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Migraine—a disabling neurological disorder, imposes a tremendous burden on
societies. To reduce the economic and health toll of the disease, insight into
its pathophysiological mechanism is key to improving treatment and prevention.
Resting-state functional magnetic resonance imaging (rs-fMRI) studies suggest
abnormal functional connectivity (FC) within the default mode network (DMN)
in migraine patients. This implies that DMN connectivity change may represent
a biomarker for migraine. However, the FC abnormalities appear inconsistent
which hinders our understanding of the potential neuropathology. Therefore, we
performed a meta-analysis of the FC within the DMN in migraine patients in the
resting state to identify the common FC abnormalities. With efficient search and
selection strategies, nine studies (published before July, 2022) were retrieved,
containing 204 migraine patients and 199 healthy subjects. We meta-analyzed
the data using the Anisotropic Effect Size version of Signed Differential Mapping
(AES-SDM) method. Compared with healthy subjects, migraine patients showed
increased connectivity in the right calcarine gyrus, left inferior occipital gyrus,
left postcentral gyrus, right cerebellum, right parahippocampal gyrus, and right
posterior cingulate gyrus, while decreased connectivity in the right postcentral
gyrus, left superior frontal gyrus, right superior occipital gyrus, right orbital inferior
frontal gyrus, left middle occipital gyrus, left middle frontal gyrus and left inferior
frontal gyrus. These results provide a new perspective for the study of the
pathophysiology of migraine and facilitate a more targeted treatment of migraine
in the future.

migraine, meta-analysis, resting-state functional magnetic resonance imaging, default
mode network, functional connectivity
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1. Introduction

Migraine is the commonest primary headache in clinical
practice. This disabling neurological disorder is characterized by
recurrent unilateral or bilateral pulsating headaches (Robbins,
2021). Epidemiological surveys showed that 1.1 billion people suffer
from migraine worldwide which constitutes the second leading
cause of disability globally (Ashina et al., 2021b; Safiri et al., 2022).
Unfortunately, the surveys also illustrated an upward trend in the
incidence of migraine attacks (Global Burden of Disease Study 2013
Collaborators, 2015; Burch et al,, 2019). Given that the disabling
effect of the disease foists colossal socio-economic and health costs
on its sufferers (Vo et al,, 2018), scholars found the lack of progress
in diagnosis and treatment over the years lamentable (Katsarava
and Steiner, 2012; Katsarava et al., 2018; Ashina et al.,, 2021a).
We contend that the stagnation in scientific breakthroughs in
this area is mainly due to the lack of insight into the disease’s
pathophysiology.

Resting-state functional magnetic resonance imaging (rs-
fMRI)—a non-invasive method, has been widely used in brain
functional research (Yu et al., 2020; Bi et al., 2021). This method has
contributed to the understanding of the underlying physiological
mechanism of migraine greatly (Colombo et al, 2015; Russo
et al,, 2017; Ellingson et al., 2019; Kim et al.,, 2021). Previous rs-
fMRI studies demonstrated the close relationship between both
the default mode network (DMN) and its associated brain regions
and migraine (Jia and Yu, 2017; Chong et al, 2019; Argaman
et al,, 2020). The DMN is a highly active brain network when
the brain is at rest and is associated with an individual’s stressful
experiences and his/her coping strategies that promote adaptation
to the (stressful) environment (McEwen and Gianaros, 2011; Soares
etal., 2013).

A growing body of evidences have revealed the role of non-
adaptive responses in migraine mechanisms (Borsook et al., 2012;
Maleki et al,, 2012). These suggested that recurrent migraine
attacks alter the functional connectivity (FC) of the DMN and that
these changes may disrupt individual stress response mechanisms
(Ellerbrock et al,, 2013). Extant studies showed that abnormal
FC of DMN has been found in patients with different pain
disorders, suggesting that pain has a broad impact on the DMN
(Baliki et al., 2008; Napadow et al, 2010). In addition, DMN
was involved in the pain inhibition process and affected the
efficiency of pain processing (Baliki et al., 2008; Nahman-Averbuch
et al,, 2014; Youssef et al.,, 2016). The above studies indicate the
critical role DMN plays in the neuropathological mechanisms of
migraine. So, a fine understanding of DMN may facilitate workable
treatment options.

