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Recently Transformer models is new direction in the computer vision field,

which is based on self multihead attention mechanism. Compared with

the convolutional neural network, this Transformer uses the self-attention

mechanism to capture global contextual information and extract more strong

features by learning the association relationship between different features,

which has achieved good results in many vision tasks. In face-based age

estimation, some facial patches that contain rich age-specific information are

critical in the age estimation task. The present study proposed an attention-based

convolution (ABC) age estimation framework, called improved Swin Transformer

with ABC, in which two separate regions were implemented, namely ABC and

Swin Transformer. ABC extracted facial patches containing rich age-specific

information using a shallow convolutional network and a multiheaded attention

mechanism. Subsequently, the features obtained by ABC were spliced with the

flattened image in the Swin Transformer, which were then input to the Swin

Transformer to predict the age of the image. The ABC framework spliced the

important regions that contained rich age-specific information into the original

image, which could fully mobilize the long-dependency of the Swin Transformer,

that is,extracting stronger features by learning the dependency relationship

between different features. ABC also introduced loss of diversity to guide the

training of self-attention mechanism, reducing overlap between patches so

that the diverse and important patches were discovered. Through extensive

experiments, this study showed that the proposed framework outperformed

several state-of-the-art methods on age estimation benchmark datasets.
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1. Introduction

A large amount of useful information in facial images, such as age, gender,
identity, race, emotion, and so forth (Angulu et al., 2018), and research on techniques
related to facial image analysis has become the focus of computer vision. What
is the significance of the facial age as an important feature? As an important
physical and social characteristic of human beings, age plays a fundamental role
in human social interaction. Recently, age estimation based on facial images is
already an important research topic (Zhao et al., 2020; Agbo-Ajala and Viriri, 2021),
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which predicts the age corresponding to the image containing the
face in the image. The task has very good application prospects
in various intelligent fields, such as cross-age face recognition,
intelligent security surveillance, harmonious human-computer
interaction, image and video retrieval, face-based age prediction,
and marketing analysis (Bruyer and Scailquin, 1994; Geronimo
et al., 2009; Song et al., 2011; Angulu et al., 2018; Pei et al., 2019).

Modern face-based age estimation methods typically consist
of two directions. One is to improve the learning ability of the
neural network, and the other is to use other features related
to the age of the face to assist the learning of the network.
Convolutional networks can learn age features in facial images
by multilayer convolution and have achieved great success in
the field of computer vision with a wide range of applications.
With the growing popularity of convolutional neural networks
(CNNs), recent work on face-based age estimation has used these
networks as a backbone (Shen et al., 2018; Dagher and Barbara,
2021; Sharma et al., 2022; Zhang and Bao, 2022). Most of these
works improve the learning ability of the network by increasing
the number of layers of convolutional layers (Dornaika et al., 2020;
Yi, 2022) and improving the structure of the network. However,
as convolutional networks continue to improve, the potential of
CNN-based facial age estimation models has been exploited, and
the increasing number of network model parameters has raised
the cost of training. Therefore, we proposed to use a new network
model designed specifically for face-based age estimation. Some
other recent studies on face-based age estimation (Deng et al.,
2021; Lu et al., 2022; Wang et al., 2022) have improved the
accuracy of age estimation by extracting age features of faces and
the relationship between different ages (Akbari et al., 2020; Xia
et al., 2020). These studies have enhanced the learning ability of
the network using attention-related mechanisms, using features
other than faces such as sex, gender (Liu et al., 2020), and label
distribution (Zeng et al., 2020; Zhao et al., 2020). However, these
efforts may destroy the features and the structure of the original
image while extracting the age features of the images, resulting
in the loss of age information. Therefore, how to extract features
without destroying the extracted features and the structure of the
original image is a research direction.

Recently, the self-attention mechanism and Transformer model
(He et al., 2021) have attracted great attention in computer
vision and natural language processing tasks. Vision Transformer
(Dosovitskiy et al., 2020) has shown that the Transformer-based
model indeed contains the capacity as the backbone network
instead of former pure CNN model in image synthesis and
classification tasks (He et al., 2016; Szegedy et al., 2017). Related
research (Bourdev et al., 2011) shows that compared with CNN,
the self-attention mechanism of Transformer is not limited by
local interactions and allows both long-distance dependencies and
computes in parallel and learn the most appropriate inductive
bias according to different task goals, which has achieved good
effects in many vision tasks. The attention mechanism (Niu et al.,
2021) is also a direction to improve the prediction ability of the
network, and the self-attention mechanism (Lin et al., 2017) of the
Transformer can quickly extract the important features of sparse
data, which is an improvement of the attention mechanism. It
reduces the reliance of the network on external information and
is better at capturing the correlation within the data or features.
Therefore, the self-attention mechanism can be designed to exploit

age-specific patches during training to boost the performance of
face-based age estimation methods.

