
TYPE Original Research

PUBLISHED 22 March 2023

DOI 10.3389/fnins.2023.1138091

OPEN ACCESS

EDITED BY

Wanqing Wu,

Sun Yat-sen University, China

REVIEWED BY

Pengcheng Liu,

University of York, United Kingdom

Arun Kumar Sangaiah,

VIT University, India

*CORRESPONDENCE

Lejun Zhang

zhanglejun@yzu.edu.cn

†These authors share first authorship

SPECIALTY SECTION

This article was submitted to

Autonomic Neuroscience,

a section of the journal

Frontiers in Neuroscience

RECEIVED 05 January 2023

ACCEPTED 20 February 2023

PUBLISHED 22 March 2023

CITATION

Li Z, Xing Y, Pi Y, Jiang M and Zhang L (2023) A

novel physiological feature selection method

for emotional stress assessment based on

emotional state transition.

Front. Neurosci. 17:1138091.

doi: 10.3389/fnins.2023.1138091

COPYRIGHT

© 2023 Li, Xing, Pi, Jiang and Zhang. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A novel physiological feature
selection method for emotional
stress assessment based on
emotional state transition

Zhen Li1,2†, Yun Xing3†, Yao Pi3, Mingzhe Jiang3 and

Lejun Zhang4,5,6*

1The School of Electronic and Information Engineering, Tongji University, Shanghai, China, 2Institute of

Automation, Chinese Academy of Sciences, Beijing, China, 3School of Biomedical Engineering, Sun

Yat-sen University, Guangzhou, China, 4Cyberspace Institute Advanced Technology, Guangzhou

University, Guangzhou, China, 5Research and Development Center for E-Learning, Ministry of Education,

Beijing, China, 6College of Information Engineering, Yangzhou University, Yangzhou, China

The connection between emotional states and physical health has attracted

widespread attention. The emotional stress assessment can help healthcare

professionals figure out the patient’s engagement toward the diagnostic plan and

optimize the rehabilitation program as feedback. It is of great significance to study

the changes of physiological features in the process of emotional change and

find out subset of one or several physiological features that can best represent

the changes of psychological state in a statistical sense. Previous studies had

used the di�erences in physiological features between discrete emotional states

to select feature subsets. However, the emotional state of the human body

is continuously changing. The conventional feature selection methods ignored

the dynamic process of an individual’s emotional stress in real life. Therefore,

a dedicated experimental was conducted while three peripheral physiological

signals, i.e., ElectroCardioGram (ECG), Galvanic Skin Resistance (GSR), and Blood

Volume Pulse (BVP), were continuously acquired. This paper reported a novel

feature selection method based on emotional state transition, the experimental

results show that the number of physiological features selected by the proposed

method in this paper is 13, including 5 features of ECG, 4 features of PPG and 4

features of GSR, respectively, which are superior to PCAmethod and conventional

feature selectionmethod based on discrete emotional states in terms of dimension

reduction. The classification results show that the accuracy of the proposed

method in emotion recognition based on ECG and PPG is higher than the other

two methods. These results suggest that the proposed method can serve as

a viable alternative to conventional feature selection methods, and emotional

state transition deserves more attention to promote the development of stress

assessment.

KEYWORDS

emotional stress, feature selection, electrocardiogram, galvanic skin resistance, blood

volume pulse, emotional state transition

1. Introduction

Studies in the past decades have shown that emotions affect our physical and mental

health (Cannon, 1939; Selye, 1975). It’s of great significance to help healthcare professionals

obtain the real experience of end-users on remote healthcare services, for the healthcare

plan can be optimized according to the real feedback of patients. However, emotion
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recognition models based on facial expression are vulnerable to

intentional deception. Instead, physiological signal features can

truly reflect the characteristics of human emotional states, because

they are not controlled by subjective consciousness, and are mainly

related to the autonomic nervous system (ANS) and endocrine

system (Ekman et al., 1983; Kreibig, 2010; Levenson, 2014). The

transition of emotional state is reflected in people’s physiological

activities, such as stress will cause the increase of heart rate,

respiratory rate (Ma et al., 2009), bronchiectasis, pupil dilation, skin

sweating, and other symptoms (Pagani et al., 1991; Arza et al., 2019;

Greco et al., 2021). Considering the above factors and the needs

(weak interference and easy acquisition) of wearable devices, ECG

signal, GSR signal, and BVP signal are selected as the collected

physiological signals in this study.