The identification of spatial patterns of DMN in migraine
patients can be based on FC. That is because the FC is capable
of exploring the connectivity between brain regions and depicting
the complex functional coupling patterns between various brain
regions (Biswal et al,, 1995), and has been applied in exploring
FC abnormalities in patients (Bi et al., 2018). Currently, many
scholars have used seed-based FC analysis (Androulakis et al., 2017;
Cao et al, 2022) and independent component analysis (Giugni
et al, 2010; Xue et al, 2012; Colon et al,, 2019) to explore FC
abnormalities within the DMN of migraine patients. However, the
inconsistent results of the resting-state FC (rs-FC) within the DMN
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in migraine patients must not be ignored. Some studies identified
decreased rs-FC of the DMN in migraine patients compared to
healthy subjects. Decreased functional connectivity was found in
the right cerebellum and left frontal lobe in Amin et al. (2016)
study, Tessitore et al. (2013) found decreased connectivity in the
prefrontal and temporal regions of the DMN, Zou et al. (2021)
found reduced connectivity in the left precuneus of the DMN
while others detected increased rs-FC in the DMN, Chou et al.
(2021) observed increased DMN FC in the left precentral gyrus,
left postcentral gyrus and right cerebellum, Zhang et al. (2016)
only found increased FC in the left precuneus and posterior
cingulate cortex within the DMN. Those discrepant findings
may be due to small sample size, patients’ clinical heterogeneity,
and the different sample selections (Skorobogatykh et al., 2019).
Fortunately, meta-analysis can synthesize neuroimaging findings to
reduce the discrepant results (Kaiser et al.,, 2015). Specifically, the
method can aggregate and integrate a large amount of data from
studies and distinguish positive results in the process of replication
(Miller et al, 2018). With the increasing number of published
studies about FC in the DMN during the resting state of migraine
patients, conducting a meta-analysis to identify common functional
abnormalities in the brain is urgently needed to further deepen our
understanding of migraine’s pathophysiological mechanisms.

Accordingly, we performed a meta-analysis to assess common
alterations in the connectivity of DMN in migraine patients by
using the Anisotropic Effect Size version of Signed Differential
Mapping (AES-SDM (Radua et al,, 2014). Our findings could help
harmonize the contradictory results found in the literature and
advance the understanding of migraine.

2. Methods

2.1. Search strategy and literature
screening

Methods and analyses of the current study were pre-registered
on the PROSPERO (ID: CRD42022348891).! This study was
conducted under the Preferred Reporting Items for Rigorous
Systematic Reviews and Meta-Analyses (PRISMA) guidelines
(Liberati et al., 2009). We searched comprehensively in PubMed,
Web of Science, and Embase databases for literature up to July 2022,
using the combined keywords: (“migraine”) AND (“resting state”
OR “rest”) AND (“DMN” OR “default mode network”). Further,
we searched the reference list of the qualified literature compiled by
our manual search from related reviews and references. For studies
that did not provide detailed information in the paper (e.g., peak
effect coordinates), we contacted the authors by email to obtain
relevant information.

For literature selection, we used the following inclusion criteria:
(i) original rs-fMRI study written in English; (Giugni et al., 2010)
patients included in the study meet the diagnostic criteria for
migraine; (iii) used seed-based or ICA methods to conduct rs-fMRI
data analysis; (iv) direct comparison of rs-FC between migraine
patients and healthy subjects; (v) peak coordinates of between-
group effects were reported in a standard space, such as Talairach

1 https://www.crd.york.ac.uk/prospero/#searchadvanced
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or Montreal Neurological Institute (MNI). Studies were excluded if
(i) it is a book chapter or review article; (Giugni et al.,, 2010) the
coordinates of significant statistical differences in rs-FC between
groups could not be retrieved even by contacting the author;
(iii) the sample in the study overlapped with another published
study; and (iv) the seeds were not selected in DMN. According
to the above inclusion and exclusion criteria, eligible articles were
screened and included in this meta-analysis. The literature search
and screening were conducted by two investigators independently
(S.H and JJ.W) and the relevant studies were double-checked by
the two investigators (S.H and JJ.W). Inconsistent studies were
discussed and resolved via consensus.

2.2. Quality assessment and data
extraction

To ensure high data quality, we assessed each included study
using a 20-point checklist (Iwabuchi et al, 2015; Pan et al,
2017a), which was adapted from previous rs-fMRI meta-analyses.
The checklist mainly contains an assessment of the quality of
subjects (e.g., demographic and clinical characteristics) and the
study methodology (e.g., image procedure, method description),
the details of the checklist are presented in Supplementary
Table S1. After quality assessment, important information from
each included study was extracted and collated, mainly including
the first author, migraine type, sample size, sex ratio, age
distribution, disease duration, disease frequency analytical method,
seed region, scanner type, and statistical threshold. Furthermore,
the current meta-analysis was based on peak coordinates showing
the regions of significant differences in rs-FC between-group,
therefore, the peak coordinates and their effect values (e.g., T-values
or Z-scores) of each research were also obtained and sorted into a
corresponding text file.