In this study, we proposed an attention-based convolution
(ABC) age estimation framework called an improved Swin
Transformer with ABC. The architecture of an improved Swin
Transformer with ABC is illustrated in Figure 1. The core of
the improved Swin Transformer with ABC was the ABC. In
ABC, two separate regions were implemented, namely shallow
convolution and a multiheaded self-attention mechanism. The
feature extractor performed initial feature extraction of the image
using a shallow convolutional network and then further extracted
the corresponding patches that might contain rich age-specific
information through the multiheaded attention mechanism,
according to the number of probes. ABC extracted facial
patches containing rich age-specific information by a shallow
convolutional network and multiheaded attention mechanism.
Subsequently, the features obtained by ABC were spliced with
the flattened image in the Swin Transformer, which were
then input to the Swin Transformer to predict the age of
the image. ABC also introduced loss of diversity to guide
the training of self-attention mechanism, reducing overlap
between patches so that the diverse and important patches
were discovered. The contributions of this study were as
follows:

(1) We proposed a new module called ABC that used shallow
convolution and shifted window self-attention mechanism.
The image was initially extracted and refined by shallow
image convolution, and some facial regions containing rich
age-specific information were extracted by the multiheaded
self-attention mechanism.

(2) We introduced the Swin Transformer as the backbone model,
and the features obtained by ABC were spliced with the
output of the embedding layer of the Swin Transformer in
the channel dimension and subsequently input to the rest of
the Swin Transformer so that the model could better capture
the global and local information of the image and achieve
better results by learning the relationship between different
features of the image.

(3) We introduced a new loss function that made each probe of
the multiheaded self-attention mechanism reveal a different
age region and prevent overlapping feature extraction from
the multiheaded feature extractor.

2. Related research

We reviewed and discussed related studies on face-based age
estimation to lay the foundation for this study. We also reviewed
the attention mechanism and Transformer, both of which were
relevant to the proposed ABC.

2.1. Face-based age estimation

In the last few decades, many researches have been conducted
on face-based age estimation. One of the earliest studies can
be traced back to (Kwon and da Vitoria Lobo, 1999), in which
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FIGURE 1

Structure of an improved Swin Transformer with attention-based convolution (ABC). (A) Structure of an attention based convolution. (B) Swin
Transformer.

the researcher’s classified faces into three age groups based on
the craniofacial development theory and wrinkle analysis. In the
traditional face-based age estimation methods, first the face-based
age features are extracted, and then classification and regression
models are established for face-based age estimation. With the
rapid development of deep learning in recent years, deep learning–
based facial age estimation methods have significantly improved
the accuracy and robustness of face-based age estimation, especially
the accuracy of face-based age estimation under unconstrained
conditions.

Yi et al. (2014) proposed a multistream CNN to better leverage
high-dimensional structured information in facial images. The
authors cropped multiple patches from facial images so that each
stream learned from one patch. Then, the features extracted from
different patches were fused before the output layer. Ranjan et al.
(2015) used a deep convolutional neural network (Chen et al.,
2016) with 10 convolutional layers, 5 pooling layers, and 1 fully
connected layer to extract the age characteristics of facial images.
Then, age regression was performed using a three-layer artificial
neural network. One of the first studies to use CNNs for the face-
based age estimation problem was (Wang et al., 2015), in which
a CNN with two convolutional layers was deployed. Han et al.
(2017) used a modified AlexNet (Krizhevsky et al., 2017) to develop
a multitask learning method for heterogeneous face attribute
estimation including the age. Rothe et al. (2018) transformed the
regression problem into a classification-regression problem and
proposed a deep expectation network (DEX) for the age estimation
of representations. The DEX network changed the number of
neurons in the last layer of the VGG-16 network.

In general, CNN-based methods for face-based age estimation
can be divided into two categories. The first approach is to use
deeper and better deep learning models as backbone networks
with better networks to extract features (Dornaika et al., 2020; Lu
et al., 2022; Sunitha et al., 2022; Wang et al., 2022). The second
approach is to improve the performance of the network in terms
of other attributes of the face, such as race features and gender
features (Zhang et al., 2017a; Liu et al., 2020; Deng et al., 2021),

and relational features of different ages (Song et al., 2011; Gao
et al., 2017; Zeng et al., 2020). In our previous study, we proposed
a multilevel residual network model to further improve the
performance of the network so as to better improve the accuracy
of age estimation (Levi and Hassner, 2015). As the CNN-based
network model for face-based age estimation may soon reach
a bottleneck in the direction of face-based age estimation, we
tried to incorporate a newer network model that combined the
advantages of CNN with the advantages of the new network to
achieve better results.

2.2. Attention-based facial age
estimation

Attention mechanism (Vaswani et al., 2017) mimics the internal
processes of biological observation behavior, increasing the fineness
of observation in certain regions. The attention mechanism can
quickly extract important features of sparse data and is therefore
widely used in machine translation, speech recognition, and image
processing (Wang et al., 2016), and other fields. A multiheaded
attention mechanism can attend to multiple informative segments
of the input with an attention head attending to one specific
segment. Therefore, the number of segments that the multiheaded
attention mechanism can attend to is determined by the number
of attention heads. In computer vision, the self-attention layer
takes the feature map as input and calculates the attention weights
between each pair of features to generate an updated feature map
where each position has information about any other feature in the
same image. These layers can replace convolution directly or be
combined with convolution layers. They are able to handle larger
perceptual fields than conventional convolution, and therefore can
acquire dependencies between some long-distance interval features
on the space.

