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Wireless sensing-based human-vehicle recognition (WiHVR) methods have become

a hot spot for research due to its non-invasiveness and cost-effective advantages.

However, existing WiHVR methods shows limited performance and slow execution

time on human-vehicle classification task. To address this issue, a lightweight

wireless sensing attention-based deep learning model (LW-WADL) is proposed,

which consists of a CBAM module and several depthwise separable convolution

blocks in series. LW-WADL takes raw channel state information (CSI) as input,

and extracts the advanced features of CSI by jointly using depthwise separable

convolution and convolutional block attention mechanism (CBAM). Experimental

results show that the proposed model achieves 96.26% accuracy on the constructed

CSI-based dataset, and the model size is only 5.89% of the state of the art

(SOTA) model. The results demonstrate that the proposed model achieves better

performance on WiHVR tasks while reducing the model size compared to SOTA

model.

KEYWORDS
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1. Introduction

INTELLIGENT Traffic Systems (ITS) is an important part of smart city (Santos et al., 2018;
Jin and Ma, 2019; Zhao et al., 2019; Choy et al., 2020; de Oliveira et al., 2020), providing reliable,
safe, and convenient services for road users (e.g., cars, motorcycle, pedestrians, etc.). As the
number of road users continues to increase, a large number of existing ITSs are approaching
their limits. In order to improve the performance of ITSs and relieve traffic pressure, the
measurement of traffic parameters including road user behavior has become a research hotspot
(Jiang et al., 2021; Park et al., 2021; Zhao and Huang, 2021). Generally, the behavior of road users
includes human-vehicle recognition (HVR), traffic flow statistics, vehicle speed, and direction
measurement, etc. As the foundation of road user behavior detection, the accuracy of human-
vehicle recognition determines the performance of traffic parameter measurement (Won et al.,
2017; Sliwa et al., 2020).

With the rapid development of artificial intelligence and deep learning techniques, image-
based HVR methods (Huang et al., 2020; Du et al., 2021) have been widely used in ITSs. Such
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HVR methods not only achieve excellent recognition performance,
but also provide rich traffic image information for city managers.
However, image-based HVR methods are susceptible to light so that
their performance can be degraded rapidly in the case of low-light
conditions such as night, cloudy, haze, etc. To alleviate the limitations
of image-based HVR methods in low-light scenes, the microwave
radar-based HVR method is proposed (Park et al., 2021; Singh et al.,
2021; Tavanti et al., 2021). However, high-performance frequency-
modulated continuous-wave (FMCW) radars come at a higher cost.
In addition, the microwave radar has the problem of installation
viewing angle, which leads to the high construction cost of the
microwave radar-based HVR method.

Generally, the purpose of wireless sensing-based HVR (WiHVR)
methods is to extract the energy information of surrounding wireless
signals for target recognition. Since the propagation of wireless
signals has no directionality, the WiHVR method does not have
the problem with the above-mentioned viewing angle (Ma et al.,
2019; Pan et al., 2019; Zhang et al., 2021). In recent years, the
WiHVR methods based on extracted receiving signal strength (RSS)
or channel state information (CSI) signatures from the wireless
transceivers on 2.4 GHz band, such as Bluetooth (Sliwa et al., 2020;
Wilby et al., 2020), ZigBee (Wang et al., 2017; Jiang et al., 2021), and
WiFi (Chen et al., 2018; Wang F. et al., 2018), etc., have been widely
employed to detect road users in ITSs.

1.1. CSI-based HVR methods

Wang W. et al. (2016) converted CSI signals to spectrograms,
thereby describing human motion. Won et al. (2017) proposed a
WiFi-based traffic monitoring system, in which the features of root
mean square, median absolute deviation, mean, first quartile, and
third quartile of the CSI signals were extracted, followed by a support
vector machine for vehicle classification. Liu et al. (2017) showed
a human motion detection method based on CSI phase difference.
They discussed the situation of line of sight (LOS) and non-line of
sight (NLOS). Arshad et al. (2018) proposed a WiFi-based device-free
dangerous driving recognition system. This system extracted multi-
domain features for both magnitude and phase of CSI signals. Wang
J. et al. (2018) presented a new general device-free identification
framework via empirical mode decomposition. They decomposed
CSI signals into intrinsic mode functions (IMF) and extracted the
time domain and frequency domain features from IMF components.