2.3. Main meta-analysis

An anisotropic effect-size version of seed-based d mapping
(AES-SDM) software package version 5.15 for Windows? was
used in the current meta-analysis. SDM is a powerful statistical
technique that uses peak coordinates to perform meta-analyses to
assess differences in brain activity and has been widely used in
recent neuroimaging meta-analyses (Radua et al,, 2012; Lim et al,,
2020; Yao et al,, 2021). Following the guidance of the AES-SDM
tutorial, this meta-analysis was completed in three parts. In the first
step, we retrieved the peak coordinates and their corresponding
effect size from the results reported by each study. It is worth
noting that all Z-scores were transformed into T-value using the
SDM online converter. If the effect size was not specified in the
study, we will use “p” for hyper-connectivity and “n” for hypo-
connectivity to represent the effect size of these peak coordinates.
The peak coordinates and effect values were then saved into a text
file. After the data preparation, we preprocessed the datasets and
reconstructed a mean effect-size map of differences between groups

2 https://www.sdmproject.com/software/
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for each study using an anisotropic unnormalized Gaussian kernel
(Radua et al.,, 2014). In the last step, individual maps from each
study were combined using meta-analytic calculations, which were
weighted by intra-study variance and inter-study heterogeneity. We
then calculated the mean of the study maps with a random-effects
model (Radua and Mataix-Cols, 2012; Pan et al., 2017a). Here we
adopted the recommended SDM parameters in the main meta-
analysis, setting full-width at half-maximum (FWHM) to 20 mm,
uncorrected voxel p = 0.005, anisotropy = 1, peak height SDM-
Z > 1, and cluster extent >10 voxels (Radua et al., 2012; Pan et al,,
2017¢).

2.4. Subgroup analysis

In the current study, four types of subgroup analyses were
performed. (1) subgroup analyses of migraineurs (MIG) and
migraineurs without aura (MowA) to investigate the effect of
disease type on FC abnormalities; (2) The five ICA studies were
selected as a subgroup and the four studies based on seed-based
FC as an additional subgroup to explore the alteration of FC
in both methods. (3) To explore the effect of age, a subgroup
analysis was performed on adults (eight studies). (4) To control
for medication status, we conducted subgroup analyses of whether
medication was taken.

2.5. Analyses of sensitivity, heterogeneity,
and publication bias

A systematic Jackknife sensitivity analysis was conducted to test
the robustness and reliability of the main results. In short, Jackknife
sensitivity analysis consists of repeated analyses, discarding one
study at a time, for assessing the reproduction of the results (Radua
et al,, 2012). In this analysis, we used the “leave-one-out cross-
validation” (LOOCV) method to verify the repeatability of the
results (Radua and Mataix-Cols, 2009). To be specific, the main
analysis was repeated n times (n = the number of total studies),
while discarding a different study each time. If the significant
brain areas obtained after each LOOCV analysis were present in
all or most of the previous significant brain regions, this result
is then considered stable and reproducible (Duko et al.,, 2020).
Similarly, we applied the default SDM kernel size and thresholds
to obtain the heterogeneous brain regions (Radua et al., 2014),
identifying brain areas that were not explained by differences
between studies by using random effects models and Q test, H
test, I-square statistics (Iwabuchi et al.,, 2015; Ueno et al., 2016).
Heterogeneity in the present study was evaluated by converting
Q-statistics to Z-scores. Clusters showing significant heterogeneity
and overlapped with the primary outcome were considered to be
between-study heterogeneity (Viechtbauer, 2005; Albajes-Eizagirre
and Radua, 2018). The heterogeneous brain regions obtained
cannot be interpreted simply from the cause of the disease; it
may result from clinical differences or demographic information
of the patients, so the interpretation of the heterogeneous brain
regions needs to be done with caution. Specifically, the results were
thresholded using FWHM = 20 mm, uncorrected p = 0.005, peak
height Z > 1, and cluster extent >10 voxels (Pan et al,, 2017¢;
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Zhen et al., 2018). In addition, funnel plots and Egger’s test in SDM
were conducted to calculate the probability of publication bias.
Publication bias is the tendency for statistically significant findings
(positive results) to be reported and published more frequently
than non-significant findings (negative results) or invalid findings
(Egger et al, 1997). And the Eggers test was conducted by
extracting values from the peak coordinates of abnormal brain
regions in the main meta-analysis results (Zhen et al, 2018).
Specifically, we first created a mask that using the peak coordinate
from the main meta-analysis results, and then extracted value
within mask. A result of p < 0.05 in Egger’s test was considered
to reflect significant publication bias (Pan et al., 2017b; Zhen et al,,
2018).

2.6. Meta-regression analysis

The meta-regression analysis was conducted to examine the
potential effects of the relevant variables on the FC alteration,
in which the main variables involved were mainly age, disease
duration, and frequency of attack. For the reduction of spurious
relations, the significance level was set at p < 0.0005 as well as an
extent threshold of 100 voxels (Radua and Mataix-Cols, 2009).