Multiple attention mechanisms have been proposed for
visual tasks to address the weaknesses of convolutions due to
the aforementioned characteristics. Bello et al. (2019) proposed
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to augment convolutional networks with self-attention by
concatenating convolutional feature maps with a set of feature
maps produced via a novel relative self-attention mechanism.
Hu et al. (2018) proposed a simple, lightweight approach for
better context exploitation in CNNs by introducing a pair of
operators: gather (which efficiently aggregated feature responses
from a large spatial extent) and excite (which redistributed the
pooled information to local features). Chen et al. (2018) proposed
the “double attention block,” which was designed with a double
attention mechanism in two steps, a novel component that
aggregated and propagated informative global features from the
entire spatiotemporal space of input images/videos, enabling
subsequent convolution layers to access features from the entire
space efficiently. The nonlocal operation proposed by Wang et al.
(2018) computed the response at a position as a weighted sum
of the features at all positions and achieved excellent results in
the experiment. Wang et al. (2022) proposed a face-based age
estimation framework called attention-based dynamic patch fusion
(ADPF). The ADPF dynamically located and ranked age-specific
patches by employing a novel ranking-guided multihead hybrid
attention mechanism and used the discovered patches along with
the facial image to predict the age of the subject.

A previously proposed work (Bello et al., 2019) adds an
attention mechanism to the convolutional network to enhance
the convolutional network. A previously proposed work (Hu
et al., 2018) enhances the input image by using the attention
mechanism to get the feature responses of adjacent regions of the
image. A previously proposed work (Chen et al., 2018) get the
global features and local features by two attention mechanisms,
respectively. The previously proposed work (Wang et al., 2018,
2022) learn the important features by calculating the region
weights through the attention mechanism. Different from the above
work which uses the attention mechanism to enhance the deep
convolutional network, our work uses shallow convolution and
attention mechanism with the aim of finding the important regions
without destroying the original image and stitching these regions
with the original image to enhance the Transformer network.

2.3. Vision transformer

Transformer (Vaswani et al., 2017) is a kind of deep
divine meridian based on the self-attention mechanism. In
recent years, Transformer-based models have become a popular
research direction in the field of computer vision. Another visual
Transformer model, ViT, recently proposed by Dosovitskiy et al.
(2020), achieved state-of-the-art performance on several image
recognition benchmark tasks in a structure that fully adopted the
standard structure of a Transformer, ViT. Liu Z. et al. (2021)
proposed the Swin Transformer, which enabled the flexibility of
the Transformer model to handle images of different scales by
applying a hierarchical structure similar to that of CNN. The Swin
Transformer used a windowed attention mechanism to greatly
reduce the computational complexity. The architecture of a Swin
Transformer is illustrated in Figure 2. Yuan et al. (2021) proposed
CeiT, combined with the ability of CNN to extract low-level
features, to design an Image-to-Tokens module, which extracted
the patch from the generated low-level features. Wang et al. (2021)

proposed the CrossFormer, which used a cross-scale embedding
layer (CEL), generated patch embeddings using a CEL at each stage,
and extracted features using four different-sized convolutional
kernels in the first CEL layer. The features were extracted using
four convolutional kernels of different sizes, and the results of
the convolutional kernels were stitched into patch embeddings.
Peng et al. (2021) proposed Conformer (Yuan et al., 2021)], which
combined the features of a Transformer and CNN through a
parallel structure to achieve feature fusion by bridging each other,
so that the local features of CNN and the global features of
the Transformer could be retained to the maximum extent. Xiao
et al. (2021) proposed ViTc, which replaced the patch embedding
module in the Transformer with convolution. It made the replaced
Transformer more stable and converge faster. Liu Z. et al. (2021)
proposed the TransCNN by introducing a CNN layer after the self-
attention block so that the network could inherit the advantages
of a Transformer and CNN. UniFormer (Li et al., 2022) seamlessly
integrated the advantages of convolution and self-attention through
the Transformer to aggregate the local and global features at
shallow and deep layers, respectively, solving the problem of
redundancy and dependency for efficient representation learning.

A previous study proposed (Yuan et al., 2021) replacing the
original three structures of the Transformer with convolutional
layers in the Transformer, thus integrating CNN into the
Transformer. Another previous study proposed (Wang et al., 2021)
designing a CEL and long short distance attention to replace
the Transformer block and MSA (Multihead Self-Attention) in
the Transformer. A related study (Li et al., 2022) seamlessly
integrated the merits of convolution and self-attention in a concise
Transformer format and proposed a new framework UniFormer.
Some previous studies proposed (Wang et al., 2021; Yuan et al.,
2021; Li et al., 2022) combining CNN with the structure in the
Transformer block to improve the capabilities of the network by
adding or replacing it so as to improve the framework of the
Transformer. However, the present study designed an independent
shallow convolution, which extracted features through a self-
attentive mechanism to be stitched with the original image and
input to the Transformer, without modifying the Transformer.
The CNN performed the role of extracting shallow features in the
network while preserving the original structural information of the
image. Another study (Xiao et al., 2021) introduced convolution to
process the input original image by replacing the patch layer with
CNN. A related study (Liu Z. et al., 2021) viewed image patches
as tokens by CNN, which continuously extracted features through
a multilayer self-attention mechanism and finally input to the
Transformer block. The present study extracted shallow features
by shallow convolution without destroying the location structure
information of the image. The feature regions rich in face-based
age information were obtained through a self-attention mechanism
and stitched with the original image after the patch layer processing
in the Transformer, instead of directly processing the original
image. A related study (Peng et al., 2021) combined the features
of the Transformer and CNN through a parallel structure using
a bridge to achieve feature fusion. This study introduced CNN
and self-attention mechanism to extract shallow features while
preserving the original structural information of the image. The
purpose of the CNN and self-attention mechanism was to improve
the ability of the Transformer to obtain feature dependencies at
long distances.
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FIGURE 2

