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Objective: Prior researches have identified distinct differences in neuroimaging

characteristics between healthy controls (HCs) and patients with major depressive

disorder (MDD). However, the correlations between homotopic connectivity and

clinical characteristics in patients with MDD have yet to be fully understood. The

present study aimed to investigate common and unique patterns of homotopic

connectivity and their relationships with clinical characteristics in patients with

MDD.

Methods: We recruited 42 patients diagnosed with MDD and 42 HCs. We

collected a range of clinical variables, as well as exploratory eye movement (EEM),

event-related potentials (ERPs) and resting-state functional magnetic resonance

imaging (rs-fMRI) data. The data were analyzed using correlation analysis, support

vector machine (SVM), and voxel-mirrored homotopic connectivity (VMHC).

Results: Compared with HCs, patients with MDD showed decreased VMHC

in the insula, and increased VMHC in the cerebellum 8/vermis 8/vermis

9 and superior/middle occipital gyrus. SVM analysis using VMHC values in

the cerebellum 8/vermis 8/vermis 9 and insula, or VMHC values in the

superior/middle occipital gyrus and insula as inputs can distinguish HCs and

patients with MDD with high accuracy, sensitivity, and specificity.

Conclusion: The study demonstrated that decreased VMHC in the insula and

increased VMHC values in the sensory-motor networks may be a distinctive

neurobiological feature for patients with MDD, which could potentially serve as

imaging markers to discriminate HCs and patients with MDD.

KEYWORDS

major depressive disorder, voxel-mirrored homotopic connectivity, support vector
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1. Introduction

Major depressive disorder (MDD), a prevalent mental illness,
is the foremost cause of disability worldwide (CONVERGE
consortium, 2015; Yang et al., 2020). Furthermore, it is a
complicated emotional disorder characterized by abnormal clinical
symptoms, including cognitive disorders (such as feelings of
excessive guilt or worthlessness), autonomic dysfunction (such
as changes in appetite or sleep patterns), abnormal psychomotor
activities (such as excitement or retardation), and elevated risk
of suicide (Lou et al., 2019). Approximately 12% of the global
population is affected by MDD, while the lifetime occurrence of
MDD in the United States surpasses 20% (Hasin et al., 2018; Hayley
et al., 2021; Fries et al., 2022). The incidence of MDD has risen
since the outbreak of COVID-19 (COVID-19 Mental Disorders
Collaborators, 2021). Approximately 25–50% of those with MDD
exhibit deficiencies in one or more cognitive domains, which are
considered key features of the condition (Liu et al., 2022).

Researches have demonstrated that MDD is a heritable and
heterogeneous disorder (Andersson et al., 2019; Kendall et al.,
2021; Nguyen et al., 2022), and its clinical features are associated
with brain regions that exhibit anatomical differences. Multiple
neuroimaging studies have attempted to identify the neurobiology
of MDD and distinguished several neuroimaging characteristics
between healthy controls (HCs) and patients with MDD. Zhang
et al. (2022) found that, in comparison to HCs, patients with
MDD exhibited decreased functional connectivity (FC) between
the emotional subregion of the anterior cingulate cortex (ACC) and
the hippocampus, thalamus, insula, angular gyrus, and posterior
cingulate cortex. On the other hand, other studies reported
increased connectivity between the hippocampus and the ACC and
reduced connectivity between the insula and the ACC in patients
with MDD (Krug et al., 2022). Functional brain imaging studies
revealed significant changes in the FC in the cerebellum-neocortex
and cerebellum-basal ganglia circuits in patients with MDD (Dai
et al., 2022). Additionally, an increased long-range positive FC
(lpFC) in the left inferior parietal lobule was found to distinguish
HCs and patients with MDD (Dziedzic et al., 2022). Given
that the architecture of the connectome affects the effectiveness
and velocity of information transport, including regions such
as anterior and middle cingulate cortex, medial occipital areas,
superior frontal areas, post- and precentral gyrus, parahippocampal
gyrus, and precuneus, the balance of intra-hemispheric and inter-
hemispheric connectivity plays a crucial role in brain function
(Krupnik et al., 2021).