3. Results

3.1. Included studies and sample
characteristics

Following strict inclusion and exclusion criteria, we found
nine studies that met our requirements and consisted of 204
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migraine patients and 199 healthy individuals. The flow chart for
the search and selection strategies are shown in Figure 1. One of
the studies didn’t report the sex ratio and another did not report age
distribution. In the nine included studies, patients in three studies
with medication status. In Hubbard et al. (2014) study, the majority
of migraine took prophylactic medication, whereas over a third of
migraine took abortive medications in Lo Buono et al. (2017) study,
patients took simple analgesics, simple triptans, and combination
analgesics during a migraine attack; in Messina et al. (2020)
study, patients were taking flunarizine and ginkgolide for migraine
prevention at the time of MRI. All the studies were acquired using
a 3.0 T MRI scanner. There are five studies for ICA analysis and
four studies for seed-based rs-FC analysis. The detailed sample
characteristics and methodological details of included studies are
summarized in Table 1.

3.2. Main meta-analysis of rs-FC between
migraine and HCs

Compared with the HCs, we found migraine patients to show
significantly increased rs-FC, including right calcarine gyrus
(Calcarine_R), left inferior occipital gyrus (Occipital Inf L),
left postcentral gyrus (Postcentral L), right
(lobule IV/V, Cerebelum_4 5 R), parahippocampal
gyrus (ParaHippocampal R), and right posterior cingulate
gyrus (Cingulum_Post_R). Meanwhile, decreased rs-FC were
discovered in the right postcentral gyrus (Postcentral R),
left superior frontal gyrus (Frontal Sup_L), right superior
occipital gyrus (Occipital_Sup_R), right orbital inferior
frontal gyrus (Frontal Inf Orb_R), left middle occipital gyrus
(Occipital_ Mid_L), left middle frontal gyrus (Frontal Mid_L),

cerebellum
right
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TABLE 1 Characteristics of resting-state functional magnetic resonance imaging (rs-fMRI) studies included in the meta-analysis.

References | Migraine | Subjects (female)| Age (mean & SD/SE) | Method of |Seed Disease Disease Medication | Scanner | Statistical Quality
subtype analysis region duration frequency (on/off) (Tesla) |threshold |scores (out
(year) |(times/months) of 20)
Patients| HCs Patients

Caoetal, 2022 | MwoA-DI 34 (25) 44 (33) 34.44 4+ 10.04 30.63 £9.56 | Seed-based The left middle | 10.68 + 10.03 9.61 + 8.98

analysis frontal cortex (p < 0.001)

(lower)!
Chou et al, MIG 50 (44) 30 (23) 40.14 + 8.83 41.47 +10.41 | Seed-based DMPEC, PMC, | 15.63 + 10.55 7.38 +5.58 off 30T | FWE 19
2021 analysis TPJ (p < 0.05)
Colon et al, MIG 18 (9) 18 (9) 23224207 22914208 |ICA - 9.56 = 3.87 2.8 +2.57 off 30T | NA 19
2019
Hubbard etal., | MIG 17 (13) 18 (14) 41.71 +£12.20 38.89 £ 11.25 | Seed-based L PCC? NA NA On 30T FWE 19
2014 analysis (p < 0.005)
Lo Buono et al, | MwoA 14 (NA) 14 (NA) 40.75 +11.82 41.754+12.82 |ICA - 123 +58 6.07 +2.81 On 30T Permutation 17
2017 (p < 0.05)
Messina etal, | MIG 13(7) 14 (6) 13.8 (NA) 13.6(NA) | ICA - NA NA On 30T | FWE 17
2020 (p < 0.05)
Tessitore etal, | MwoA 20 (10) 20 (10) | 28.15 4 3.08 (SE) | 28.90 + 3.63 (SE) | ICA - 8.22+2.04 64204 off 30T | FDR 19
2013 (p < 0.05)
Zhang et al., MwoA 22(13) 22(13) 41.8 £10.2 42.0+10.3 Seed-based Precuneus’ 9.8+73 32422 Off 30T FDR 20
2016 analysis (p < 0.005)
Zouetal, 2021 |CM 17 (10) 20 (11) 4541 + 14.87 4356+877 | ICA - 10.47 £ 3.99 10.65 +2.83 off 30T | AlphaSim 20
(p < 0.05)

