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Jiangsu, China, 2Department of Neurosurgery, Yixing Hospital of Traditional Chinese Medicine, Yixing,

China, 3Institute of Brain Functional Imaging, The A�liated Brain Hospital of Nanjing Medical University,
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Background: High-grade gliomas (HGGs) are characterized by a high degree

of tissue invasion and uncontrolled cell proliferation, inevitably damaging the

thalamus and the basal ganglia. The thalamus exhibits a high level of structural

and functional connectivity with the default mode network (DMN). The present

study investigated the structural and functional compensation within the DMN in

HGGs invading the thalamus along with the basal ganglia (HITBG).

Methods: A total of 32 and 22 healthy controls were enrolled, and their

demographics and neurocognition (digit span test, DST) were assessed. Of the

32 patients, 18 patients were involved only on the left side, while 15 of them were

involved on the right side. This study assessed the amplitude of low-frequency

fluctuation (ALFF), regional homogeneity (ReHo), gray matter (GM) volume, and

functional connectivity (FC) within the DMN and compared these measures

between patients with left and right HITBG and healthy controls (HCs).

Result: The medial prefrontal cortex (mPFC) region existed in synchrony with

the significant increase in ALFF and GM volume in patients with left and right

HITBG comparedwith HCs. In addition, patients with left HITBG exhibited elevated

ReHo and GM precuneus volumes, which did not overlap with the findings

in patients with right HITBG. The patients with left and right HITBG showed

decreased GM volume in the contralateral hippocampus without any functional

variation. However, no significant di�erence in FC values was observed in the

regions within the DMN. Additionally, the DST scores were significantly lower in

patients with HITBG, but there was no significant correlation with functional or

GM volume measurements.

Conclusion: The observed pattern of synchrony between structure and function

was present in the neuroplasticity of the mPFC and the precuneus. However,

patients with HITBG may have a limited capacity to a�ect the connectivity within

the regions of the DMN. Furthermore, the contralateral hippocampus in patients

with HITBG exhibited atrophy. Thus, preventing damage to these regions may

potentially delay the progression of neurological function impairment in patients

with HGG.

KEYWORDS

synergistic alteration, high-graded gliomas, thalamus, medial prefrontal cortex, DMN

Frontiers inNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1136534
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1136534&domain=pdf&date_stamp=2023-03-27
mailto:yk_nj@hotmail.com
mailto:ericcst@aliyun.com
https://doi.org/10.3389/fnins.2023.1136534
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1136534/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yan et al. 10.3389/fnins.2023.1136534

1. Introduction

Gliomas are the most common primary intracranial tumors

and account for 80.8% of malignant brain neoplasms (Ostrom

et al., 2019). HGGs exhibit a rapid growth rate, leading to

significant invasion and destruction of the brain tissue due to the

quick expansion velocity. This leads to deteriorative neurological

function in patients, such as noticeable cognitive deficits (Swanson

et al., 2003; Omuro and De Angelis, 2013). Previous studies have

demonstrated that the presence of the brain has an impact on

lesions and the underlying processes. In response to the lesion,

other brain regions may attempt to compensate through cortical

reorganization or reassigning physiological resources (Fisicaro

et al., 2016; Herbet et al., 2016). Neural adaptation involves

the recruitment of four brain regions, which includes functional

redistribution within and around the tumor as well as the

recruitment of remote and contralateral areas within the lesioned

hemisphere (Duffau, 2014; Liu D. et al., 2020). In addition,

compensation of functional networks can occur within specific

lesion regions (Zhang et al., 2018; Liu Y. et al., 2020). The response

to the lesion suggests a universal protection phenomenon across

different brain regions.

The basal ganglia, anatomically close to the thalamus, facilitate

the execution of sensorimotor tasks combined with the thalamus.

The thalamus, a core structure of the brain, modulates sensory

message processing from different zones of the cerebral cortex

and maintains conscious experience (Sherman and Guillery, 2002;

Zhang et al., 2010). Thalamocortical systems and the DMN are

associated with the state of consciousness (White and Alkire,

2003; Vanhaudenhuyse et al., 2010; Fernandez-Espejo et al., 2012).

Although the thalamus is not generally considered part of the

DMN, there are high levels of structural and functional connectivity

between the thalamus and the central regions of the DMN. These

regions include the angular gyrus (AG), hippocampus, precuneus,

midcingulate cortex (MCC), medial prefrontal cortex (mPFC),

and superior frontal gyrus (sFG) (Cunningham et al., 2017).