Studies have demonstrated that communication between the
left and right hemispheres of the human brain is a crucial
aspect of both cognitive and emotional processing (Compton
et al., 2005; Toro et al., 2008). Ran et al. (2020) showed that
anatomical abnormalities in the corpus callosum in patients with
MDD may result from caused by imbalanced inter-hemispheric
communication. Concurrently, a magnetic resonance imaging
(MRI) study indicated that the deterioration of inter-hemispheric
FC is related to the severity of clinical depression and treatment
outcomes of patients with MDD (Kozel et al., 2011; Zheng et al.,
2022). Additionally, patients with MDD had notably higher overall
average (static) functional connectivity (sFC), but lower variability
of functional connectivity (vFC) within networks (Demirtas et al.,

2016). As per the research by Liu et al. (2021) inter-hemispheric
homotopic connection in particular regions could be serve as a
potential biomarker to distinguish patients with MDD from HCs.
Reduced inter-hemispheric coordination in the posterior default-
mode network and visual regions was also revealed between HCs
and patients with MDD (Guo et al., 2018).

Voxel-mirrored homotopic connectivity (VMHC) is a
technique used to calculate resting-state FC between voxels in
a hemisphere and their corresponding mirror regions in the
opposite hemisphere (Jia et al., 2020; Fan et al., 2022). VMHC can
be utilized to determine the intensity of functional connections
between brain regions in both hemispheres that are located at the
same position (Zuo et al., 2010; Jin et al., 2021). Several studies
have concluded that the mechanism behind VMHC deficiency
may be linked to extensive abnormalities in white matter integrity,
dysfunction in local gray matter structure, and the mode of
pathway reorganization (Yuan et al., 2012; Ding et al., 2015).
Moreover, this method can be used to evaluate the relationship
between time series dependent on blood oxygen levels, and to
demonstrate how information is exchanged between the two
hemispheres of the brain (Wei et al., 2018). Some clinical studies
have demonstrated altered homotopic FC by measuring VMHC in
patients with MDD (Lai and Wu, 2014; Hou et al., 2016). Support
vector machine (SVM) is a specialized form of supervised machine
learning that multivariable pattern recognition technology that is
applied to predict psychosis based on neuroanatomical indicators
(Shan et al., 2021). SVM can effectively identify a set of information
and features from different brain regions, which can be used
to classify patients and HC using neuroimaging data [such as
functional magnetic resonance imaging (fMRI) data] (Steardo
et al., 2020), making the classification results more convincing.
Numerous studies have employed VMHC and SVM methods to
study brain disorders, providing possible evidence for the discovery
of biological markers in neuroimaging (Chen et al., 2021; Chu
et al., 2022; Wu et al., 2022). However, it is still unclear whether
abnormal VMHC can be used as an underlying brain imaging
symbol to discriminate HCs from MDD using the SVM analysis.

In this study, our objective was to apply the VMHC method to
identify the inter-hemispheric functional interaction during resting
state in individuals with MDD. This study investigated whether
abnormal VMHC might be utilized as a potential marker in patients
with MDD by combining VMHC values with cognitive tests,
exploratory eye movement (EEM), event-related potentials (ERPs),
and other markers. We hypothesized that patients with MDD
would exhibit reduced VMHC, which could serve as a potential
imaging marker to differentiate between HCs and patients with
MDD. In addition, we proposed that aberrant VMHC would be
associated with clinical variables in MDD.

2. Materials and methods

2.1. Participants

Patients with MDD were recruited from Foshan Third People’s
Hospital. This study included 32 first-episode patients and 10
recurrent patients with MDD. Forty-two HCs matched for sex
and years of education were recruited from the community. The

Frontiers in Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnins.2023.1135337
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1135337 March 1, 2023 Time: 14:33 # 3

Zhang et al. 10.3389/fnins.2023.1135337

Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-
5) patient version is used to determine the diagnosis of MDD.
For recurrent patients, the use of antidepressants was suspended
for at least 2 weeks by themselves. The anxiety and depressive
symptoms, social function, personality characteristics, coping style,
social support, and psychological cognitive function of the subjects
were measured by Hamilton Anxiety Scale (HAMA), Hamilton
Depression Scale (HAMD), Social Disability Screening Schedule
(SDSS), Eysenck Personality Questionnaire (EPQ), Simplified
Coping Style Questionnaire (SCSQ), Social Support Scale (SSS),
Wisconsin Card Sorting Test (WCST), and Repeatable Battery
for the Assessment of Neuropsychological Status (RBANS). All
participants were right-handed and ranged in age from 18 to
60 years old. The exclusion standards for all subjects were as
follows: (1) a history of severe physical sickness or alcohol or drug
abuse; (2) significant physical impairment, preventing completion
of the follow-up study; and (3) the presence of mental retardation,
dementia, and severe cognitive impairment in addition to other
serious psychiatric problems.