HCs, healthy controls; ICA, Independent Component Analysis; SD, standard deviation; SE, standard error; MwoA-DI, migraine without aura present during the interictal period; MIG, migraine; MwoA, migraine without aura; CM, chronic migraine; DMPFC,
dorsomedial prefrontal cortex; PCC, posterior cingulate cortex; PMC, posteromedial cortex; LTP], left temporoparietal junctions; FWE, family wise error; FDR, false discovery rate; NA, not available. Montreal Neurological Institute (MNI) coordinates (if available): 1
(42,57, 12), 2 (-8, 46, 27), 3 (-6, -54, 18). “1,2,3” represent the coordinates of the three seed regions.
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The areas of increased (red) and decreased (blue) functional connectivity (FC) in the main meta-analysis. "R” and “L" denote the right and left sides of
the brain, respectively. The color bar indicates the maximum and minimum seed-based d mapping (SDM)-Z value.

and left inferior frontal gyrus triangular part (Frontal_Inf Tri_L).
The detailed results from the meta-analysis are summarized in
Figure 2, Table 2.

3.3. Subgroup meta-analysis

Subgroup analyses of ICA studies suggested that decreased
FC was still found in the Occipital Mid_L, Frontal Sup_L and
we also found decreased FC in the Calcarine_R in patients
While the
showed some subtle difference. Increased FC was found in

compared with healthy subjects. increased FC
the right cuneus gyrus (Cuneus_R) and the left temporal pole of
superior temporal gyrus (Temporal_Pole_Sup_L) (Supplementary
Table S2 and Supplementary Figure S1). Subgroup analysis of
seed-based FC revealed that decreased FC was still found in the
Occipital_Sup_R, the Frontal_Mid_L, and the Frontal_Inf Orb_L.
At the same time, we also found increased FC in cerebellum,
such as right Crus I and II of cerebellar hemisphere gyrus.
Besides, we found decreased FC in the right supramarginal gyrus
(SupraMarginal_R), the inferior frontal gyrus of orbital part
(Frontal_Inf Orb) while increased FC was found in the right
gyrus rectus (Rectus_R), right lingual gyrus (Lingual R) and
lobule of vermis (Supplementary Table S3 and Supplementary
Figure S2). For the migraine without aura (MwoA), increased FC
was revealed in left lingual gyrus (Lingual L), the left superior
temporal gyrus (Temporal_Pole_Sup_L), right calcarine gyrus
(Calcarine_R), and left superior frontal gyrus (Frontal_Sup_L),
while decreased FC was found right median cingulate and
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paracingulate gyri (Cingulum_Mid_R), Frontal Mid_L, and
right precuneus (Precuneus_R) (Supplementary Table S2 and
Supplementary Figure S1); About migraine (MIG) group, we
also found increased FC in the Postcentral L, decreased FC in
Frontal_Inf Tri_L and Frontal Sup_L, which is consistent with
the main results. Besides, we found some different brain region
in MIG group, the left temporal pole of superior temporal gyrus
(Temporal_Pole_Sup_L), the left precentral gyrus (Precentral_L),
the left superior parietal gyrus (Parietal Sup_L), and the left
precuneus gyrus (Precuneus_L) was increase in FC compared with
healthy subjects, while the left inferior parietal (Parietal_Inf L) and
the left precuneus was decrease in FC relative to healthy subjects
(Supplementary Table S5 and Supplementary Figure S4). For
the adult subgroup meta-analysis, the great majority of the results
were consistent with the main meta-analysis results. However, the
increased FC was also found in the Precuneus_R and Lingual R,
the decreased FC was also showed in the right supramarginal gyrus
(SurpraMarginal R) and the left inferior frontal gyrus of opercular
part (Frontal Inf Oper_L) in adult group (Supplementary
Table S6 and Supplementary Figure S5). For the no-medication
subgroup analysis, decreased FC in the Frontal Mid_L and
Frontal_Sup_L was also found, while increased FC was showed in
the precentral gyrus (Precentral_L) and left middle temporal gyrus
(Temporal_Mid_L) in migraine relative to healthy subjects. About
subgroup analyses of medication status, Clusters still showing
increase FC in the calcarine gyrus, decreased in Postcentral R,
Occipital_Sup_R, Frontal Inf Orb_R
compared with healthy subjects (Supplementary Tables S7, S8 and

in migraine patients

Supplementary Figures S6, S7).
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TABLE 2 Clusters showing resting-state functional connectivity (rs-FC) differences in migraine patients compared with healthy control (HC).