1.2. RSS-based HVR methods

Jiang et al. (2021) calculated the amplitude and mean information
of RSS signals. They designed a HVR algorithm for WiHVR based
on the calculated RSS features. Sliwa et al. (2020) provided a vehicle
detection and classification method on the basis of the extracted RSS
from transceivers on 2.4 GHz band. They used mean, minimum,
standard deviation, and other characteristics of RSS signals to address
the challenges of accuracy, robustness, and privacy. Abdelnasser et al.
(2018) exploited a gesture recognition system in which the edge,
frequency, and magnitude features of RSS signals were extracted for
gesture recognition. Bhat et al. (2020) extracted the RSS power levels
for human locomotion walking pattern recognition.

However, the above-mentioned WiHVR methods based on
extracted RSS or CSI signatures from 2.4 GHz wireless transceivers
like Bluetooth, ZigBee, and WiFi have the following drawbacks:

1) RSS is a coarse-grained signal, which leads to limited accuracy
of HVR tasks based on RSS signals.

2) The effects of CSI or RSS on the performance of WiHVR in
different application scenarios are not explored.

Recently, deep learning techniques (LeCun et al., 2015) consisting
of a multi-layer network architecture have attracted much interest.
One of the representative deep learning techniques is convolutional
neural network (CNN) (Krizhevsky et al., 2012). Up to now, due to
the powerful feature learning ability, CNNs have exhibited promising
performance on various tasks such computer vision (Szegedy et al.,
2016), speech signal processing (Zhang et al., 2017), natural language
processing (Otter et al., 2020), and so on. However, few works have
attempted to exploit the application of CNNs on WiHVR tasks.

To address the above-mentioned issues, this paper presents a
novel WiHVR method based on the designed lightweight wireless
sensing attention-based deep learning model (LW-WADL). Inspired
by the recent-emerged convolutional block attention mechanism
(Woo et al., 2018) (CBAM) and depthwise separable convolutions
(Chollet, 2017), we propose a new deep model, which consists of a
CBAM module and three depthwise separable convolution blocks in
series to learn high-level features from preprocessing CSI signals for
WiHVR. Compared with ordinary convolutions, depthwise separable
convolutions have relatively low parameters and operations. Besides,
we propose a novel CSI data enhancement method and a new
subcarrier selection method. In particular, a new CSI-based dataset
relates to road user behavior is constructed. In order to explore the
effects of CSI on the performance of WiHVR in different application
scenarios, the CSI dataset is divided into three taxonomies according
to the number of categories, namely, two-category dataset, three-
category dataset, and four-category dataset. Experimental results
show that the accuracy of CSI-based methods decreases as the
number of classification categories increases. For four-classification
experiments, the proposed model achieves 96.26% accuracy and the
model size is only 5.89% of the state of the art model.

To summarize, the main contributions of this paper are as
follows:

1) This paper proposes a CSI data enhancement method, which
preprocess the change trend of CSI data to one direction,
thereby enhancing CSI data.

2) This paper provides a subcarrier selection method, which selects
several subcarriers with large signal-to-noise ratios (SNR) as
benchmarks and integrates them into a new CSI data.

3) This paper has proposed a lightweight wireless sensing
attention-based deep learning model, and attempts to explore
the effects of CSI on the performance of WiHVR in different
application scenarios.

The remainder of this paper is organized as follows. Section
“2. Preliminaries” introduces the CSI extraction and the theoretical
analysis of WiHVR. Section “3. Proposed method” elaborates the
proposed LW-WADL for WiHVR. Section “4. Experiment study”
shows experimental results and analysis. Section “5. Conclusion and
future work” gives the conclusions and future work.
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2. Preliminaries

This paper aims to establish a lightweight and efficient WiHVR
method to explore the effects of CSI on the performance of WiHVR
in different application scenarios. The system architecture of the
proposed WiHVR method is shown in Figure 1.

From Figure 1, it can be found that wireless transceiver prototype
(WTP) is built and placed on both sides of the road. The WTP is
mastered by the ESP32 chip for generating and receiving wireless
signals. Once a road user appears in the WTP sensing area, the
CSI signal collected by the WTP will be attenuated due to the road
user. Therefore, WTP can extract CSI signals related to the road user
information.