For the research status of psychological stress recognition in

recent years, Balamurali et al. proposed a model using respiratory

rate, ECG, and GSR for automatic and intelligent anxiety detection,

they compared the basic machine learning algorithm and the

ensemble-based classification algorithm, and the results showed

that the binary classification accuracies of the extension number,

random forest and bagged decision tree were the highest (80%)

(Balamurali et al., 2022). Pourmohammadi and Maleki recruited

34 healthy participants for continuous personalized stress detection

utilizing a combination of ECG and EMG signals as input. The

method they proposed is a fuzzy model that is highly correlated

with perceived pressure. Themodel includes fuzzy inference system

and fuzzy clustering algorithms. The result showed that there

was a strong correlation between pressure and perceived pressure,

with a specific correlation coefficient of 0.959 (Pourmohammadi

and Maleki, 2021). Azam et al. built an ensemble classifier with

12 selected PPG features to detect social stress, and achieved an

accuracy of 92.8%, and also showed that the median frequency

and average frequency are the most effective features for stress

detection (Azam et al., 2021). Zheng et al. used stimuli (video

clips) to induce psychological stress, collected EMG signals from

25 healthy subjects, and extracted Simple Square Integral (SSI),

Integral EMG (IEMG), waveform length from EMG signals (WL),

and absolute standard deviation (DASDV) 4 time-domain features,

using KNN and FKNN two non-linear classification algorithms

to classify psychological stress and non-psychological stress, the

maximum recognition accuracy is 70.85%, where WL is the feature

with the biggest significant difference (Zheng et al., 2013). Shon

et al. conducted research on the detection of psychological stress

state-based on EEG signals, used the genetic algorithm to effectively

select the features, and compared the proposed method with the

feature selection method of principal component analysis. The

research results showed that the accuracy of the proposed method

is about 6% higher than the accuracy of principal component

analysis (Shon et al., 2018). In order to achieve the purpose of

continuous monitoring of different emotions, Naji et al. extracted

features with sliding window technology (customized window and

step size) (Han et al., 2017). Nigam et al. (2021) and Zhang et al.

(2021) achieved good emotion recognition performance using deep

learning algorithms. Han et al. simulated the stress conditions in

an office work environment. This simulated stress environment

consists of mental stress and psychosocial stress. Their study used

ECG and RSP signals as input, and their proposed model combined

the random forest and the support vector machine. The accuracy of

their model in the three-classification task is 84%, and the accuracy

in the binary classification task is 94% (Han et al., 2017).

At present, more and more researchers have begun to use deep

learning models to recognition emotion and have achieved better

results on public data sets. However, advantages of deep learning

algorithms rely on big data, and the deep learning algorithms

are lack of interpretability. Finding the sensitive physiological

feature subset of the corresponding state can not only improve

the accuracy of the recognition model, but also ensure the

stability and interpretability of the model (Tang et al., 2018, 2019).

Therefore, this paper conducted research on psychological stress

recognition based on conventional feature engineering methods.

On the other hand, the existing studies use the difference of

physiological features between discrete emotional states to select

feature subsets. However, the emotional state of the human body is

dynamic and continuously changing,and the time interval between

different emotional states may lead to changes in physiological

signals and ultimately affect the selection of sensitive features. The

conventional feature select method ignored the change process of

individual psychological stress in real life. Psychological research

shows that under the continuous action of strong psychological

stress, the receptivity of the receptor decreases. Therefore, this

study put forward the hypothesis that the changes of physiological

features associated with psychological stress are more significant

before and after the emotion transition. Based on the above

assumptions, this study focused on the changes of physiological

features of emotional state transition, which is closer to the

real response in the real life, so as to achieve more accurate

psychological stress detection.

Aiming at the above problems existing in the current

emotional-aware systems, this paper proposed a novel feature

selection method based on emotional state transition. The specific

research contents of this paper include:

The contributions of this work:

• A dedicated experimental protocol was designed and

implemented where specific affective valence levels are

elicited by images selected from the IAPS, while three

peripheral physiological signals, i.e., ElectroCardioGram

(ECG), Galvanic Skin Resistance (GSR), and Blood Volume

Pulse (BVP) are acquired from 85 subjects simultaneously.