The DMN plays a central role in higher cognitive processing,

as evidenced by its anatomical position and previous research

findings. Furthermore, it has been associated with many diseases

(Anticevic et al., 2012; Vatansever et al., 2015). Gliomas that invade

the basal ganglia inevitably infiltrate the thalamic region, leading to

Abbreviations: HGGs, high-grade gliomas; DMN, default mode network;

HITBG, HGGs invading the thalamus along with the basal ganglia; DST,

digit span test; ALFF, amplitude of low-frequency fluctuation; ReHo,

regional homogeneity; GM, gray matter; FC, functional connectivity; mPFC,

medial prefrontal cortex; HCs, healthy controls; AG, angular gyrus; MCC,

midcingulate cortex; sFG, superior frontal gyrus; 3D, three-dimensional;

T2W, T2-weighted; BOLD, blood oxygen level dependent; rs-fMRI, resting-

state functional magnetic resonance imaging; FOV, fields of view; GLM,

general liner model; MNI, Montreal Neurological Institute; rAG, right AG; lAG,

left AG; SPM12, statistical parametric mapping 12; DPABI, data processing

and analysis for brain imaging; WM, white matter; CSF, cerebrospinal fluid;

DARTEL, Di�eomorphic Anatomical Registration Through Exponentiated

Lie Algebra; FWHM, fullwidth at half maximum; KCC, Kendall’s coe�cient

concordance; VBM, voxel-based morphometry; TBV, total brain volume;

TFCE-FEW, threshold-free cluster enhancement family-wise error.

abnormal brain activity due to the high degree of tissue invasion

by HGG (Huse et al., 2011). Extensive edema surrounding HGGs

usually contains tumor cells that create a suitable niche and provide

them with the necessary nutrition (Engelhorn et al., 2009; Lin,

2013). Thus, there is a great need to assess potential functional

and structural changes at the whole brain level since the tumor can

invade not only local regions but also the peripheral and distant

regions. Furthermore, when confronted with brain neoplasms, it

has been observed that large-scale neural networks, such as the

DMN, the language network, and the cognitive control network,

undergo structural and functional alterations and reorganization

(Esposito et al., 2012; Zhang et al., 2018; Liu Y. et al., 2020). These

findings suggest that the neural networks may play a crucial role in

maintaining the robustness of the central nervous system. However,

whether the main regions of the DMN support the structural and

functional reorganization in patients with HITBG is not clear.

In recent years, there has been a growing use of resting-

state functional magnetic resonance imaging (rs-fMRI) to study

abnormal brain function. This technique allows researchers to track

local alterations in blood oxygenation, which correlate with changes

in brain activity, in a rapid and non-invasive manner (Matthews

et al., 2006). The amplitude of low-frequency fluctuation (ALFF)

and the regional homogeneity (ReHo) of the time series have

been used as metrics to assess spontaneous brain activity (Cordes

et al., 2001; Zang et al., 2004; Yang et al., 2007). Furthermore,

structural MRI has been used to measure gray matter volume to

investigate structural plasticity in patients with cerebral gliomas.

These indicators, each with different advantages, can be used

to better assess patients’ functional and structural changes on a

global scale.

In this study, we focused on exploring functional compensation

in patients with HITBG by measuring ALFF and ReHo within

the DMN. Additionally, we conducted FC analysis to assess the

relationship between different regions within the DMN while also

using GM volume to investigate the potential association between

structural plasticity and function. Neurocognitive data, such as the

digit span test, was also used to investigate the relationship between

cognitive ability in the patients and HCs. This study can provide

new insights into the impact of neural networks on the brain

when significant local regions are infiltrated by highly invasive

gliomas, shedding light on the relationship between the DMN and

HGG. Moreover, this study can serve as an important guide in the

treatment of patients with HGG, depending on the specific brain

regions that play a vital role in the compensatory response to injury.