2.1. CSI extraction

This paper uses the designed WTP to extract CSI data related
to road users. CSI represents the fine-grained channel features of
wireless communication links between transmitters and receivers
based on orthogonal frequency division multiplexing (OFDM)
technology. Besides, CSI describes the changes of phase and
amplitude caused by multipath effect and transmission loss in
wireless signal transmission. The CSI channel gain matrix is
expressed as:

Mcsi =


h11 . . . h1n
...

. . .
...

hm1 · · · hmn

 (1)

where hmn represents the different subcarriers. m and nrepresent the
transmitting and receiving antennas, respectively. Each sub-element
hmn represents:

hmn = ||hmn||ejηmn (2)

where ||hmn|| is the amplitude of the sub-carrier hmn, and ejηmn

represent the phase of hmn . From Eqs 1, 2, it can be known that CSI
is not a supersession of all subcarrier signals, it describes a multipath
signal with more characteristics. In this case, the CSI extracted by
WTP contains multiple subcarrier information. These subcarriers
have different sensitivities to road users, so it is necessary to filter

out the subcarriers with lower sensitivity. The specific method will
be elaborated in Section “3. Proposed method.”

The specific process of CSI signal extraction is shown in Figure 2.
The acquisition of CSI signal needs to be operated by inverse OFDM.
In order to eliminate inter-symbol interference and inter-channel
interference, OFDM will use cyclic prefix (C/P), but this part is not
real data, so this part needs to be removed in inverse OFDM. After
that, it is necessary to convert the series signal to the parallel signal
(S/P), and perform discrete Fourier transform (DFT) or fast Fourier
transform (FFT) to obtain the required CSI signal.

2.2. Theoretical analysis of WiHVR

The idea of WiHVR is based on the fact that road users of
existence and movement affect the wireless propagation paths. To
understand the relation of road users movement with received CSI,
the wireless propagation model should be first studied. In a typical
wireless environment, there is one main path line-of-sight (LOS) and
several reflected paths by the surroundings. As shown in Figure 1, if
a road user is present in the WTP sensing area, it will cause multipath
propagation of the wireless signal. In this case, according to the
free space model, the received power by a receiver antenna which
is separated from a radiating transmitter antenna by a distance d, is
given by the Friis free space equation,

Pr =
PtGtGrλ

2

(4π)2d2 (3)

where Pr and Pt are the receiving and transmitting power,
respectively. Gr and Gt are the receiving and transmitting antenna
gains, respectively. λ is the wavelength in meters. d is the distance
between the transmitter and receiver in meters, that is, the
propagation path length. When a road user exists in the wireless
environment, several scattered paths are produced by road user.
Those scattered power should also be added in the final received
power.

Pr =
PtGtGrλ

2

(4π)2(d2 + δ2)
(4)

where δ is a brief representation of path length caused by road user. If
a road user is static in the environment, Pr is almost stable. However,
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FIGURE 1

System architecture of the proposed WiHVR method. (A) Wireless transceiver prototype (WTP). (B) Road equipment deployment diagram.
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along with the move of a road user, the scattered paths change in a
fast speed, resulting in the variance in received signal power.

According to Eq. 4, the differences in size and speed of road
users lead to different attenuation of wireless signals. Hence, the CSI
readings measured by the WTP prototype are various.

3. Proposed method

According to the above analysis, since the differences in the
size and speed of humans or vehicles moving on the road, the
attributes of energy attenuation caused by two targets are various.
In this case, it is feasible to design a WiHVR method. To this
end, a deep learning-based WiHVR method is proposed in purpose
of analyzing the effects of CSI on the performance of WiHVR in
different application scenarios.

3.1. System overview

The overview of the proposed WiHVR based on a lightweight
wireless sensing attention-based deep learning model (LW-WADL)
is shown in Figure 3. The proposed WiHVR contains three key
modules: Data collection, CSI preprocessing, and Deep feature
extraction and classification. The data collection module consists of a

pair of WTPs, both of which are made up of an ESP32 module, so as to
collect CSI data of different road users in WTPs sensing area. The CSI
preprocessing module includes CSI filtering, CSI augmentation, CSI
subcarriers selection, and CSI segmentation. The core deep feature
extraction and classification module, i.e., the proposed LW-WADL
method consisting of a CBAM module and three depthwise separable
convolution blocks, followed by a global average-pooling (GAP) layer
for reducing computational complexity. In addition, GAP essentially
is an average pooling operation which is intended to replace fully
connected layers in classical CNNs. Thus, GAP is a special kind of
average pooling where the sliding window of the average operation
expands to the entire feature maps. Besides, after completing the final
feature representations of the GAP layer, a C-class vector (C is the
number of categories) is output through the Softmax function.