The study was approved by the Research Ethics Committee
of the Third People’s Hospital of Foshan, and a written informed
consent was obtained from all participants.

2.2. Event-related potentials (ERP) data
acquisition

Event-related potential data were collected using a Japanese
Kohden MEB-9402C myoelectric evoked potentiometer.
Participants were instructed to sit comfortably and make an
effort to concentrate. The electrode placement followed the 10/20
standard by the International Electroencephalogram Association.
The ground was put in the center of the hand FPz. The right ear
M2 point served as the recording electrode. The central Cz point
served as the reference electrode. The electrode impedance was
set to 5K, and the filter was 0.2–20 Hz. The analysis duration was
1000 ms. The stimulation is carried out in the traditional “Oddball”
auditory stimulation mode, with a frequency of 1 times/s, a
duration of 10 ms, and a sensitivity of 5 µV. The detection was
accomplished by triggering and activating two systems, which
were band-pass filtered 200 times with the low-frequency filter
and the high-frequency filters. The settings for the non-target
stimulus were set to 80% probability, 70 dB intensity, and 1000 Hz
frequency, while the parameters for the target stimulus were set to
20% probability, 90 dB intensity, and 2000 Hz frequency. The two
frequencies were randomly interspersed, and each scenario was
repeated twice before the average value was calculated. The subject
was presented with a target stimulus and the non-target stimulus
was not utilized as a response. If a test subject had less than 80%
hits, the test was considered invalid. The latencies of the N100,
P200, N200, and P300 waves were recorded separately.

2.3. Exploratory eye movement (EEM)
data acquisition

The EEM data was collected using a Shanghai-made Dekang
DEM-2000 eye movement detector. The participants were

instructed to sit comfortably in a chair and focus on a small
screen in front of them. The angle of eyes movement from the
left to the right side of the screen was 33◦, and the distance
between their eyes and the screen was 25 cm. The participants
were instructed to pay close attention as the initial S-shaped pattern
(S) was displayed on the screen for 15 s. Within this time, the
device automatically captured the gaze positions and recorded the
number of eye fixations (NEF). After that, the second and third
S-shaped patterns (S2, S3), which were slightly different from the
first image, were displayed on the screen. Every pattern lasted 15 s.
When prompted with the question, “What is the difference between
the two patterns,” the participants were instructed to pay close
attention before responding with, “There is no difference.” The
responsive seeking score was calculated from the gaze points in
seven locations (only one point was considered in each region) for
a period of 5 s (RSS). The device can automatically record the eye
movement’s trajectory, the data are automatically processed by the
computer, and the entire procedure may be replayed for later use.
A gaze point in EEM analysis is defined as an eye’s gaze time that
exceeds 200 ms on specific spot (the eyeball is moving within 2◦).
This is defined as the total number of gaze points in 15 s when
the eye fixes on the S-pattern. The RSS score is broken down into
seven S2 or S3 regions, and the instrument counts the NEF areas
for a total of 5 s. No matter how often, the subject’s attention
on a certain place is worth one point. The maximum RSS score
for each picture is thus 7, and for S2 and S3, the maximum RSS
overall score is 14. NEF 30 and/or RSS 4 were used as the criterion
for abnormality.

2.4. Measures

Hamilton Depression Scale (17 items) was used to assess
depressive severity. A higher score indicates a more severe
level of depressive symptoms (Bagby et al., 2004). The level
of anxiety symptoms was evaluated using the HAMA. This
scale consists of 14 items, each with a score ranging from 0
to 4. A higher score indicates a greater severity of anxiety
symptoms. The SDSS is a 10-item scale that was clinician-
administered to assess the level of functional impairment. A three-
point Likert scale (0–2) was used to rate each item. A higher
score indicates a greater level of functional impairment (Yan
et al., 2022). Factor analysis of the EPQ scale revealed three
orthogonal dimensions, leading to the proposed of four basic
factors to determine personality: Extraversion (E), Neuroticism
(N), Psychoticism (P), and Lie (L). These three dimensions reflect
individuals’ varying tendencies and levels of performance, resulting
in different personality characteristics (Smith and Ellingson,
2002). The SCSQ is developed based on the characteristics of
Chinese population. The questionnaire consists of 20 items,
each rated on a four-point Likert scale with scores ranging
from 0 to 3, and pertains to different coping strategies for
handling everyday events (Cai et al., 2021). The SSS was used
to evaluate social support. A total of 10 components and 3
dimensions made up the scale (i.e., subjective support, objective
support, and support utilization). Scores under 20 indicate poor
social support, between 20 and 30, moderate social support,
and over 30, satisfied social support (Li and Shou, 2021). The
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WCST is a card-matching task commonly used to evaluate
cognitive flexibility and broader aspects of executive function
in both research and clinical settings (Miles et al., 2021). The
RBANS is a brief neurocognitive assessment tool that provides
standardized measures of attention, language, memory, and
visuospatial/constructional abilities (Faust et al., 2017).