2. Materials and methods

2.1. Subjects from the Nanjing brain
hospital-brain tumor neuroimaging project
(NBH-BTnp)

The present study enrolled 33 patients [age (mean± SD) 57.18

± 11.32 years, 23 men and 10 women] with highly invasive HGGs

affecting the thalamus (WHO III/IV). These patients underwent

therapy at the Department of Neurosurgery, the Affiliated Brain

Hospital of NanjingMedical University. Of the 33 patients included

in the study, 18 [age (mean ± SD) 60.39 ± 8.98 years; 14 men
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FIGURE 1

Overlap maps of HGGs, such as peritumoral edema, between the left hemisphere (A) and right hemisphere (B). (C) The AG, hippocampus, precuneus,

mPFC, MCC, and sFG within the DMN are based on the Harvard–Oxford Cortical of FSL, whose threshold is 25% signal intensity, and the Stanford

FIND Lab functional ROI database.

and four women] of them with left and 15 [age (mean ± SD)

53.3 ± 12.88 years; nine men and six women] of them with

right glial tumors met the following criteria: (1) patients with

histopathologically confirmed high-grade primary gliomas (based

on the 2016 WHO classification system) (Louis et al., 2016);

(2) patients with gliomas affecting the unilateral thalamus and

including perifocal edema; (3) patients with no significant history

of craniocerebral injury, cerebrovascular disease, stroke, or any

neurologic or psychiatric disease; and (4) patients with no history

of brain radiotherapy or chemotherapy. Moreover, the subjects

with no evident midline shift (<10mm, septum pellucidum, corpus

callosum, third ventricle) were included, considering the thalamus

is located near the midline of the cerebrum. The exclusion criteria

were as follows: (1) patients with a recurrent glial brain tumor; (2)

patients with multiple lesions; and (3) patients with deficient MRI

examinations or preprocessing. In addition, this study recruited 24

healthy controls [age (mean± SD) 56.27± 6.36 years, with 12 men

and 10 women] who were matched for age and gender with the

patients. They were recruited from the local community and had

no history of any neurologic or psychiatric illnesses. All the subjects

were right-handed based on the handedness scale.

The Ethics Committee of the Affiliated Brain Hospital of

Nanjing Medical University approved this study. Written informed

consent was obtained from all the subjects.

2.2. MRI data acquisition

MRI data were obtained from preoperative scans of patients

between 2013 and 2022. The 3.0 T Verio scanner was used
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to obtain scans from the Affiliated Brain Hospital of Nanjing

Medical University.

Structural images of the entire brain were acquired using the

three-dimensional (3D) T1-weighted sequence. The detailed scan

parameters were as follows: voxel size = 1 × 1 × 1mm3, repeat

time = 1.900ms, echo time = 2.49ms, inversion time = 900ms,

acquisition matrix= 256× 256, flip angle= 9◦, slice thickness/gap

= 1/0.5mm, and slice number = 176. Additionally, conventional

T2-weighted (T2W) images were collected for reference.

Blood Oxygen Level Dependent (BOLD) signals of rs-fMRI

were measured using an echo-planar image sequence with two

sets of functional scan parameters, such as the repetition times

= 2,000/2,000ms, echo times = 30/30ms, flip angles = 90◦/90◦,

the acquisition matrices = 64 × 64/64 × 64, resolution = 3.75

× 3.75 × 4 mm/3.4 × 3.4 × 4mm, fields of view (FOV) =

240 × 240 mm/220 × 220mm, the number of time points =

140/240, slice numbers = 30/36, slice thicknesses = 3.0/4.0mm,

and slice gaps = 4/0mm. Among the sets, the first was scanned

between 2013 and 2016, and the second was scanned between 2017

and 2022. The second set obtained rs-fMRI data from the HC

subjects. Over time, our research team optimized and improved

different parameters in the imaging protocol. In addition, we

included homogeneous parameter differences in the same scanner

as a covariate in the general linear model (GLM) to account for

potential confounding factors.

2.3. Tumor drawing

3D T1 enhancement images for each patient were registered

to the Montreal Neurological Institute (MNI) template using the

standard non-linear spatial normalization algorithm, which was

provided by SPM12 to define the lesion site of the brain in patients

with HGG. Due to the characteristics of significant destruction and

widespread infiltration into the surrounding tissue, the perifocal

edema around the tumor, which inevitably injures the function of

lesions, was included in the tumor masks. The lesion outline was

traced manually on individual 3D T1-weighted images combined

with T2 images using the Itk-Snap software. All tumor masks were

overlapped in the Ch2better template using theMRIcroGL software

(Figures 1A, B).