Architecture of a Swin Transformer: (A) Structure of a Swin Transformer (Swin-T). (B) Two successive Swin Transformer blocks. Window based
self-attention (W-MSA) and shifted window based self-attention (SW-MSA) are multihead self-attention modules with regular and shifted windowing
configurations, respectively (Vaswani et al., 2017).

3. Methodology

In this section, we first discussed the core of the Swin
Transformer with the attention-based convolution mechanism,
which was the proposed ABC. Then, we combined the ABC and
Swin Transformer parts. Finally, we introduced the age expectation
and loss function. The architecture of the Swin Transformer with
the ABC mechanism is shown in Figure 1.

3.1. ABC

As the Swin Transformer with attention-based convolution
is based on ABC and the critical component of ABC is the
self-attention mechanism, we first introduced the self-attention
mechanism followed by the proposed attention-based convolution.
Finally, we detailed the complete mechanism. The architecture of
attention-based convolution is shown in Figure 3.

We considered an input tensor X with a dimension of
h × w × c, where h denotes the height, w denotes the width, and
c denotes the number of channels. During training, the input to
ABC was a fixed-size 224 × 224 RGB image.

This model started with the institutional area of the
convolution. The image was passed through a stack of
convolutional layers; this convolutional region had eight
convolutional layers, where we used filters with a very small
receptive field: 3 × 3. The convolution stride was fixed to 1 pixel;
the spatial padding of the convolution layer input was such that
the spatial resolution was preserved after convolution, that is,
the padding was one pixel for 3 × 3 convolution layers. Spatial
pooling was carried out by two max-pooling layers, which followed
the second and fourth convolutional layers. Max-pooling was
performed over a 2 × 2 pixel window, with stride two. All hidden
layers were equipped with the rectification nonlinearity.

The convolution was followed by the region of the self-attention
structure. The output of the convolutional layer X was used as
the input of the attention mechanism. Let us consider an input
tensor X with a dimension of h × w × c, where h denotes the
height, w denotes the width, and c denotes the number of channels.
X was convolved into three separate tensors: Q with a shape of
h × w × cQ, K with a shape of h × w × cK , and V with a

shape of h × w × cV , where cQ, ck, and cV indicate the number
of channels in the corresponding tensor. The intention behind self-
attention was to compute a weighted summation of the values, V ,
where the weights were computed as the similarities between the
query, Q, and the corresponding key, K. Therefore, to compute the
similarity, Q and K normally had the same shape, that is, cQ = cV .
The output of a single self-attention mechanism was computed as:

Sn1 = soft max

(
Q′ · K ′T
√

cK

)
· V (1)

where Q′ and K ′ are flattened tensors to perform the dot product.
After the scaling operation, that is, dividing the similarity

matrix Q′ · K ′T by a factor of
√

cK and applying the softmax
function, we performed a dot product between the normalized
similarity matrix and V to generate the self-attention maps Sn
with a dimension of h × w × cK . ni is the number of heads of
attention probes in the multiheaded attention mechanism.

As we flattened the two-dimensional feature maps into a one-
dimensional vector in Equation 1, the original structure of the
feature maps was distorted. We adopted the relative positional
encoding to make it efficient when dealing with structured data
such as images and multidimensional features. Specifically, the
relative positional encoding was represented by the attention logit,
which encoded how much an entry in Q′ attended to an entry in K ′.
The attention logit was computed as:

li,j =
qT

i
√

cK
(kj + rw

jx−ix + rh
jy−iy ) (2)

where qi is the ith row in Q′ indicating the feature vector for
pixel i :=

(
ix, iy

)
and kj is the jth row in K ′ indicating the

feature vector for pixel j :=
(
jx, jy

)
. rw

jx−ix and rh
jy−iy are learnable

parameters encoding the positional information within the relative
width jx − ix and relative height jy − iy, respectively. With the
relative positional encoding, the output of a single self-attention
mechanism could be reformulated as:

Sn1 = soft max

(
Q′ · K ′T +mh +mw

√
cK

)
· V (3)

where mh
[
i, j
]
= qT

i rh
jy−iy and mh

[
i, j
]
= qT

i rw
jx−ix are matrices

of relative positional logits. In this study, the number of heads
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FIGURE 3

Structure of the proposed attention-based convolution (ABC).

of the attention probe in the multiheaded attention mechanism
was set to four.