2.5. Imaging data acquisition

Images were collected using a GE 3.0 T scanner (GE 3.0 T Signa
Pioneer). The subjects were instructed to remain still, close their
eyes, and stay awake. Soft earplugs and foam pads were employed
to mitigate the effects of scanner noise and head movements during
the imaging process. Scan parameters were repetition time/echo
time = 2000/30 ms, 36 slices, 64 × 64 matrix, flip angle 90◦, field
of view 24 cm, slice thickness 4 mm, no gap, 250 volumes (500 s).

2.6. Data pre-processing

Data Processing Assistant for Resting-State fMRI (DPARSF)
software was used to preprocess resting-state data in MATLAB.
The slice timing and head motion in the images were corrected.
To ensure the quality of the imaging data, the maximum x, y, or
z displacement and angular motion for all subjects should have
no more than 2 and 2◦mm, respectively. The functional images
were then resampled to 3 mm × 3 mm × 3 mm and normalized
(Chao-Gan and Yu-Feng, 2010). An isotropic Gaussian kernel was
used to smooth the processed images (fullwidth at half-maximum:
8 mm). Additionally, a linear trend removal and band-pass filtering
(0.01–0.08 Hz) were processed (Song et al., 2011). Next, linear
regression was used to remove a number of spurious covariates
and their temporal derivatives from the data. These variables
comprised the signal from a ventricular region of interest (ROI),
the signal from a region centered in the white matter, and 24 head
motion parameters determined via rigid body correction (Fox et al.,
2005).

2.7. VMHC analysis

The REST software is used to examine VMHC (Song et al.,
2011). In a brief, VMHC maps were created by computing Pearson
correlations (Fisher z-transformed) between a given voxel and a
mirrored voxel in the opposing hemisphere. The specifics of the
VMHC analysis have been previously described in the literature
(Zuo et al., 2010).

2.8. Statistical analysis

Data analysis in this study was conducted by using SPSS version
25.0. The chi-square test was used to examine the gender differences
between the two groups. Two sample t-tests were employed to
compare continuous variables such as age, years of education, and
clinical scales. The significance level was set at p < 0.05.

The image data was analyzed using the DPARSF software. Two
sample t-tests were conducted on each VMHC map to compare the
groups. Then multiple comparison correction was performed based
on the Gaussian random field (GRF) theory (p < 0.001 for voxel-
level significance and p < 0.05 for cluster-level significance). Age,
gender, education, and mean framewise displacement were used as
covariates to minimize the potential influence of these variables.

For the correlation analyses, the mean VMHC values in
aberrant brain areas with substantial differences between depressed
patients and HCs were retrieved. The correlations between
VMHC levels and clinical factors in patients with MDD were
investigated using Pearson or Spearman correlation analyses. The
significance level was set at p < 0.05 (corrected according to the
Bonferroni’s correction).

2.9. SVM analysis

The SVM analysis was used to determine the ability
of VMHC values extracted from abnormal brain regions to
differentiate between HCs and patients with MDD by utilizing the
LIBSVM software1 in MATLAB. The “leave one-out” method was
used in the study.