2.4. Selection of regions of interest within
the DMN

To explore functional compensation in patients with HITBG,

we obtained six standard masks within the DMN using the

Harvard–Oxford Cortical of FSL, based on previously published

studies (Cunningham et al., 2017). These masks were obtained

with a threshold of 25% signal intensity, and we also used the

Stanford FIND Lab functional region-of-interest (ROI) database

(http://findlab.stanford.edu/functional_ROIs.html). Furthermore,

all ROIs, including the AG, the hippocampus, the precuneus,

the mPFC, the MCC, and the sFG, were superimposed on a T1

2mm resolution MNI152 of a standard template brain (Figure 1C).

Moreover, unilateral injury masks were removed depending on the

nidus in the left and right cerebrum, respectively. Consequently,

the right AG (rAG), the right hippocampus, the right precuneus,

the mPFC, the MCC, and the sFG were defined as the mask of left

gliomas. In contrast, the left AG (lAG), the left hippocampus, the

left precuneus, the mPFC, the MCC, and the sFG were selected as

the masks of right gliomas.

2.5. Neurocognitive test

The DST (which includes the DS forward and backward)

was used as a neuropsychological tool to assess short-term verbal

memory (Richardson, 2007). All the HC subjects and some patients

underwent the DST (Table 1).

2.6. MRI imaging data preprocessing

We used a reliable tool, Data Processing and Analysis

for Brain Imaging (DPABI; http://www.rfmri.org) (Yan et al.,

2016) to preprocess each scan, depending on the Statistical

Parametric Mapping 12 (SPM12; http://www.fil.ion.ucl.ac.uk/

spm) toolkit within MATLAB2014a (http://www.mathworks.com/

products/matlab/).

In structural image preprocessing, the images were

manually adjusted and shifted to the anterior commissure,

which was defined as the origin (mm coordinates: 0, 0,

0). We partitioned the structural images into GM, white

matter (WM), and cerebrospinal fluid (CSF). Then, they

were spatially normalized to MNI-152 standard space with

an isotropic voxel resolution of 1.5 × 1.5 × 1.5mm using

linear affine registration and non-linear deformation. The

normalized data were modulated in this course to preserve

the original voxel information. In addition, the Diffeomorphic

Anatomical Registration Through Exponentiated Lie Algebra

(DARTEL) algorithm was used in image registration to reduce

deformations. Finally, the GM maps from all the subjects were

smoothed using a 6-mm fullwidth at half maximum (FWHM)

Gaussian kernel.

The first 10 functional volumes were removed for all

subjects to account for the initial magnetization equilibrium

and eliminate any potential mechanical noise. We used several

methods, including slice timing and realignment, to correct for

temporal differences and head motion. In addition, subjects

with a head motion exceeding 3mm in translation or 3◦ in

rotation were excluded from the study. The remaining functional

images were manually reoriented and shifted as needed. To

standardize the images, the functional images were normalized to

the MNI space using the normalization parameters determined

by the DARTEL algorithm. The process was completed after

the structural image was coregistered with the mean functional

image and segmented. The normalized images were resampled

using an isotropic voxel resolution of 3 × 3 × 3mm. Nuisance

covariates, including Friston’s 24-head motion parameter, WM,

and CSF, were regressed out. Spatial smoothing with a 6-mm

FWHM was applied before measuring the ALFF and seed-

based functional connectivity of all scans and after calculating
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TABLE 1 Demographic characteristics of HGGs and healthy controls (HCs).

items HCs ALL HGGs Left HGGs Right HGGs p-Value∗ p-Value† p-Value‡

Total, n 22 33 18 15 NA NA NA

Age (Mean± SD), years 56.27± 6.36 57.18± 11.32 60.39± 8.98 53.3± 12.88 0.73 0.10 0.36

Gender (M/F), n 12/10 23/10 14/4 9/6 0.25 0.13 0.74

Education levels

(Mean± SD), years

12.66± 2.64 7.76± 4.10 8.33± 3.65 7.07± 4.62 <0.01 <0.01 <0.01

MRI parameters

(type1/type2), n

22/0 22/11 12/6 10/5 NA NA NA

TBV (Mean± SD),cm3 1,399.79± 103.87 1,369.67± 135.31 1,414.32± 112.04 1,316.09144.81 0.36 0. 67 0.07

DST (Mean± SD), score 12.68± 2.46 9.11± 3.18 NA NA 0.01 NA NA

All the p-values were obtained with the t-test except for gender (chi-square test). All HCs and nine HGGs completed the digit span test. Thus, a different analysis of neurocognitive data was

applied to all the patients with HGGs and HCs.
∗Difference analysis between all the patients with HGGs and HCs.
†Difference analysis between the patients with left HGGs and HCs.
‡Difference analysis between the patients with right HGGs and HCs.