A key design element of ABC was its shift of the window
partition between consecutive self-attention layers, as illustrated
in Figure 2. The shifted windows bridged the windows of
the preceding layer, providing connections among them that
significantly enhanced the modeling power. As illustrated in
Figure 2, the module used a regular window partitioning strategy
that started from the top-left pixel, and the 56 × 56 feature map
was evenly partitioned into 8 × 8 windows of size 7 × 7 (M = 7).
Then, the module adopted a windowing configuration that was
shifted from that of the preceding layer by displacing the windows
by ([M2 ], [

M
2 ]) pixels from the regularly partitioned windows.

With the shifted window partitioning approach, the attention
blocks were computed as follows:

X̂1 =W −MSA(X̂) (4)

where X̂1 denotes the output features of the shallow convolution
module.

3.2. Swin Transformer with ABC
mechanism

We again used the sample image input at the beginning with
the tensor Y as input to the Transformer. First, the tensor Y

went through the patch partition layer and the dimension became
56 × 56 × 48. Then, Y was again mapped to the specified
dimension by the linear embedding layer, and the dimension of
Y was 56 × 56 × 128. The role of the patch partition module
was to crop a patch_size ∗ patch_size block of the input original
image by conv2d. The patch_size was set to four. The specific
structure of the Swin Transformer is shown in the Figure 2. The
remaining structure of the Swin Transformer could be referred
from the original study, and as no modifications were made to the
Swin Transformer in this study, it was not repeated in this study.

In the output of the self-attention mechanism in Equation 4,
which was the output of ABC, the output tensor X had a dimension
of 56 × 56 × 16 and the output of the linear embedding layer of
the Swin Transformer also had a dimension of 56 × 56 × 128,
so we considered fusing the two tensors. We spliced the output X
of ABC with the output Y of the embedding layer in the channel
dimension to get Y1, that had a dimension of 56 × 56 × 144.
Then, we replaced Y with the spliced tensor Y1, continued with the
network layer behind the Swin Transformer, and finally got the final
output Z at the end of the Swin Transformer.

Using a Transformer as the backbone network can make
the model better to capture the global and local information of
images, extract more powerful features, and achieve better effects by
learning the relationship between different features of images. This
specific framework can more effectively learn the long-distance
dependencies in face semantic parts, which naturally helps model
the strong attribute correlations (Liu et al., 2020).
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Focusing on the ability of the Swin Transformer to mine
both long-range dependencies and parallel computation, we first
obtained several important age feature regions rich with age-
specific information using ABC and stitched them with the
original input image. This way, the Swin Transformer afterward
could learn more dependencies between important age features
and improve the learning ability of the network. We used the
stitching in the connection part of the ABC and Swin Transformer.
By stitching in the channel dimension, the stitched Y1 at this
point not only retained the structure and features of the original
input image but also had feature regions that were processed by
the shallow convolutional layer and the multiheaded attention
mechanism. The ABC-derived feature regions not only highlighted
the regions containing rich age information but also retained
the structural information of the regions to the greatest extent
by the shallow convolutional layer. The Swin Transformer could
learn the relationship between the features of the original input
image and the features obtained by ABC when processing the
stitched Y1, thus fully exploiting the advantage of the Swin
Transformer. The use of the ABC+Swin Transformer enabled
the model to better capture the global and local information of
the image, which not only preserved the local sensitivity and
translation invariance of CNN but also improved the ability of
Swin Transformer to learn the dependencies between features for
better results.

3.3. Loss

We used the label distribution learning to learn the exact age
and Kullback–Leibler divergence to learn the age distribution to
estimate the age.

Formally, let xi ∈ X denote the ith input instance with
i = 1, 2, ..., N, and ŷi,j denote the softmax distribution of the
predicted values of the network, where Nis the number of instances
and c is the number of each age.

Deep label distributions transform yi from a single class label
to a label distribution and then predict ŷi by label distribution
learning. Instances with the same class label yi share the identical
Gaussian distribution:

l
cj
xi =

1
√

2πσM
exp

(
−

(cj − yi)
2

2σ2

)
(5)

where l
cj
i is the degree to which the value of each age cj describes

images xi and cj = 0, 1, ..., C; σ is the standard deviation of
lci
b ; and the factor M lead

∑a
j=0 l

cj
xi = 1. In this study, σ was

set to 2.
KL (Kullback-Leibler) tried to generate the predicted softmax

probability distribution as similar to the ground truth distribution
as possible. For the same random variable, with two different
distributions ŷi and l

cj
i , the KL scatter of ŷi to l

cj
i was expressed as:

KL =
∑

x
ŷi × log2

ŷi

l
cj
i

(6)

The less the result of KLloss, the less the difference between
the two divisions, indicating that the less the difference between
the true age and the estimated age, the more accurate the age
estimated by the network.