• A feature selectionmethod based on emotional state transition

were proposed and compared with conventional methods.

2. Methods and materials

2.1. Experimental protocol and data
collection

2.1.1. Stimuli
One hundred and twenty images were manually selected from

the IAPS (Lang et al., 1997) and divided into three groups according

to valence levels. The IAPS is a set of standardized emotional

stimulation picture systems developed by the National Institute

of Mental Health (NIMH) to provide stimulating materials for

emotion research. IAPS currently has more than 900 images, most

of the photos are collected from newspapers, magazines, and other
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media, with clear content and resolution, including various human

emotions or various objects. These photos have advantages of

good test-retest reliability and internal consistency, and pictures

of IAPS have been shown to induce positive, negative, or neutral

affective states. The pictures of IAPS are attached with the values

of arousal, valence, and dominance assessed by the researchers

according to the SAM scale (9-point scale). In the emotion model,

the ratings of valence dimension are used to differentiate positive

(pleasant) from negative (unpleasant) emotional states, and the

ratings of arousal dimension are used to differentiate activated

(excited) from deactivated (relaxed) emotional states. In this study,

inducing images are selected based on valence ratings provided by

IAPS. 40 pictures with low valence level (mean: 1.873, std: 0.403) are

selected as stimuli of negative emotion, and 40 pictures with middle

valence level (mean: 5.086, std: 0.393) are selected as stimuli of

neutral emotion, 40 pictures with high valence level (mean: 7.956,

std: 0.466) are selected as stimuli of positive emotion. The specific

valence levels and arousal levels distribution of 120 stimulating

pictures are shown in Figure 1.

2.1.2. Participants
Eighty-five healthy university students (39 males and 46

females) with an average age of 23.1 ±2.4 were recruited in

this study. All volunteers had no history of heart disorders,

musculoskeletal disorders, chronic diseases, or mental diseases, and

their Body Mass Index (BMI) was lower than 28. All participants

were told not to exercise vigorously, smoke, drink coffee or alcohol

within 24 h before the start of the experiment, and they were asked

to sign informed consent before experiment.

2.1.3. Experimental setup
Figure 2 illustrates the protocol and experiment procedure. The

experiment was conducted in a quiet environment with controlled

lighting and temperature (24±2◦C). Before the beginning of the

experiment, all subjects were informed of the next experimental

process and that they have rights to withdraw from the experiment

unconditionally at any time., and all subjects were asked to lean

back on the lounge chair and keep a comfortable position during

the whole experiment. Then, the researchers placed corresponding

sensors at the wrist, right index finger, right middle finger, and right

ring finger of the subjects to collect electrocardiogram (ECG), blood

volume pulse (BVP), and galvanic skin resistance (GSR) signals,

respectively (see Figure 3). The whole experimental process mainly

includes three emotion-inducing parts. In the first part, play 3-min

light music (Pachelbel’s Canon in D) to make the subject relax, and

then 40 neutral pictures selected from the IAPS were presented on

the computer screen to stimuli neutral emotional responses. Each

picture was presented for 6 s, and the total time of evoking the

emotional process was 4 min. In the second part, play 3-min of

light music to make the subjects relax, and then play 40 negative

pictures selected from the IAPS on the computer screen to stimuli

negative emotional responses. Each picture is presented for 6 s.

In the third part, play 3-min of light music to make the subject

relax again, then play 40 positive pictures selected from IAPS to

stimuli positive emotional responses. ECG, BVP, and RSR signals

were collected throughout the experiment for each participant. The

sampling rate was 400 Hz for ECG, and the sampling rates of BVP

and GSR were both 201 Hz.

2.2. Analysis of psychophysiological signals

The signals processing flow of this paper is shown in Figure 4.

A preprocessing step is employed to remove interference and

noise of three physiological signals. After preprocessing, 39 features

were extracted. Then, the conventional feature selection method,

PCA method, and the feature selection method based on emotion

state transition were used to select significant features from

the extracted physiological features, respectively. The selected

features were input to train the K-Nearest Neighbors (KNN)

classifier, the Decision Tree (DT) classifier, the Random Forest (RF)

classifier, and the Support VectorMachine (SVM) classifier, and the

performance of these three feature selection methods is compared

and analyzed.