3.2. Data collection

As shown in Figure 3, this paper captures the CSI data in space
through the developed WTP. To extract CSI data, a threshold-based
road user detection algorithm is exploited in this paper. The purpose
of road user detection is to find out whether there are dynamic
targets in the sensing area. According to the analysis in Section
“2. Preliminaries,” it can be found that when there are no road
users in the wireless environment, the CSI patterns stabilize around
a reference value. Once a road user passes through the wireless

FIGURE 2

The specific process of CSI extraction.
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Overview of the proposed WiHVR based on a lightweight wireless sensing attention-based deep learning model (LW-WADL).
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environment, the amplitude of CSI patterns will drop sharply.
Therefore, the presence of road users in the region of interest can be
detected by the following threshold-based algorithm:

Xdet ection[k+ 1] = (5)
Static, Xdet ection[k] = Detected and∏k

n=k−W+1 sign(|x[n] − xstatic[n]| < Tobject) > 0
Detected, Xdet ection[k] = Static and∏k

n=k−W+1 sign(|x[n] − xstatic[n]| ≥ Tobject) > 0

where x[n] (n > 0) represents the n-th CSI reading. xstatic[n] is the
average of CSI readings when there are no road users in the wireless
environment, namely, CSI baseline. Tobject is the decision threshold
to determine whether there is a road user (dBm). Here, Tobject is set
to 4 dBm in this work. W is the size of the judgment window, and
is set to 50 when the sampling rate is 50 Hz. Xdet ection[] is the object
detection result. “Detected” indicates that there are road users in the
range of interest, and otherwise “Static” denotes no road users.

Moreover, the environmental factors such as rain, fog,
temperature, etc., can affect the CSI baseline xstatic[]. Thus, to
improve the performance of the above-mentioned fluctuation
detection algorithm, an adaptive baseline adjustment method is
proposed, which can be calculated by:

xstatic[n+ 1] =


β · xstatic[n] + (1− β) · x[n+ 1],

Xdet ection[n] = Xdet ection[n+ 1] = Static
xstatic[n], others

(6)

where β is a correction factor with a value of 0.96 in this paper. It
can be seen from Eq. 6 that the CSI baseline will be updated as long
as there are no road users in the wireless environment, otherwise it
will not be updated. Hence, the problem of CSI baseline drift caused
by environmental factors can be solved efficiently, as well as the
robustness of the fluctuation detection algorithm can be improved.

Finally, the CSI data extracted by WTP contains 52 subcarriers,
and each subcarrier contains amplitude and phase information. In
order to improve execution efficiency of LW-WADL, this paper
converts the raw two-dimensional CSI data containing amplitude
information into one-dimensional data. Then, one-dimensional CSI
data containing road user behavior information will be sent to the
second stage for data preprocessing.

3.3. CSI preprocessing

The CSI preprocessing module includes the following four steps:
CSI filtering, CSI augmentation, CSI subcarriers selection, and
CSI segmentation.

3.3.1. CSI filtering
To guarantee the robustness of road users recognition, smoothing

filtering is used to remove noise from the raw CSI data, as defined by:

Xfilter(n) =
1
N

N−1∑
j=1

Xraw(n− j) (7)

where Xraw represent the raw CSI data, and Xfilter(n) is the average
processed data and then the filter shift window size used is N, where
is set to five. The raw CSI waveform vs. filtered waveform is shown
in Figure 4. As can be seen from Figure 4, by applying moving

average filter, the high-frequency noise has been removed from the
CSI waveform without changing the trends of the waveform. The
waveform changes of the filtered data (Figures 4C, D) are more
pronounced than before filtering, thereby improving the efficiency
and accuracy of road user detection.