ReHo. Finally, low-frequency band screening (0.01–0.1Hz) was

applied to eliminate physiological and scanner noise at low and

high frequencies.

2.7. Neural activity analysis of DMN regions
without lesions

The time courses for each voxel were switched to the

frequency domain with a fast Fourier transform algorithm. Each

power spectrum frequency was proportional to the square of

the corresponding amplitude. The amplitude of each voxel at

0.01–0.1Hz was determined and considered the ALFF of that

voxel. Additionally, the ReHo within the time series in rs-

fMRI between each voxel and its neighbors was measured using

Kendall’s coefficient concordance (KCC). It was standardized by

dividing the KCC of each voxel by the average KCC for the

entire brain.

2.8. ROIs-based DMN regions FC analysis

Based on the differences in ALFF and ReHo within the

DMN between patient groups, we defined ROIs that depicted

the overlap of functional abnormality between the left and right

HITBG. Individual averaged time series of these selected ROIs were

extracted as a reference to perform Pearson’s correlation analysis

on the averaged time courses of other seeds. Finally, Fisher’s z-

transformation helped improve the normality of the correlation

coefficients for additional t-tests.

2.9. VBM analysis

The methods of voxel-based morphometry (VBM) were

extensively used to compare the concentration of the gray matter

between groups across various diseases (Ashburner and Friston,

2000; Du et al., 2014; Hu et al., 2020). We measured GM volume

within the DMN in each subject and compared the difference

between patients and HCs to explore the potential structural effect.

In addition, the summation of GM, WM, and CSF volumes was

considered the total brain volume (TBV).

2.10. Statistical analysis

The study compared demographic variables and DST scores

between patients (left and right HITBG) and HCs using IBM SPSS

software. An independent two-sample t-test was used to analyze

the age, gender, and DST score differences between the groups.

In contrast, the gender variable was compared using the chi-

square test. A P-value of more than 0.05 was used as the statistical

significance threshold. The correlation between DST scores and

functional and structural indexes in patients was analyzed.

In addition, the ALFF, ReHo, GM, and FC values of each

voxel among the patients (left and right HITBG) and HCs were

transformed into z-values. Then, they were compared using two-

sample t-tests with covariates such as age, gender, education

(years), and two types of parameters of the MRI protocol (TBV

was considered a covariate in VBM analysis) depending on

the DMN regions without lesions through the DPABI toolkit.

The threshold-free cluster enhancement family-wise error (TFCE-

FWE) correction rectified the results. The number of permutation

tests was set at 5,000. The statistical significance of the cluster

results was determined by correcting the p-values using the TFCE-

FWE method, and only those clusters with a corrected p-value of

less than 0.05 were considered statistically significant.

3. Results

3.1. Demographic and cognitive
characteristics

The characteristics of all the subjects are exhibited in Table 1.

No significant differences in age or gender were observed between

the patients (left and right HITBG) and HCs. The education level
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FIGURE 2

Neural activity and VBM analysis between HGGs in the left hemisphere and HCs. (A, C) Red indicates elevated ALFF and ReHo within the DMN

(permutation test, TFCE-FWE corrected a p-value of < 0.05). The boxplot reveals di�erences within the means zALFF and zReHo extracted from the

red cluster. (B) Red and blue represent elevated and reduced GM volume, respectively. (D) An overlap map among the ALFF, ReHo, and GM volume.

of HCs was higher than that of patients (p < 0.05). Compared

to the HCs, the scores were significantly lower in patients with

HITBGs (p < 0.05).

3.2. Alteration of the GM volume

In the right HITBG (n = 15), the map of the individual lesion

overlap was displayed (Figure 1A). Compared with the HCs group,

HGG patients showed a higher GM volume in the mPFC and sFG

within the DMN. However, GM volume was found to be decreased

in the contralateral hippocampus when tumors invaded the right

thalamus and the basal ganglia (Figure 2B).

Furthermore, the map of individual lesion overlap

within the left HITBG (n = 18) is shown in Figure 1B.

The results indicated that patients with left thalamus

and basal ganglia injuries had significantly increased GM

volume in the mPFC, sFG, and contralateral precuneus

within the DMN. However, a decreased GM volume was

observed in the contralateral hippocampus (Figure 3B,

Table 2).

