral motor system also contributed to spontaneous

motor recovery after stroke (Schaechter et al., 2009; Yeo and

Jang, 2012; Okabe et al., 2017). Liu et al. (2008) used CST

tracing to investigate contralateral neuronal reorganization after IS

and administration in adult rats and showed that the treatment

to improve neurological outcomes could also enhance neuronal

remodeling in the contralateral intact hemisphere through CST

axonal remodeling, which might be a benefit for motor recovery.

Another study on a rodent stroke model clarified the role of brain

astrocytes in functional compensation following IS and showed

that the activation of contralateral astrocytes might be involved

in the functional recovery of the contralateral region of the lesion

by clearing extracellular glutamate (Takatsuru et al., 2013). The

integrity of myelin plays an important role in maintaining ISF

drainage in adults. In areas affected by stroke, remyelination is

important in the process of functional recovery (Park et al., 2022).

Intact myelin can serve as a barrier structure for ISF drainage,

which is beneficial for the development of cognitive and motor

or sensory abilities of the brain (Wang et al., 2021). This may

explain why the association between the ipsilateral DTI-ALPS

index and the contralateral CST in our study may be related

to CST axonal remodeling and the clearance function of the

glymphatic system.

4.4. Lateralization of DTI-ALPS

In contrast to the result of a recent study (Zhang et al., 2022),

the DTI-ALPS value on the left side is higher than that on the

right side in our HC participants. Given the small sample sizes

of both studies and the difference in age distributions, it was

difficult to say whether there should be a lateralization effect

on human brain glymphatic systems. A reverse trend between

brain lymphatic system function and human age has currently

been confirmed (Jessen et al., 2015; Lee D. A. et al., 2022). In

addition, handedness and the dominant brain side influence the

thickness of the superior longitudinal fasciculus (Chormai et al.,

2022). This may have an impact on the measurement of ALPS,

and therefore, the results may not be as accurate as expected,

which also contributes to laterality. The current demonstration of

laterality needs to be treated with caution, and further investigation

is needed to clarify the existence and causes of laterality in the brain

lymphatic system.

To the best of our knowledge, this is the first study to

investigate whether the ALPS index is affected by commissural

fibers traveling in the left and right directions. There was no

significant correlation between the FA values of the CC and

the ALPS index in both the IS and HC groups. Based on the

abovementioned preliminary results, we suggest that the ALPS

index is an appropriate measurement in the present study and

can reflect the state of the glymphatic system. Nevertheless, this

preliminary conclusion needs to be further confirmed by more

rigorous studies of large samples.

This study has some limitations. First, the small sample size

of this study requires prudence in interpreting the results. Second,

although the onset time of IS was 7–40 days, most of them were

concentrated within 20 days, and glymphatic function may change

over time, which may have some impact on the findings (Toh

and Siow, 2021b). Third, because the DSI acquisition method uses

multiple b-value acquisitions, it may not be the optimal DTI-

ALPS scanning protocol. According to a recent study (Taoka et al.,

2022a), there was a high correlation between the DTI-ALPS value

obtained using different scanning parameters, indicating that our

study protocol is also suitable for this type of research. Finally, the

patient’s prognosis for motor function could not be determined

from our findings on the relationship between the DTI-ALPS value

and motor function due to the cross-sectional study design.
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5. Conclusion

In conclusion, a decreased DTI-ALPS index indicates

glymphatic system dysfunction in patients with subacute IS

and may serve as an MR biomarker for motor dysfunction in

these patients. These findings could help us understand the

pathophysiological mechanisms of IS and develop alternative

treatment options for post-IS glymphatic activity.
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