3. Results

3.1. Demographic and clinical data

A total of 46 patients with MDD and 44 HCs were included
in this study. However, due to significant head movement, the
data of two HCs and four patients were excluded. As a result,
the final imaging analysis included 42 patients with MDD and
42 HCs. Detailed demographic and medical information about
the individuals can be found in Supplementary Table 1. The age
difference between patients and HCs was significant (p = 0.01),
and there was no significant difference between gender and
years of education. There were significant differences in HAMA
(p < 0.001), HAMD (p < 0.001), Neuroticism (N) (p < 0.001), Lie
(L) (p < 0.001), Extraversion (E) (p = 0.003), SDSS (p < 0.001),
SCSQ subscale scores (p < 0.001, p = 0.001), SSS (p < 0.001),
NEF (p < 0.001), RSS (p = 0.025), N200 (p = 0.038), and P300
(p = 0.012) between the two groups. There was no significant
difference between the two groups in SCSQ total scores, WCST,
RBANS, N100, and P200.

3.2. VMHC analysis in depressed patients
and HCs

Our results showed that in the patients with MDD, the VMHC
values of the superior/middle occipital gyrus and cerebellum
8/vermis 8/vermis 9 increased compared to HCs, while the VMHC
values of the insula decreased. The specific details can be found in
Table 1 and Figure 1.

1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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TABLE 1 Regions with abnormal VMHC values in patients with MDD.

Cluster location Peak (MNI) Number
of voxels

T-value

x y z

Cerebellum 8/Vermis
8/Vermis 9

±6 −57 −30 126 4.3385

Superior/middle
occipital gyrus

±12 −102 12 40 4.5177

Insula ±39 18 −3 44 −2.8516

MDD, major depressive disorder; MNI, Montreal Neurological Institute; VMHC, voxel-
mirrored homotopic connectivity.

3.3. SVM analysis

According to abnormal VMHC values in various brain areas
and the combination of these clusters, Figure 2A illustrates the
effectiveness of differentiating patients with MDD from HCs. The
sensitivity, specificity, and accuracy of the differentiation using the
VMHC values in the cerebellum 8/vermis 8/vermis 9 and insula
were 80.95, 83.33, and 82.14%, respectively (Figure 2B). From
VMHC values in the superior/middle occipital gyrus and insula, the
sensitivity was 78.57%, the specificity was 85.71%, and the accuracy
was 82.14% (Figure 2C). In addition, the receiver operating curve
(ROC) of applying abnormal VMHC to distinguish patients with
MDD from HCs shown in Supplementary Figure 1, and the
accuracy, sensitivity, and specificity of classification with ROC
and SVM shown in Supplementary Table 2. ROC curve can only
analyze a single brain region, while VMHC combined with SVM
can analyze two brain regions. This is also an advantage of SVM,
which takes into account the spatial and temporal distribution of
the brain.

3.4. Correlation analysis result

Pearson/Spearman correlation analyses revealed the following
correlations: (1) the VMHC values in the superior/middle occipital
gyrus and SDSS total score (r = −0.441, p = 0.003, df = 41); (2) the
VMHC values in the superior/middle occipital gyrus and the scores
of Active Coping (r = 0.332, p = 0.032, df = 41); (3) the VMHC
values in the superior/middle occipital gyrus and RSS2 (r = 0.443,
p = 0.018, df = 27); and (4) the VMHC values in the insula and RP
(r = −0.341, p = 0.027, df = 41) (Figure 3).

4. Discussion

In this study, decreased VMHC in the insula and increased
VMHC values in the sensory-motor networks may be distinctive
neurobiological feature for patients with MDD, which could serve
as potential imaging markers to differentiate HCs and patients
with MDD. In addition, we found correlations between abnormal
VMHC values and clinical/cognitive parameters in MDD. The
aberrant VMHC values were further demonstrated to be promising
imaging indicators of MDD by using the SVM analysis.

Event-related potential is a mature method to understand
brain function in cognitive process, which is expected to make

greater contribution to the identification, prediction (Tsai and
Liang, 2021), treatment and prevention of mental disorders (Hajcak
et al., 2019), and P300 is a typical indicator of neurophysiological
ERP (Wada et al., 2019). Our research results show that there are
obvious differences between patients with MDD and HCs on the
cognitive level, which is consistent with a previous study (Wang
et al., 2023). This may be caused by the depression of the patients
and the decrease of attention to external events. The number of
fixations (NEF) and response search score (RSS) in EEM are related
to mental state, active attention and cognitive function (Ross et al.,
2000). The neural basis of EEM has been clearly explained by a
research (Lencer and Trillenberg, 2008). Studies have proved that
compared with the HC group, the eye movements of patients with
MDD are abnormal (Wang Y. et al., 2022). At the same time, the
combination of P300 and eye movement data can improve the
accuracy of auxiliary diagnosis of depression (Diao et al., 2022).
ERP and EEM combined with other psychological scale data, we
can see that there are obvious differences between patients with
MDD and HCs.