OCad O ololge d oge gge e o,
I I

Migraine > HC
Calcarine_R (aal) 8 -90 10 430 1.685 0.171 <0.001 9/9 Yes 0.652
Occipital_Inf L (aal) -20 -94 -10 249 1.628 0.165 0.001 719 No 0.629
Postcentral_L (aal) -40 -26 56 152 1.692 0.173 <0.001 719 No 0.343
Cerebelum_4_5_R (aal) 8 -56 -4 70 1.584 0.160 0.001 8/9 No 0.294
ParaHippocampal_R (aal) 24 -42 -4 58 1.615 0.158 0.001 719 No 0.437
Cingulum_Post_R (aal) 10 42 8 57 1.670 0.169 0.001 8/9 No 0.294
Migraine < HC
Postcentral_R (aal) 50 -30 46 218 -1.451 -0.200 0.002 719 No 0.363
Frontal_Sup_L (aal) -26 52 20 106 -1.467 -0.206 0.002 719 No 0.395
Occipital_Sup_R (aal) 26 -66 44 78 -1.425 -0.182 0.002 6/9 No 0.392
Frontal_Inf_Orb_R (aal) 40 32 -10 71 -1.404 -0.167 0.003 6/9 No 0.401
Occipital_Mid_L (aal) -42 -80 12 70 -1.427 -0.210 0.002 6/9 No 0.188
Frontal_Mid_L (aal) -30 30 42 41 -1.574 -0.159 0.001 9/9 No 0.140
Frontal_Inf Tri L (aal) -50 18 16 21 -1.389 -0.159 0.003 6/9 No 0.416

‘le1e nH

BJ0"UISIa13UO)

aal, automated anatomical labeling; HC, healthy controls; MNI, Montreal Neurological Institute; SDM, seed-based d mapping; Calcarine_R, right calcarine gyrus; Occipital_Inf_L, left inferior occipital gyrus; Postcentral_L, left postcentral gyrus; Cerebelum_4_5_R,
right cerebellum (lobules IV/V); ParaHippocampal R, right parahippocampal gyrus; Cingulum_Post_R, right posterior cingulate gyrus; Postcentral_R, right postcentral gyrus; Frontal_Sup_L, left superior frontal gyrus; Occipital_Sup_R, right superior occipital gyrus;
Frontal_Inf_Orb_R, right orbital inferior frontal gyrus; Occipital_Mid_L, left middle occipital gyrus; Frontal_Mid_L, left middle frontal gyrus; Frontal_Inf_Tri_L, left inferior frontal gyrus triangular part.
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3.4. Sensitivity test for the main findings

Jackknife sensitivity analysis revealed that rs-FC results
remained largely consistent. After nine repeated meta-analyses
using the “leave-one-out cross-validation” (LOOCYV), as shown in
Table 2, the Calcarine_R and Frontal_Mid_L were replicated in all
nine meta-analyses. The right cerebellum and Cingulum_Post_R
were stably preserved in 8/9 of the datasets. The results in
the  Occipital_Inf L,
Postcentral R, and Frontal Sup_L remained significant in

Postcentral_L,  ParaHippocampal R,
seven meta-analyses. Other brain regions remained significant in
six meta-analyses. The heterogeneity analysis revealed significant
between-study variability of FC changes in the right calcarine
gyrus; this may have arisen due to the clinical differences between
studies (Sterne et al,, 2011). In addition, none of the brain regions
showed significant publication bias based on Egger’s test (p > 0.05).
And we provided funnel plots of the meta-analysis to visualize the
possibility of publication bias in Supplementary Figures S8-S11.

3.5. Meta-regression analysis

Age, the duration of the disease and the frequency of attacks of
patients in included studies were collated by us in current study. In
the meta-regression analysis, no significant correlation was found
between the mean age of the patients (available in all studies), the
duration of the disease [available in all studies but two (Hubbard
et al,, 2014; Messina et al., 2020)] or attack frequency [available in
all studies but two (Hubbard et al., 2014; Messina et al., 2020)] and
the abnormality of FC.

4. Discussion

This meta-analysis was the first study to systematically examine
the rs-FC within DMN in migraine patients. The current study
comprehensively reviewed nine studies, using a quantitative
SDM meta-analysis to reveal abnormalities associated with DMN
in migraine. We found that compared with healthy subjects,
migraine patients showed abnormal connectivity of rs-FC in key
nodes of DMN, such as ParaHippocampal R, Frontal Mid_L,
Cingulum_Post_R. In addition to this, there were abnormalities
of rs-FC presented in other cortical areas, like the occipital lobe,
cerebellum, and some region of the injury perception pathway.
The present study highlighted the crucial role of the DMN in
migraine pathology, and provides a reliable reference for further
understanding of its pathogenesis.