2.2.1. Preprocessing
The Shimmer3 GSR+ Unit was used to collect PPG and GSR

signals, while the device of Tempest Couriers was used to collect

ECG signals. The data file collected by the Shimmer sensor provides

the timestamp information of each data point. Therefore, in the

experiment, the start time was recorded and data synchronization

between different devices was achieved based on the timestamp

and the start time. In the stage of signal preprocessing. Firstly, a

Butterworth band-pass filter with cut-off frequencies of 1–40 Hz

was used to remove noise and baseline wander of raw ECG signal

and raw BVP signal. Next a notch filter was utilized to reduce

50 Hz power frequency interference. Secondly, the GSR signal

is downsampled to 4 Hz, and then the signal is decomposed by

cvxEDA., and the size of the sliding window is 60 s and the step

size is 1 s. Thirdly, we calculated the duration between the two R

waves (R–R interval) in ECG and the peak of the BVP to obtain

useful information.

2.2.2. Feature extraction
In this section, a total of 39 physiological features (including 15

ECG features, 12 BVP features, and 12 GSR features) were extracted

to make a feature selection performance comparison among the

proposed method and two conventional methods.

For time-domain analysis of ECG, the mean value of RR

intervals (MEANRRECG) was employed as the first index, and

the second index was the standard deviation of the RR intervals

(SDNNECG) (Shi et al., 2017). The RMSSDECG represents the square

root of the mean squared differences of successive RR intervals. The

PNN50ECG was defined as the proportion of differences between

successive RR intervals greater than 50 ms whereas NN50ECG
was defined as the mean of RR intervals number of pairs of

successive NN (R-R) intervals that differ by more than 50 ms.,

and the HR was defined as the number of contractions of the

heart per minute. For frequency-domain analysis of ECG, the

heart rate variability (HRV) spectrum was decomposed into three

separate frequency bands: a very low-frequency band (VLFECG)

with spectral components below 0.04 Hz, a low-frequency band
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FIGURE 1

The valence levels and arousal levels of stimulus.

FIGURE 2

Data collection protocol.

FIGURE 3

Participant wears three bio-sensors to collect physiological signals.
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FIGURE 4

Processing flow of physiological signals.

(LFECG) with spectral components from 0.04 to 0.15 Hz and a

high-frequency band (HFECG) comprising frequencies from 0.15

to 0.4 Hz, and LF/HFECG means the ratio of LFECG power to

HFECG power. For non-linear indices of ECG, multiscale entropy

(MSEECG) presents the feature of the complexity of fluctuations

over a range of time scales and is employed as an extension of

standard sample entropy measures, hence the multiscale entropy

with the scale of 1∼ 5 were calculated.

Photoplethysmography (PPG) is an optical non-invasive

method measuring variations of skin hue associated with

concurrent changes in blood volume in subcutaneous blood vessels

during the cardiac cycle (Korhonen and Yli-Hankala, 2009). From

the BVP signals the pulse rate (PRBVP), the standard deviation

of normal-to-normal peak (SDNNBVP), root mean square of

normal-to-normal peak (RMSSDBVP), mean of inter-beat-intervals

(MEANRRBVP), power frequency band of below 0.15 Hz (LFBVP),

the power frequency band of 0.15–0.40 Hz (HFBVP), the time

interval between two consecutive pulse onsets (WIDTHBVP),

the amplitude difference between the pulse peak and the pulse

onset (H_WBVP) were extracted. Peripheral vasoconstriction can

also monitor stress, and the pulse wave amplitude (HIGHBVP)

decreases when stress occurs (Giannakakis et al., 2019). Therefore,

the maximum value of pulse wave amplitude (MAXPABVP), the

standard deviation of pulse wave amplitude (STDPABVP), andmean

of pulse wave amplitude (MEANPABVP) were also calculated.

GSR is a physiological measurement of electricity flow through

the skin. Through the monitoring of skin conductivity, the

situation of skin sweating can be indirectly acquired (Montagu

and Coles, 1966). For skin conductance level (SCL) of GSR, the

average value of the tonic component (MEANTGSR), the standard

deviation of the tonic component (STDTGSR), and area under

the curve of the tonic component (AUCTGSR) were extracted

as features of GSR. For skin conductance response (SCR) of

GSR, the standard deviation of the phasic component (STDRGSR),

area under the curve of the phasic component (AUCPGSR),

number of peaks of the phasic component (NUMPGSR), the

maximum value of peak amplitude of the phasic component

(MAXPAGSR), mean of the peak amplitude of the phasic component

(MEANPAGSR), the standard deviation of the peak amplitude

of the phasic component (STDPAGSR), the average value of

the rise time (MEANPRGSR), the standard deviation of the rise

time (STDPRGSR), and power spectral density of GSR (PSDGSR)

were extracted.