3.3.2. CSI augmentation
Channel state information augmentation aims to find a way to

enhance the CSI features without changing the raw CSI features.
According to the characteristics of the raw CSI signal waveform, this
paper proposes a novel CSI data enhancement method. This method
first calculates the average value of a set of CSI amplitude, and then
takes the absolute value of the CSI amplitude which is smaller than the
average value. In this way, the decay of the CSI amplitude is amplified,
thereby enhancing CSI features. First, the baseline Xbase of a set of CSI
data needs to be calculated, which can be expressed as:

Xbase =
1
I
·

1
T

I∑
i=1

T∑
n=1

Xcsi(i, n) (8)

where i represents the i-th CSI subcarrier, n represents the n-th
sampling point of the i-th subcarrier. I represents the number of CSI
subcarriers, which is 52 in this paper. T is the number of sampling
points of a group of CSI data. The enhanced CSI dataXcsi_aug(i, n)

can be obtained according to the CSI baseline Xcsi_base :

Xcsi_aug(i, n) =
∣∣Xcsi(i, n)− Xcsi_base

∣∣ (9)

where | | denotes the absolute value operation. According to the Eqs
8, 9, the enhanced CSI data can be obtained.

3.3.3. CSI subcarriers selection
Although CSI augmentation have enhanced CSI features related

to road users. In practical applications, different subcarriers of
CSI have different sensitivities to road users, e.g., some subcarriers
fluctuate greatly when encountering road users, while other
subcarriers fluctuate less. Therefore, to further enhance CSI data, we
design a raw CSI subcarrier selection method to remove subcarriers
with low sensitivity in CSI data. In order to evaluate the sensitivity
of CSI subcarriers, this paper calculates the SNR of the CSI data
amplitude, as expressed by:

SNR = 10 lg
∣∣∣∣ xpeak − xstatic

nnoise − xstatic

∣∣∣∣ (10)

where xpeak is the peak value of CSI with respect to a road user. xstatic
is the average of CSI readings when there are no road users within a
wireless environment. nnoise is the peak value of noise. According to
Eq. 10, the SNR Xcsi_SNR(n) of all subcarriers in a set of CSI data is
obtained:

Xcsi_SNR(n) = {xSNR(1), xSNR(2), ..., xSNR(m), ..., xSNR(n)} (11)

where xSNR(m) represents the SNR value of the m-th subcarrier.
For the convenience of calculation, it is assumed that
xSNR(n)has been arranged in descending order of SNR, that is,
{xSNR(1) > xSNR(2) > ... > xSNR(m) > ... > xSNR(n)} . According
to Eq. 11, “m” subcarriers with larger SNR are selected, where “m”
is defined as the CSI factor. The selection of the CSI factor “m” is
discussed in detail in Section “4. Experiment study.” The mean of
“m” subcarriers is calculated, which can be expressed as:

X̄csi_aug(n) =
1
m

m∑
n=1

Xcsi_aug(n) (12)
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Raw CSI waveform vs. filtered waveform. (A) The raw CSI waveform of the vehicle. (B) The raw CSI waveform of the pedestrian. (C) The filtered CSI
waveform of the vehicle. (D) The filtered CSI waveform of the pedestrian.

To demonstrate the validity of Eq. 12, we compare our proposed
method with k-subcarriers weight fusion (Kong et al., 2019) and
average-subcarriers (Wang Y. et al., 2016), as shown in Figure 5.
It can be seen that on a pedestrian and a vehicle CSI sample, our
CSI subcarrier selection method performs best, the SNR of the CSI
amplitude is 3.5 and 6.1 dB, respectively.

3.3.4. CSI segmentation
The selected CSI data X̄csi_aug(n) containing multiple CSI features

is split into certain segment-level sub-samples, each of which consists
of one complete CSI feature of a road user. Specifically, the single CSI
feature can be divided in terms of the local minimum in X̄csi_aug(n).
These local minimums are defined as decision points. Specially, xd[i]
represents the i-th decision point, xd[i] can be calculated as:

xd[i] = min
s·i-w+1≤n≤s·i

X̄csi_aug(n), i = 1, 2, 3, ..., L (13)

where xd[i] is the minimize value within the value range of
X̄csi_aug(n). L is the number of decision points. w is the size of sliding
window, and is set to 50, s is the step size of the window, and is

set to 200. Additionally, the index of decision points in X̄csi_aug(n)

is represented by Pi . According to Eq. 13 and Pi, X̄csi_aug(n) can
be divided into L segments. x̃i[n] is the i-th segment, which can be
defined as:

x̃i[n] =
{

X̄csi_aug[Pi − c0], ..., X̄csi_aug[Pi], ..., X̄csi_aug[Pi + c0]
}
(14)

where c0 is the slicing factor, and is set to 100. In this case, a new
CSI dataset is developed. About 500 samples of four categories are
included in the dataset: pedestrian, bicycle, motorcycle, and car.