In specific terms, we found reduced FC in the Frontal Mid_L,
Frontal_Sup_L, and Frontal Inf Tri_L, Frontal Mid_L as part of
the prefrontal cortex, was engaged in the cognitive assessment and
regulation of pain (Katja et al., 2008). In a prior functional brain
pathway study, FC of the middle frontal gyrus and the dorsal
anterior cingulate cortex were reduced in migraine patients without
aura compared to healthy subjects (Russo et al., 2012). This reduced
connectivity of the middle frontal gyrus was negatively correlated
with the pain intensity of migraine attack (Russo et al, 2012).
Brain structure in migraine patients revealed that the gray matter
volume and the folding coefficient of the middle frontal gyrus were
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reduced in migraine patients without aura (Jia and Yu, 2017). The
superior frontal gyrus was involved in emotional responses and the
participative feelings of pain (Bluhm et al., 2007). The left inferior
frontal gyrus played a role in cognitive modulation of pain as well
as memory retrieval and emotional pain regulation (Ochsner et al.,
2012). Several studies supported linking migraine physiopathology
with the left inferior frontal gyrus (Arkink et al., 2012; Zhang et al,,
2020). For example, aberrant cerebral perfusion changes in the left
inferior frontal gyrus in migraineurs have been found (Arkink et al.,
2012). In our subgroup analysis, we also found abnormalities of
FC in other brain regions (inferior frontal gyrus of orbital part
and opercular part) of the frontal lobe. These brain regions of rs-
FC abnormalities were associated with migraine and other pain
disorders in the past studies (Xu et al.,, 2022; Yang et al., 2022),
indirectly suggesting that the frontal cortex plays an important role
in pain perception and regulation, and to a certain extent, it is
possibly involved in the development of migraine.

In the current study, the right calcarine gyrus (Calcarine_R),
superior occipital gyrus (Occipital Sup_R), left middle
occipital gyrus (Occipital_Mid_L), and inferior occipital gyrus
(Occipital_Inf L), which are part of the occipital lobe, showed
abnormal FC in migraine patients. Abnormalities in the occipital
lobe were found to closely relate to migraine (Schoenen et al., 2003;
Vincent and Hadjikhani, 2007a). For example, the theory of cortical
spreading of depression is an important hypothesis of migraine and
is widely considered to be the pathological mechanism of migraine
with aura, and emphasizes the importance of abnormalities in the
occipital lobe in migraine (Hadjikhani et al,, 2001; Tfelt-Hansen,
2010). Besides, the occipital lobe is now generally considered to
be hyperexcitable in migraine (Welch, 2005). Such excitability
leads to a lower threshold for migraine attacks, and that cortical
diffusion inhibition arises when certain stimuli are present, leading
to migraine attacks. In other words, when patients suffer migraine
attacks, the body’s self-protective mechanisms may reduce the
frequency and the degree of pain of migraine attacks by decreasing
the excitability of the occipital cortex. Consistent with these
studies, we also found abnormal FC in brain regions associated
with the occipital cortex. This reflected the idea that the occipital
lobe related to visual function may be an important pathogenesis
of migraine. Besides, we also found abnormal FC in the cuneus
and lingual gyrus in some subgroup analyses, these regions are the
major regions of the visual network in previous studies (Boulloche
et al, 2010; Lee et al,, 2019). Established studies illustrated the
hypermetabolism of the lingual gyrus and the cuneus, which is
involved in the perceptual abnormalities associated with visual,
such as photophobia (Denuelle et al,, 2011; Schankin et al., 2014).
It is necessary to note that Calcarine_R is heterogeneous in the
results, which may be due to clinical variations in patients between
studies (Sterne et al., 2011). Hence this abnormality in FC of this
brain region needs to be treated with caution and suggests that we
can pay further attention to abnormal variations in Calcarine_R in
migraine patients in the future.

Our meta-analysis also revealed enhanced rs-FC in the
right posterior cingulate gyrus (Cingulum_Post_R) and the
right parahippocampal gyrus (ParaHippocampal_R) in migraine
patients. Migraine patients often suffer from pain. While the pain
processing is complex and it may be regulated by brain regions
of DMN, such as the cingulate gyrus and ParaHippocampal R
(Tomasi and Volkow, 2011). For example, the ParaHippocampal R
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participates in the abnormal processing of allodynia (Iadarola
et al,, 1998). Metabolic abnormalities in the posterior cingulate
gyrus have been suggested in previous studies in migraine patients
without aura (Kim et al, 2010), and a significant negative
correlation between the gray matter density of the posterior
cingulate gyrus bilaterally and pain sensitivity was also noted
(Emerson et al., 2014). The present results imply that these regions
may be involved in pain modulation for migraine patients.