3.3. Group di�erences between ALFF and
ReHo value

A significantly increased ALFF value in the mPFC (containing

a small overlap area of sFG) within the DMN (permutation

test, TFCE-FWE corrected, p < 0.05) (Figures 2A, 3A, Table 2)

was found in patients with left and right HITBG compared

with HCs. Furthermore, the significantly elevated ReHo value in

the contralateral precuneus within the DMN was observed only

in patients with the left HITBG (permutation test, TFCE-FWE

corrected, p < 0.05) (Figure 2C, Table 2). In contrast, no significant

difference in ReHo value was observed in the regions within the

DMN between patients through the right HITBG and HCs.
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FIGURE 3

Neural activity and VBM analysis between HGGs within the right hemisphere and HCs. (A) Red indicates elevated ALFF within the DMN (permutation

test, TFCE-FWE corrected p < 0.05). The boxplot shows di�erences in the mean zALFF extracted from the red cluster. (B) The red and blue bars

indicate increased and decreased GM volume, respectively. (C) Overlap map between the ALFF and GM volume.

3.4. Variation of functional connectivity

The patients with left and right HITBG exhibited a significant

variation index in functional activity compared to the HCs selected

as the ROI. Specifically, the ALFF map in the mPFC within the

DMN was elevated. However, no significant difference in the FC

value was found within the DMN regions.

3.5. Association among DST and MRI
indexes

No significant correlation was observed between the DST score

and the ALFF value. The ALFF value was extracted based on the

abnormal brain activity observed in both the left and right HITBG.

Similarly, no significant association was found between DST and

the GM volume measured based on the shared abnormal structure

in the left and right HITBG.

4. Discussion

Brain plasticity is a compensatory mechanism that responds to

injury and optimizes neural function. When injuries are chronic,

such as low-grade tumors with slow growth, effective recruitment

and functional reorganization occur in the other brain regions

(Kong et al., 2016; Zhang et al., 2018). However, little is known

about the potential for plasticity during rapid brain injury. This

study is the first to investigate whether the DMN has functional

and structural reorganization potential in HITBG patients. We

found significantly elevated ALFF clusters in the mPFC within the

DMN when we performed the variation analysis among patients

with the left and right HITBG and HCs, respectively. Moreover, we

found a significant increase in the ReHo value in the contralateral

precuneus within the DMN only in patients with left HGG.

However, no significant alteration in the FC value was observed in

the DMN regions with mPFC as a mask in HGG. Interestingly, the

overlap maps indicated a similar pattern of increased GM volume
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TABLE 2 The di�erences between HGGs and HCs through neural activity and VBM analysis.

Group Variation
analysis

Regions Cluster size
(voxels)

Peak MNI coordinate T-Value

X Y Z

HCs vs LHITBG ALFF Medial Frontal Gyrus 533 −3 51 9 8.47

Superior Frontal Gyrus 68

ReHo Precuneus_R (aal) 26 6 48 69 4.71

GM volume Medial Frontal Gyrus 1968 28.5 13.5 64.5 7.06

Superior Frontal Gyrus 2247

Precuneus_R (aal) 559 1.5 −37.5 54 6.67

Hippocampus_R (aal) 248 25.5 −15 −13.5 −8.40

HCs vs RHITBG ALFF Medial Frontal Gyrus 295 0 48 −12 6.20

Superior Frontal Gyrus 86

GM volume Frontal_Sup_Medial_L (aal) 414 0 57 22.5 4.87

Superior Frontal Gyrus 284 1.5 30 60 6.17

Hippocampus_L (aal) 70 −34.5 −30 −7.5 −8.36

LHITBG, HITBG in the left hemisphere; RHITBG, HITBG in the right hemisphere.

with neural activity in mPFC, suggesting the possible critical role of

mPFC in reorganization.