The insula, surrounded by cortical gyrus, white matter, and
basal ganglia structures (Dziedzic et al., 2022), is a center
of integration for emotional, visceromotor, autonomic, and
interoceptive information. Its diverse functional roles may be due
to its strong connections to a broad network of cortical and
subcortical regions (Wang R. et al., 2022). Studies have shown that
removal of the insular lobe may disrup autonomic nerve function
and alter an individual’s experience of emotions (Lacuey et al., 2019;
Motomura et al., 2019). Processing input from many functioning
systems involves an essential integration role for the insular cortex
(Starr et al., 2009; Morita et al., 2014; Allen et al., 2016; Berret et al.,
2019; Choi et al., 2022). Guo et al. (2015) found that compared
with HCs, the insula of the front-limbic circuit, hate circuit, and
visual regions of the patients with MDD showed decreased FC. At
the same time, FC between the insula and ACC was also reduced
(Krug et al., 2022). Patients with MDD showed abnormal FC
between the insular subdivisions to the superior temporal sulcus,
inferior prefrontal gyrus, amygdala, and posterior parietal cortex
(Peng et al., 2018). Multiple studies on patients with MDD have
revealed that, in comparison to HCs, their connectivity in insular
lobes was reduced (Veer et al., 2010; Sliz and Hayley, 2012; Avery
et al., 2014; Penner et al., 2016; Yin et al., 2018). The insula
plays a key role in emotional regulation, conscious arousal, and
consciousness. The decrease of insular connectivity may reflect the
important regulation of negative or arousal stimuli. The decreased
connectivity in the insula of patients with MDD may indicate an
alteration in their perception of visceral responses and subjective
sensory states (Critchley et al., 2004). Consistent with these results,
we discovered that VMHC in the insula was significantly lower
in patients with MDD compared to HCs, further supporting the
insular crucial function in the neurological process underlying
MDD. We speculate that the decrease of VMHC in the insula may
be an indicator related to the emotional state of patients with MDD.

The cerebellum, located in the posterior fossa, is commonly
known to control movement. However, recent studies show that it
also plays a significant role in cognition and emotion (Rabellino
et al., 2018; Habas, 2021; Su et al., 2021). In this study, compared
with HCs, VMHC of the cerebellum 8/vermis 8/vermis 9 in patients
with MDD was significantly increased. This increase in FC is
often interpreted as a sign of dedifferentiation or compensatory
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FIGURE 1

Voxel-mirrored homotopic connectivity (VMHC) values of abnormal regions in patients with MDD. MDD, major depressive disorder; VMHC,
voxel-mirrored homotopic connectivity.

redistribution (Cabeza et al., 2002; Grady et al., 2005; Pagen
et al., 2020). Inflammatory cytokines (i.e., tumor necrosis factor
and interleukin 6) can activate astrocytes and show hyperfunction
(increased blood flow and metabolism) (Guo et al., 2013a). Regional
hyperfunction may encourage an increase in FC and regional
activity (Liu et al., 2015; Wang et al., 2016). Studies have shown that
patients with MDD with MDD experience a significant increase in
communication between the cerebellum and the cerebellar-anterior
default mode network (Ding et al., 2022). In comparison to HCs,
our previous study found a marked decrease in the FC between the
cerebellum and cerebral cortex in individuals with both treatment-
sensitive and treatment-resistant depression (Guo et al., 2013b).
Another study showed that the cerebellar-cerebral dynamic FC
of patients with MDD was lower than that of HCs (Zhu et al.,
2020). This is because MDD is a multidimensional disease related
to emotion, cognition, memory, etc., some special default normal
functions of HCs may become dysfunctional in MDD patients,
such as the VMHC of the cerebellum 8/vermis 8/vermis 9 in this
study.

The findings of this study showed a significant increase in the
VMHC value of the superior/medium occipital gyrus. The occipital
lobe, located at the back of the cerebral hemisphere, is primarily
utilized for processing visual information, and communicating with
the cerebral cortex. It plays a crucial role in how facial emotions are
perceived and processed (Teng et al., 2018; Li and Wang, 2021).
Patients with MDD may experience aberrant cognitive processes,
such as attention deficit disorder and motor delay (Yu et al., 2017).
The results of this study provide additional evidence to clarify the
judgment of MDD.