Migraine patients also showed FC abnormalities on the
postcentral gyrus in the main results and abnormalities on the
precentral gyrus in the subgroup analyses compared to healthy
subjects. The postcentral gyrus precentral gyrus is not only a key
brain region in the central brain network of pain modulation
responsible for information processing of painful stimuli (Apkarian
et al,, 2005; Schweizer et al, 2008; Tracey, 2008; Torta et al,
2017), it has also been suggested to be involved in the trigeminal-
thalamo-cortical injury perception pathway, which is related to the
pathophysiology of migraine (Goadsby et al., 2017). For example,
migraine patients demonstrated significantly decreased FC between
the right postcentral gyrus and right substantia nigra, and the
altered FC was negatively associated with migraine duration
(Huang et al, 2019). Meanwhile, the reduced low-frequency
amplitude of the postcentral gyrus in patients was captured in the
neural activity during the migraine interval (Wang et al,, 2016)
and cortical thinning within the postcentral gyrus in migraine
patients (Mehnert et al., 2017). Consistent with the results of these
studies, the present study also found a decrease in FC of postcentral
gyrus in migraine patients. Additionally, MRI studies showed that
the postcentral gyrus is activated by painful stimulation (Carlsson
et al, 2006; Wager et al, 2013). Increase in FC also has been
found in the left postcentral gyrus in this study, this may be due
to subtle differences in brain function between the left and right
hemispheres. Therefore, it is necessary to explore the abnormalities
of the left and right postcentral gyrus in migraine patients in the
future. Abnormalities of the postcentral gyrus in patients may be
associated with disruptions in networks related to pain modulation.
This further suggests that the postcentral gyrus in the “central brain
network of pain modulation” may be characteristically altered in
migraine patients.

Enhanced FC was found in the right cerebellum (lobule IV/V)
in this study, which is consistent with the results of previous studies.
The cerebellum is primarily responsible for nociceptive avoidance
behavior. For instance, when there is an increased spontaneous
cerebellar activity, the cerebellum has stronger resistance to injury
(Pereira et al., 2017). Some studies have found that the cerebellum
plays a regulatory role in pain processing and pain perception
(Ruscheweyh et al., 2014; Mehnert et al., 2017). Established studies
provided increasing evidence that the cerebellum is associated with
migraine. For example, studies have found abnormal cerebellar
function in migraine patients, mainly in terms of cerebellar
hyperactivation and abnormal spontaneous cerebellar activity
when stimulated by negative emotional images (Wang et al,, 2016,
2017). In terms of structure, it has also been found that the gray
matter volume of cerebellar regions is smaller in patients with
chronic migraine compared to healthy subjects (Bilgic et al., 2016;
Lai et al., 2016). The present results further support the potential
association of the cerebellum with the pathogenesis of migraine
(Vincent and Hadjikhani, 2007b).
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In additional, influenced by different methods, disease subtypes
and medication use, we also found abnormalities of FC in other
brain regions. The temporal lobe (temporal pole of superior
temporal gyrus, middle temporal gyrus and inferior temporal
gyrus) is significantly affected by migraine in our analyses, which is
consistent with the results of previous studies (Afridi et al., 2005).
And the temporal lobe is an associative multisensory area that also
processes visual and auditory information have been confirmed
(Moulton et al., 2011). The precuneus is a core region of the DMN
involved in migraine in our subgroup analyses. Abnormalities in
the precuneus have been found to potentially affect information
transmission, multimodal integration, and pain sensitivity and
processing in patients with MwoA (Zhang et al, 2016; Li et al,
2022). Abnormalities in FC of the supramarginal gyrus have also
been reported frequently in subgroup analyses. The supramarginal
gyrus is particularly engaged in the cognitive assessment of pain
(Lamm et al,, 2011; Moulton et al., 2012), and reduced pain-related
activity in the suprachiasmatic gyrus has been reported in patients
with overmedicated headaches (Ferraro et al.,, 2012).The results of
these subgroup analyses suggested that FC abnormalities between
patients with different clinical information could be studied in
detail to more precisely understand the pathogenesis of migraine.

Several limitations need to be considered in this study. Firstly,
the nine studies included in our meta-analysis differ in age and
gender of the subjects, and migraine patients of different genders
and age stages may exhibit different DMN abnormalities. We
recommend that future studies systematically analyze data from
the same age level or the same gender population. Secondly,
the AES-SDM approach used in the present study is based on
the reported coordinates of previous studies rather than the raw
imaging data, future studies could conduct meta-analyses based on
the brain maps to add more detailed information. Finally, despite
our efforts to obtain information, the number of included studies
was relatively small (i.e., nine studies), further research in this field
is necessary to confirm and extend these findings.

5. Conclusion

In the current study, we included all available publications
using an rs-FC analysis within DMN and performed a meta-
analysis to determine the consistency and robustness of altered FC
within the DMN in migraine patients. Migraine patients exhibited
abnormal FC within DMN as well as some other regions associated
with the central brain network of pain modulation. The present
study can be considered an exploratory study that provides the
primary evidence for the study of functional abnormalities in the
DMN in migraine patients. The findings of this study improved our
understanding of the pathophysiological mechanisms of migraine
from a systemic perspective.
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