The consistent result of significantly elevated ALFF in the left

and right HITBG indicates that the mPFC, as a remote region,

is vital in compensating for the functional deficit resulting from

injury to the thalamus and the basal ganglia. Existing research

has shown that the complex brain circuit among the cortex,

basal ganglia, and thalamus is critical in processing sensorimotor

tasks (Smith et al., 2011; Riva et al., 2018). The lesions in the

basal ganglia and the thalamus can lead to neuropsychological

and consciousness deficits (White and Alkire, 2003; Riva et al.,

2018). However, due to the rapid and uncontrolled nature of

brain injury in HGG patients, their neurological deficits may

outweigh the potential for plasticity (Kong et al., 2016). This

finding is consistent with our result that executive functions

decline in patients with HGG. In addition, the mPFC plays

a critical role in decision-making and memory, similar to the

function deficit after basal ganglia and thalamus injuries (Euston

et al., 2012). The thalamus can also show abnormal feedback

when there is damage to the PFC (Kim et al., 2011). Thus,

structural and functional interactions among the cortex, basal

ganglia, and thalamus could provide the potential foundation for

reorganization. This study demonstrated the presence of remote

plasticity within the DMN regions when the core region was

impacted by HGG invasion. However, the right precuneus in

patients with left HITBG showed more synchronized spontaneous

activity. It has been speculated that the diversity of individual injury

and high heterogeneity of HGGs cause a difference in results (Huse

et al., 2011; Kristensen et al., 2019). In addition, the increased

homogeneity in the precuneus provides complementary evidence

for revealing alterations in spontaneous brain activity. Previous

research on the structural and functional connectivity between

the core of the DMN, including the mPFC and precuneus, and

the thalamus suggests a potential neural mechanism (Cunningham

et al., 2017).

In addition, our research demonstrated a structural alteration

within the DMN after HITBG. This result indicated that the

measurement of function and structure increased in similar and

close regions, which was consistent with the alteration reported

in a previous study (Zhang et al., 2018). This may suggest that

there was a reorganization of neural activity that is synchronized

with the structural alteration. Therefore, the overlap between the

increased structure and function, including in the mPFC and

precuneus, could be an active participant in the process of HITBG-

induced plasticity.

In this study, the patients with left and right HITBG

had decreased GM volume in the contralateral hippocampus.

However, there was no change in function or activity within

the hippocampus. This result suggests that HGGs infiltrating the

unilateral basal ganglia, thalamus, and surroundings may lead to

contralateral hippocampus structural atrophy within the DMN

instead of neuroplasticity. Given the uncontrolled proliferation and

rapid invasion of HGGs, microenvironment alteration, a lack of

plasticity, and inflammation could be potential factors contributing

to atrophy (Engelhorn et al., 2009; Liu et al., 2012; Martin-Noguerol

et al., 2021). Previous research has shown a similar result in the

hippocampus when the medial temporal lobe, anatomically close

to the thalamus and basal ganglia, is invaded by HGGs (Yuan et al.,

2020). The hippocampus supports the mPFC in the mnemonic

functions of the brain (Euston et al., 2012). However, no FC

alteration was found between these regions.

In brief, the most notable finding of this study was the

combined increase in both structural and functional activities in

the mPFC of patients with unilateral HITBG. The mPFC, the

central hub of the DMN, is characterized by the complex functions

of memory retrieval, social cognition, and affective processing

(Lieberman et al., 2019; Muller et al., 2020). The mPFC exhibited a

considerable potential for synergistic plasticity in response to rapid

and extensive lesions. In addition, the synergistic effect between

structure and function observed in this study is consistent with
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findings from other neuroimaging studies (Zhang et al., 2018;

Li et al., 2020; Liu Y. et al., 2020) and may be an inherent

mechanism to help prevent brain damage. This may explain why

patients with HGG still retain some cognitive ability. However,

the exact mechanism underlying this synergistic effect requires

further research.

In this study, certain limitations should be emphasized. First,

we used two types of resting-state functional MRI protocols in the

MRI data of HGG patients, which were optimized. The two types of

protocol were taken into account as a covariate of non-interest in

the GLM analysis. Second, the education levels of the patients and

the HCs did not match and were considered a covariate. However,

even though the education levels of patients were lower than those

of HCs, the functional activity and the GM volume of essential

regions in patients still increased compared to HCs with a high

education level. Finally, the sample size of the study needs to be

increased to allow for more detailed grouping, and further research

is required to fully understand the phenomenon of neuroplasticity.

5. Conclusion

The current study found that, when HITBG occurred,

structural and functional alterations within the DMN

were observed.

The ALFF and GM volume showed an increase in the mPFC of

both left and right HITBG with significant overlap. Additionally,

increased ReHo with matched GM volume was only observed

in the left HITBG. Decreased GM volume was observed in the

contralateral hippocampus, but no FC alteration was detected,

indicating that HITBG has a limited effect on the association

between brain regions. These findings may provide novel insights

into the synchrony pattern between structure and function in

neuroplasticity. Therefore, avoiding injury to these regions could

potentially delay the development of neurological function damage

in HGG patients.
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