The number of patches that could be discovered was
determined by the number of attention heads implemented in ABC.
However, during implementation, we found that patches tended to
overlap, especially in informative regions. This overlap of attended
patches might lead to redundant learning sources and leave other
age-specific patches undiscovered. To alleviate this overlap issue,
we used a diversity loss to learn diverse and nonoverlapping patches
by minimizing the summation of products of corresponding entries
in two attention heads, Sn1(h′, w′) and Sn2(h′, w′). The diversity loss
was formulated as:

LOverlap =

n∑
n1, n2

n1 6= n2

h∑
h′

w∑
w′

Sn1(h′, w′) · Sn2(h′, w′) (7)

Each probe in the multiheaded attention mechanism generated
a Sn(h′, w′), and Sn(h′, w′) represented the region that the probe
focused on. Sn(h′, w′) could be regarded as a weight matrix
with dimension 56 × 56 × 16. In Sn(h′, w′), the richer the
region with age-specific information, the larger the weight matrix
corresponding to that region. When the result obtained by
multiplying Sn(h′, w′) and the other Sn(h′, w′) was 0, the regions
attended by the two attention probes did not overlap. When the
overlap loss obtained after multiplying all Sn(h′, w′) with each
other was zero, no overlap occurred between the regions attended
by different probes, which prevented the redundancy of learning
caused by multiple attention probes attending to the same region
at the same time.

The overall loss to train this network was the summation of the
two loss functions:

L = LKL + λ1LOverlap (8)

where λ1 is the hyperparameter that attempts to balance the
influences of mean and residual sublosses in the combined loss
function. In this study, λ1 was set to 10.

The estimated age of the i-th test image could be calculated
based on Equation 9. Each descriptive degree in the label
distribution was multiplied by its corresponding label and then
summed to obtain the final predicted age. Assuming that the
network softmax layer output 62 probability values from age
16 years to age 77 years, pi,j corresponded to the probability
of the prediction for 16–77 years, respectively, as shown in
Equation 9:

ŷi =

77∑
j=16

ŷi,j × cj (9)

4. Experiments

In this section, we first detailed the experimental
settings and then compared our method with state-of-the-
art studies on face-based age database MORPH Album II
(Ricanek and Tesafaye, 2006), FG-NET dataset (Cootes et al.,
2001), and Adience dataset (Eidinger et al., 2014). We removed
the important design elements of ABC. In this study, Swin
Transformer used the model parameter settings of the base.
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4.1. Implementation details

The effectiveness of the methods in this study was
demonstrated using the model as the backbone network for
image classification tasks. For training and testing on the
MORPH Album II, FG-NET, and Adience datasets, the size
was set to 64, the number of iterations to 800, the weight
decay to 0.005, the momentum to 0.9, and the default learning
rate to 0.0001. The learning rate was multiplied by 0.1 when
training to the 500th iteration, and by 0.01 when training to the
650th iteration.

The facial images in MORPH Album II and FG-NET
datasets had corresponding specific age values. For the evaluation
metrics of these two datasets, we used MAE. The age labels
corresponding to the images in the Adience dataset were age
groups, such as 0–2 and 4–6. For the evaluation metrics
of the Adience dataset, we used the accuracy of a one-
class classification.

The MAE was calculated as shown in Equation 10, where yj
is the age label value, y

′

j is the age prediction value, and N is the
number of test images. The accuracy of the one-class classification
was calculated as shown in Equation 11, where TP is the correctly
predicted sample and FP is the incorrectly predicted sample.

MAE =
1
N

N∑
j=1

|yj − y
′

j| (10)

precision =
TP

TP + FP
(11)

4.2. Dataset

We conducted experiments on three commonly used face-
based age estimation benchmark datasets: MORPH Album II,
FG-NET, and Adience.

The MORPH Album II is one of the most common and largest
longitudinal face databases in the public domain for age estimation,
containing 55,134 facial images of 13,617 subjects. The age ranged
from 16 to 77 years with an average age of 33 years, and the male-to-
female ratio was 5.5:1. Each facial image in the MORPH II dataset
was associated with identity, age, race, and sex labels. We randomly
split the whole dataset into two subsets: one with 80% of the data
for training and the other with 20% for testing. In this setting, no
identity overlap occurred between the two subsets. Some images are
shown in Figure 4.

The FG-NET dataset contained 1,002 facial images from
82 noncelebrity subjects with large variations in lighting, pose,
and expression. The age ranged from 0 to 69 years (on
average, 12 images per subject). Each subject in this dataset
had more than 10 facial images taken over a long time
span. In addition, the facial images in this dataset contained
pose, illumination, and expression variations. For the FG-NET
dataset, we use the leave-one-person-out (LOPO) strategy. In
each fold, we use facial images of one subject for testing
and the remaining images for training. Since there are 82
subjects, this process consists of 82-fold and the reported
results are the average values. Some images are shown in
Figure 5.

The Adience dataset was collected from the photos taken
by users themselves from the Yahoo image-sharing website.
It contained 26,580 images of 2,284 people with age ranging
from 0 to 100 years. The labels used in this dataset were age
group labels: 0–2, 4–6, 8–13, 15–20, 25–32, 38–43, 48–53, and
60–100, categorized into eight groups. Some images with age
labels were labeled as age values, some as other age ranges,
and some others as empty. In this study, the images with age
labels labeled as age values, other age ranges, and null were
removed. The age classification experiments using the Adience
dataset were treated as eight classes. Some images are shown in
Figure 6.