3.4. Deep feature extraction and
classification

According to the features of CSI signals containing time
series features, as shown in Figure 3, a lightweight wireless
sensing attention-based recognition algorithm, namely LW-WADL
is proposed for deep feature learning from CSI features on HVR
tasks. The proposed LW-WADL contains a CBAM module and three
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Different CSI subcarrier selection method. (A,E) Represent the enhanced raw CSI waveforms of the vehicle and pedestrian, respectively. (B–D,F–H)
Represent the CSI waveforms of the vehicle and pedestrian generated by the three subcarrier selection methods, respectively.

depthwise separable convolution modules, followed by a GAP layer,
as described below.

3.4.1. LW-WADL network structure
The overall network structure of the proposed LW-WADL is

presented in Figure 3. LW-WADL involves of Three depthwise
separable convolution blocks (DSCB_1, DSCB_2 and DSCB_3) in
series. Then, in order to focus on learning the relevant information of
feature maps while suppressing the irrelevant information, a CBAM
module is concatenated after DSCB_1. The CBAM module can
further improve the discriminating power of feature representations
learned by DSCB_1. Finally, output features in DSCB_3 are achieved
through a GAP layer.

3.4.2. CBAM attention module
The attention mechanism makes the model tend to pay attention

to some information about the auxiliary classification in the feature
map, while suppressing other useless information, thereby improving
the classification ability of the model. The CBAM module consists
of a channel attention module and a spatial attention module. The
detailed structure is shown in Figure 6.

The channel attention module first performs maxpooling and
average pooling based on the height and width of the DSCB_1 feature
map to obtain two one-dimensional vectors. Then, it is input into the
shared multi-layer perceptron (Shared MLP), and the corresponding
elements of the output features of the MLP are summed point by
point. The result is input into the Sigmoid activation function, and
then the inner product operation is performed with the initial input
feature map. The final output feature map is used as the input of the
spatial attention module.

The spatial attention module performs maxpooling and average
pooling based on the channel, and then uses the convolution
(abbreviated as Conv) operation to merge the output features on the
channel dimension. The merged features are input into a sigmoid
activation function, then an inner product operation is performed on
the obtained output features and the input of the spatial attention
module. Finally, the output of the inner product operation is
combined with the output of the DSCB_1 module to form the input
features of the DSCB_2 module.

3.4.3. Softmax classifier output
WiHVR is fundamentally a multi-classification task, so we choose

the Softmax function to produce final classification results. Through
the Softmax function, the output values of classifier can be converted
into a probability distribution in the range [0, 1].

The cross-entropy loss function is implemented as the training
objective function for LW-WADL:

Lloss = −
∑

i

ŷi log(yi) (15)

where ŷi = 1 if the class is i, otherwise ŷi = 0. yi represents the output
of the LW-WADL model, the probability that the class is i. Lloss is a
loss measure of the difference between two probability distributions.

4. Experiment study

4.1. Experiment setup

As can be seen from Figure 7, the proposed WTP prototype
contains two main components: antenna, ESP32. ESP32 is a WiFi SoC
working at a frequency of 2.4 GHz. In the experiment, the two WTP
prototypes were installed on both sides of a road with a width of 10 m,
and antenna heights is set to 1 m. In addition, for training LW-WADL
models, the Adam optimizer with a learning rate of 0.0001 is used.
The batch-size is 16 and the maximum of epochs is 200. Besides, to
explore the effects of CSI on the performance of WiHVR in different
application scenarios, the developed CSI dataset is divided into three
taxonomies according to the number of categories, namely, two-
category dataset, three-category dataset and four-category dataset.
Finally, 80% of the data in the dataset is used as the training set, while
the rest is used for testing.