Support vector machine has been widely used for classify
mental illnesses. The FC signal as a potential diagnostic index
requires that the sensitivity or specificity of SVM be higher than
0.6 (Guo et al., 2011; Shan et al., 2021). The previous SVM analysis
showed that using SVM to classify the neuroimaging biomarkers
of MDD resulted in a diagnostic accuracy is 98.96% (Song et al.,
2022). Compared with a study by Song et al. (2022), our study found
that patients with MDD had VMHC abnormalities in extensive
brain regions. At this point, the two studies are consistent. Different
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FIGURE 2

Support vector machine (SVM) results. (A) The accuracy of classification of six SVM analyses. One represents the VMHC values in the cerebellum
8/vermis 8/vermis 9; 2 represents the VMHC values in the superior/middle occipital gyrus; 3 represents the VMHC values in the insula; 4 represents
the combination of the VMHC values in the cerebellum 8/vermis 8/vermis 9 and superior/middle occipital gyrus; 5 represents the combination of
the VMHC values in the cerebellum 8/vermis 8/vermis 9 and insula; and 6 represents the combination of the VMHC values in the superior/middle
occipital gyrus and insula. (B) SVM analysis applied the combination of the VMHC values in the cerebellum 8/vermis 8/vermis 9 and insula.
Sensitivity = 80.95%, specificity = 83.33%, and accuracy = 82.14%. In the left part, the red cross represents patient with MDD, and the green asterisk
represents healthy controls. The blue circle represents support vector. (C) SVM analysis applied the combination of the VMHC values in the
superior/middle occipital gyrus and insula. Sensitivity = 78.57%, specificity = 85.71%, and accuracy = 82.14%. In the left part, the red cross represents
patient with MDD, and the green asterisk represents healthy controls. The blue circle represents support vector. SVM, support vector machines;
VMHC, voxel-mirrored homotopic connectivity; MDD, major depressive disorder.
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FIGURE 3

Pearson/Spearman correlations. Correlations were found as follows: (1) The VMHC values in the superior/middle occipital gyrus and the SDSS total
scores (r = –0.441, p = 0.003, df = 41); (2) the VMHC values in the superior/middle occipital gyrus and the scores of Active Coping (r = 0.332,
p = 0.032, df = 41); (3) the VMHC values in the superior/middle occipital gyrus and RSS2 (r = 0.443, p = 0.018, df = 27); and (4) the VMHC values in
the insula and RP (r = –0.341, p = 0.027, df = 41). VMHC, voxel-mirrored homotopic connectivity; SDSS, social function defect screening scale; RSS2,
responsive search score 2; RP, responses answer.

from Song et al. (2022) research, our research found abnormal
VMHC in the insula and the sensory-motor networks. At the same
time, we verify the difference between patients with MDD and
HCs by measuring clinical data (such as ERP, EEM, and so on),
which makes the study more convincing. The current SVM results
show that the VMHC values of the insula, cerebellum 8/vermis
8/vermis 9 and superior/medium organic gyrus are greater than
0.78 in the sensitivity, accuracy, and specificity of distinguishing
patients with MDD from HCs. Therefore, the VMHC values of
the insula, cerebellum 8/vermis 8/vermis 9 and superior/medium
organic gyrus may be used as potential imaging markers for
MDD.

There are still some limitations in this study. First, the area
under curve (AUC) of this study was impressive. But clearly, this
is a small preliminary report that needs to be replicated. Second, we
recruited patients who did not take medicine at the time of the first
episode, and patients who had relapsed and did not take medicine
for at least 2 weeks. The dissemination of research findings may be
constrained for patients who experience relapses since the impact
of antidepressant medications and number of episodes on brain
spontaneous activity cannot be entirely ruled out. Finally, we only
scanned the patients at baseline, so we did not know the alterations
of spontaneous neuronal activity after treatment.

5. Conclusion

In conclusion, the study’s comparison of VMHC alterations in
HCs and patients with MDD was groundbreaking. Our research
results show that decreased VMHC in the insula and increased
VMHC values in the sensory-motor networks may be a distinctive
neurobiological feature for patients with MDD, which might be
served as potential imaging markers to discriminate HCs and
Patients with MDD.
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