FIGURE 4

Images in the MORPH Album II dataset.
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FIGURE 5

Images in the FG-NET dataset.

FIGURE 6

Images in the Adience dataset.
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TABLE 1 Comparison of age classification on the MORPH Album II
dataset.

Method MAE

OHRank (Chang et al., 2011) 8.83

MTWGP (Zhang and Yeung, 2010) 6.28

OHRank (Chang et al., 2011) 6.07

CA-SVR (Chen et al., 2013) 5.88

SVR (Guo et al., 2008) 5.77

LDL (Geng et al., 2013) 4.87

DLA (Wang et al., 2015) 4.77

ALDL (Geng et al., 2013) 4.34

KPLS (Guo and Mu, 2011) 4.18

BIF+KCCA (Guo and Mu, 2013) 3.98

VGG (Rothe et al., 2016) 3.45

ARN (Agustsson et al., 2017) 3.25

VGGNetHybrid (Xing et al., 2017) 2.96

DAG-VGG16 (Li et al., 2019) 2.81

Mean-Variance Loss (Pan et al., 2018) 2.80

MSFCL-KL (Xia et al., 2020) 2.73

DEX (IMDB-WIKI) (Rothe et al., 2018) 2.68

VDAL (Liu H. et al., 2020) 2.57

ADPF (Wang et al., 2022) 2.54

Anet+Gnet+Rnet (Deng et al., 2021) 2.47

Swin Transformer (Liu Z. et al., 2021) 2.37

ABC+Swin Transformer (Ours) 2.17

Bold values represent the best data.

4.3. Evaluations on the MORPH Album II
dataset

The MAE values for the aforementioned settings of the
MORPH Album II dataset are tabulated in Table 1. As shown in the
table, the ABC+Swin Transformer outperformed all state-of-the-
art methods. Compared with the other methods on the MORPH
Album II, our proposed method improved by 55.45% over the LDL
method, by 37.2% over the VGG method, by 15.6% over the VADL
method, and by 14.6% over the ADPF method. Compared with the
original Swin Transformer, our proposed ABC+Swin Transformer
improved by 8.4%. The experimental results showed that our
method had high accuracy on the MORPH Album II dataset and
improved the learning ability of the facial image age of the Swin
Transformer.

4.4. Evaluations on the FG-NET dataset

As the number of images in the FG-NET dataset was too
small, training the dataset directly might lead to a decrease in the
accuracy of the results and slow convergence. Therefore, we used
the pretraining weights obtained in the aforementioned FG-NET
dataset as the initial weights for training. The MAE values for
the aforementioned settings of the FG-NET dataset are tabulated

TABLE 2 Comparison of age estimates on the FG-NET dataset.

Method MAE

Mean-Variance Loss (Pan et al., 2018) 4.10

DRFs (Dagher and Barbara, 2021) 3.85

M-LSDML (Liu et al., 2017) 3.74

DLDFL (Shen et al., 2019) 3.71

DFR (Shen et al., 2019) 3.47

DAG-VGG16 (Taheri and Toygar, 2019) 3.08

DAG-GoogleNet (Panis et al., 2016) 3.05

AGEn (Tan et al., 2017) 2.96

C3AE (Zhang et al., 2019) 2.95

ADPF (Wang et al., 2022) 2.86

Swin Transformer (Liu Z. et al., 2021) 2.69

Anet+Gnet+Rnet (Deng et al., 2021) 2.59

BridgeNet (Hou et al., 2016) 2.56

ABC+Swin Transformer (Ours) 2.52

Bold values represent the best data.

in Table 2. As shown in the table, the ABC+Swin Transformer
outperformed all state-of-the-art methods. Compared with the
other methods on the FG-NET dataset, the method proposed in this
study improved by 21.8% over the DAG-VGG16 method, by 15.8%
over the ADPF method, and by 8.6% over the BridgeNet method.
Compared with the original Swin Transformer, the performance
of our proposed ABC+Swin Transformer improved by 4.8%. The
experimental results showed that our method had high accuracy
on the FG-NET dataset and improved the learning ability of facial
image age of the Swin Transformer.

4.5. Evaluations on the Adience dataset

In this study, the images of the Adience dataset without
age labels or confusing age labels in the dataset were removed.
Experimentally, when using the Adience dataset for training and
testing, the dataset was split into five groups using the 5-fold
cross-validation method: 0-, 1-, 2-, 3-, and 4-fold. Each time when

TABLE 3 Comparison of age estimates on the Adience dataset.

Models Accuracy of a one-class
classification (%)

SVM-dropout (Shen et al., 2019) 45.1± 2.6

CNN+over-sampling (Hou et al., 2016) 50.7± 5.1

R-SAAFc1 (Zhang et al., 2017b) 52.9

R-SAAFc2 (Zhang et al., 2017b) 53.5

Classification (Liu et al., 2018) 54.0± 6.3

Chained Net (Zhang et al., 2017a) 54.5

DEX w/o IMDB-WIKI Pretrain
(Rothe et al., 2018)

55.6± 6.1

ABC+Swin Transformer (Ours) 56.1

Bold values represent the best data.
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TABLE 4 Accuracy of each age class on the Adience dataset.