4.2. Evaluation indicators

The performance of the designed LW-WADL is evaluated by
three typical metrics such as “Accuracy,” “Recall,” and “Precision.”
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For the computational complexity analysis of deep learning methods,
two well-known computational indicators, the network parameters
(abbreviated as param.) and floating-point operations (FLOPs)
are employed. Specifically, “Accuracy” is the ratio of all correct
predictions to the whole number of predictions. “Precision” is the
ratio of correct predictions with positive values to total predictions
with positive values. “Recall” is the ratio of predicted positives to the
total number of actual positives. They are defined as:

Accuracy =
TP + TN

TP + TN + FN + TN
(16)

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

where TP denotes the number of true positive samples classified as
positive. FP denotes the number of true negative samples classified as
positive. FN denotes the number of true positive samples classified
as negative. TN denotes the number of true negative samples
classified as negative.
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4.3. Comparison of different methods

To verify the effectiveness of our LW-WADL for WiHVR, we
adopt the developed CSI four-category dataset, so as to compare
the performance of various deep learning models on WiHVRs
tasks. Table 1 present a performance comparison of four methods,
including full convolutional network (FCN) (Long et al., 2015),
DeepWiTraffic (Won et al., 2019), and deep residual network
(ResNet) (He et al., 2016). Among them, FCN and ResNet are
used as baseline methods to provide benchmarking performance,
whereas DeepWiTraffic is used as comparing work. Besides, FCN
is composed of three convolutional layers. ResNet contains three
residual blocks. DeepWiTraffic contains two convolutional layers and
two max pooling layers. Experimental results are shown in Table 1.

From Table 1, it can be found that the designed deep learning
model has the highest classification performance with an accuracy
of 96.26%, a precision of 96.23%, and a recall of 96.16%. Compared
with DeepWitraffic, our model not only makes an improvement of
1.67%, but also exhibits much lower computational complexity in
which 93.25% of the parameters (Param, FLOPs) can be reduced.
Moreover, the test time is just 0.0575 s, which is much less than
DeepWitraffic. This shows that our model is a lightweight model.
Additionally, compared with FCN and ResNet, our method yields an
accuracy improvement of 2.8 and 1.87%.

4.4. Selection of CSI factor m

A set of experiments are designed to investigate the effect of CSI
factor “m” on the accuracy of WiHVR. Figure 8 shows the accuracy
of the WiHVR for different “m,” where “all” represents the maximum
“m.” Experiments are performed on the CSI four-category dataset.

Each CSI factor “m” corresponds to a CSI four-category dataset, and
these datasets are identical except for the CSI factor “m.” To make
the results more reliable, the ResNet, DeepWiTraffic, FCN, and our
model are used. The experimental results are shown in Figure 8.

As shown in Figure 8, with the increase of “m,” both the ResNet,
DeepWiTraffic, FCN, and ours model show a trend of increasing
first and then decreasing, reaching the highest accuracy of 94.39,
94.59, 93.46, and 96.26% when “m” is 4, respectively. It can be found
that only one subcarrier with the highest SNR or the average of all
subcarriers cannot obtain the best HVR performance. This is because
the sensitivity of different CSI subcarriers varies greatly. Some
subcarriers are less sensitive, while some subcarriers with higher
sensitivity are too sensitive to environmental changes, resulting in
reduced recognition ability.

4.5. Comparison of CSI subcarrier
selection methods

To verify the performance of the proposed CSI subcarrier
selection method, we conduct comparative experiments on the
CSI four-category dataset. Recently-merged CSI subcarrier selection
methods such as k-subcarrier weight fusion (Kong et al., 2019) and
averaged subcarriers (Wang Y. et al., 2016) are used for comparative
experiments. The recognition accuracy of FCN, DeepWiTraffic,
ResNet, and our LW-WADL under different CSI subcarrier selection
methods are shown in Table 2.

As shown in Table 2, the four used models perform best under
our CSI subcarrier selection method, and the accuracy of HVR
is 93.46, 94.59, 94.39, and 96.26%, respectively. The results show
the superiority of our CSI subcarrier selection method, which is
consistent with the conclusion drawn in Figure 5. In addition, the

TABLE 1 Performance comparison of different methods on four-category dataset.

Method Accuracy (%) Precision (%) Recall (%) Param (M) FLOPs (M) Testing time(s)

FCN 93.46% 93.34% 93.46% 1.6451 3.2888 0.2019

DeepWiTraffic 94.59% 94.45% 94.59% 0.2090 0.4176 0.1398

ResNet 94.39% 95.28% 94.39% 0.7427 1.5047 0.2982

Ours 96.26% 96.23% 96.16% 0.0123 0.0282 0.0575

The bold values represent the indicator with the best performance, that is, the highest Accuracy, Precision, and Recall as well as the lowest Param, FLOPs, and Testing time.

FIGURE 8

The classification accuracy of different CSI factors “m” on the CSI four-category dataset.
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TABLE 2 Accuracy of different subcarrier selection methods.

CSI subcarrier
selection
methods

FCN DeepWiTraffic ResNet LW-WADL

k-subcarrier weight
fusion

89.17% 90.86% 90.77% 93.01%

Averaged subcarriers 82.09% 87.89% 83.36% 90.53%

Ours 93.46% 94.59% 94.39% 96.26%

The bold values represent that our subcarrier selection method achieves the highest accuracy
among the four compared deep learning models.

TABLE 3 Performance evaluation of different classification tasks.

Tasks FCN DeepWiTraffic ResNet LW-WADL

2 100% 100% 100% 100%

3 95.12% 96.86% 96.21% 97.96%

4 93.46% 94.59% 94.39% 96.26%

The bold values indicate that the designed deep learning model (LW-WADL) outperforms on
different classification tasks.

k-subcarrier weight fusion and averaged subcarriers methods will not
remove those CSI subcarriers with too low or too high sensitivity,
which may have a negative impact on CSI waveform. In this case, the
accuracy of the above two methods in Table 2 is lower than that of
our proposed method.

4.6. Performance evaluation of different
classification tasks

To explore the performance of CSI signals on different
classification tasks, three groups of experiments are set up,
namely two-classification tasks, three-classification tasks, and four-
classification tasks. Each group of experiments selects four methods
to test, FCN, DeepWiTraffic, ResNet, and our LW-WADL,
respectively, so that the results are more credible. The experimental
results are shown in Table 3.

The results of Table 3 shows that the compared methods perform
best and the same on the two-classification task, and the accuracy
of HVR reaches 100%. However, with the increase of road user
categories, the classification accuracy of the used four methods
decrease. For three-classification task, the classification accuracy of
four methods are 95.12, 96.86, 96.21, and 97.96%, respectively. For
four-classification task, the classification accuracy of four methods
is 1.66, 2.27, 1.82, and 1.73% lower than three-classification task.
Overall, our method achieves more than 96% accuracy in different
classification tasks.

4.7. CSI confusion matrices

To further display the recognition accuracy for each class of
road users, Figure 9 shows confusion matrices of the classification

FIGURE 9

Confusion matrices of four methods on CSI four-classification dataset. (A) CSI confusion matrix of FCN. (B) CSI confusion matrix of DeepWiTraffic.
(C) CSI confusion matrix of ResNet. (D) CSI confusion matrix of ours. P, pedestrian; B, bicycle; M, motorcycle; C: car.
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results, when FCN, DeepWiTraffic, ResNet, and our LW-WADL
methods obtain 93.46, 94.59, 94.39, and 96.26% accuracy. As shown
in Figure 9, the “car” category is well-recognized for most of used
methods. Among all the models, only ResNet incorrectly classify the
“car” as the “pedestrian.” This may be attributed to the fact that a car
usually has a much larger volume than other road users. As a result,
the attenuation of CSI readings caused by cars is quite different from
those cases caused by other road users. For all used models, a major
part of the error arises from misclassifying “pedestrian” as “bicycle.”
This reveals that the group, i.e., “pedestrian” vs. “bicycle” is easily
confused with each other. This phenomenon is hinted by the overlap
among some real-world road user shapes.

5. Conclusion and future work

This paper has proposed a lightweight wireless sensing attention-
based deep learning model (LW-WADL). In order to evaluate the
classification ability of LW-WADL, three CSI-based datasets are
established, namely two-category dataset, three-category dataset. and
four-category dataset. The experimental results on the developed
dataset show that the classification accuracy of LW-WADL decreases
with the increase of road user categories, but it is higher than 96%. In
addition, this paper provides a novel CSI subcarrier selection method,
which calculates the SNR of all subcarriers and selects the first four
subcarriers with larger SNR for fusion. Besides, a new CSI data
enhancement method is exploited to preprocess the change trend of
CSI data to one direction, thereby enhancing CSI data.

In future, the performance of other advanced deep learning-
based WiHVR methods will be investigated. It is also significant to
explore the human-vehicle recognition task based on multiple sets of
WTPs. Additionally, it is meaningful to explore the applications of
the proposed methods in real scenarios such as multi-lane roads.
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