Fold 0–2 4–6 8–12 15–20 25–32 38–43 48–53 60–100

0 82.59 37.70 39.38 32.92 72.36 39.51 30.31 52.73

1 85.31 59.38 41.29 35.68 58.65 37.11 31.32 52.19

2 64.45 65.19 58.04 17.03 76.95 35.16 19.38 61.46

3 50.00 71.63 38.02 36.13 61.98 40.63 21.88 44.38

4 84.58 62.95 61.97 29.84 71.38 33.99 27.40 50.00

Average 73.39 59.37 47.74 30.20 68.26 37.28 26.06 52.15

TABLE 5 MAE values for the attention-based convolution (ABC) framework on the MORPH Album II dataset for different numbers of attention probes.

Number of attention probes 0 1 2 4 8 16

ABC+Swin Transformer (Ours) 2.243 2.239 2.228 2.170 2.212 2.236

TABLE 6 MAE values for the attention-based convolution (ABC) framework on the MORPH II for different values of λ1.

Value of λ1 1 5 7.5 10 12.5 15 20

ABC+Swin Transformer (Ours) 2.37 2.25 2.19 2.17 2.20 2.27 2.38

training and testing, one group of images was used for testing,
the remaining four groups were combined into a training set for
training, and the training-testing was done a total of five times.
The final test set of the age group classification results was taken
as the average of the five times results. The Adience dataset used
an evaluation method for single-age classification accuracy. The
accuracy for the aforementioned settings of the Adience dataset are
tabulated in Table 3.

The accuracy of each age class of folds on the Adience dataset
is shown as follows. Due to the random grouping in the images, the
accuracy of each fold is different. Overall, the accuracy of each age
class is essentially equal between different folds. This demonstrates
that the model is stable in training. The accuracy of each age class
for the aforementioned settings of the Adience dataset are tabulated
in Table 4.

4.6. Ablation study

We conducted ablation experiments to demonstrate the
effectiveness of each component of the ABC+Swin Transformer.
Specifically, we used the number of heads of attention probes in
the multiheaded attention mechanism as a variable to demonstrate
the necessity of each component. The MAE values for the
aforementioned settings of the MORPH Album II dataset are
tabulated in Table 5.

Table 5 shows that when the number of attention probes of
ABC was zero, the MAE obtained by the ABC+Swin Transformer
on the dataset was better than that obtained by the Swin
Transformer, which demonstrated that the convolution performed
an effective function in the network and enhanced the network’s
ability to learn the age information of facial images. The MAE
obtained using different numbers of attention probes showed
that the optimum results were obtained when the number of
probes was four. The reason for this was the presence of

four important regions with rich age-specific information in the
face. The more the number of probes, the more completely
the age-specific regions could be extracted. As the number
of probes increased, the intervals noticed by different probes
might overlap, leading to redundancy in information extraction,
which was not conducive to the information extraction of
the network.

As shown in Table 6, the network was difficult to converge
when λ1 was too small (KLloss took a dominant role) and a big
performance degradation occurred when λ1 was too large (the
overlap loss took a dominant role). Within a long reasonable range,
our proposed method performed stably. The number of heads of
the multihead attention mechanism was set to four.

5. Conclusion

In this study, we proposed the ABC framework to improve
the performance of face-based age estimation tasks and combined
ABC with the Swin Transformer to obtain better prediction
performance. Our framework combined the shallow convolution
and the multiheaded attention mechanism using the shifted
window approach. The shallow convolution used several layers of a
convolutional network with few convolutional kernels to condense
the information, enhance the features of the image, and process the
input to the same size for stitching with the information of the later
attentional network computations and the Swin Transformer. The
multiheaded attention mechanism allowed the network to learn
and find regions that contained rich age-specific information, and
display these regions. Finally, the age-rich regions obtained by the
ABC framework were spliced with the image that was initially
processed by the Swin Transformer along the channel dimension,
and the stitched image tensor was carried out to the subsequent
network of the Swin Transformer together to compute the final
age prediction.
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The significant age feature regions obtained by ABC were
stitched with the original input images and then passed through
the Swin Transformer for face-based age estimation, which made
excellent use of the ability of the Swin Transformer to mine long-
distance dependencies and parallel computation to learn more
dependencies between important age features. The addition of
the ABC framework well compensated the image local sensitivity
and translation invariance of the Swin Transformer. The ABC
framework spliced the important regions that contained rich
age-specific information into the original image, which could
fully mobilize the long-dependency of the Swin Transformer,
that is, extracting stronger features by learning the dependency
relationship between different features. As a result, the entire
network could not only extract the important face-based age
information regions but also further improve the prediction
accuracy using the ability of the Swin Transformer to learn the
interrelationship between features.

Based on the evaluation of several benchmark datasets,
ABC significantly improved the prediction accuracy compared
with several state-of-the-art methods. Future studies should
investigate the design of custom estimators to further improve
the performance, for example, by further augmenting the
convolutional network.
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