2.3. Feature selection methods

The main task of feature selection is to select the important

features from the original feature set, reduce the number

of features, and preserve the classification information as

much as possible. The feature selection method will directly

influence the performance of classification models. The existing

feature selection methods still can not select the optimal

feature subset of emotion recognition. Therefore, a new feature

selection method was proposed. In this section, two generally

applied feature selection methods and the proposed method

are introduced.
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FIGURE 5

Flowchart of the proposed feature selection method.

2.3.1. Feature selection method based on discrete
emotional states

For the method based on discrete emotional states, the first

step is to select the features that offer contributing information for

the classification task applying the Kruskal-Wallis test for paired

samples. Next, if the Pearson correlation coefficient between a

newly selected feature and any feature in the initial set is higher

than 0.9, the new feature will be discarded (Montesinos et al., 2019).

Then, the initially selected features will be input into the classifier,

and the final feature selection will be carried out according to the

classification performance of different feature combinations. To be

noted, the existing methods mainly consider whether the features

of discrete emotional states are significantly different, ignoring that

emotion is a state process that changes with time, which may lead

to the loss of important features.

2.3.2. Feature selection method based on PCA
PCA was first proposed by Pearson in 1994 and turned out

to be one of the classical methods of mathematical-statistical

analysis, feature selection, and dimension reduction. Principal

component analysis (PCA) projects multivariate data into a new

low dimensional coordinate system through orthogonal linear

transformation such that the maximum variance in the data

corresponds to the first coordinate system and the minimum

variance in the data corresponds to the last coordinate system

(Abdi andWilliams, 2010). PCA is used to eliminate the correlation

between variables by assuming the correlation is linear, hence PCA

might don’t work for non-linear correlation. PCA assumes that the

variables follow Gaussian distribution. When the variables do not

follow a normal distribution (such as uniform distribution), scaling

down and rotation will occur.
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TABLE 1 Selection results of features.

Signal Feature Method 1 (M1), mean of feature value Method 3 (M3), mean of feature value

Neutral Negative Positive P <0.05 Neutral
∼negative

Negative
∼neutral

Neutral
∼positive

P <0.05

ECG SDNNECG 0.047 0.046 0.044 * 0.046/0.052 0.044/0.053 0.045/0.042 *

RMSSDECG 0.044 0.044 0.039 * 0.045/0.045 0.042/0.043 0.038/0.036 —

MEANRRECG 0.787 0.786 0.777 *(—) 0.790/0.782 0.783/0.776 0.764/0.776 —

NN50ECG 11.665 12.956 10.539 * 11.433/14.265 11.747/11.578 10.798/10.699 *

PNN50ECG 0.164 0.183 0.140 *(—) 0.163/0.194 0.164/0.160 0.136/0.140 —

MSE1ECG 1.806 1.785 1.748 — 1.762/1.737 1.778/1.643 1.648/1.725 —

MSE2ECG 1.890 1.866 1.885 — 1.864/1.803 1.937/1.762 1.758/1.852 —

MSE3ECG 1.714 1.668 1.753 * 1.694/1.725 1.633/1.587 1.686/1.735 —

MSE4ECG 0.674 0.634 0.738 * 0.706/0.512 0.691/0.719 0.705/0.758 —

MSE5ECG 0.048 0.075 0.046 — 0.047/0.077 0.103/0.054 0.045/0.060 —

HRECG 80.756 81.060 81.922 *(—) 79.041/85.364 80.155/81.128 83.646/83.109 *

VLFECG 0.793 0.788 0.781 * 0.800/0.778 0.783/0.785 0.765/0.774 —

LFECG 2.295 2.285 2.278 *(—) 2.303/2.271 2.281/2.282 2.254/2.266 *

HFECG 2.271 2.239 2.232 *(—) 2.285/2.209 2.233/2.233 2.176/0.918 *(—)

LF/HFECG 1.028 0.997 1.067 * 1.029/1.058 1.008/0.986 0.918/0.977 *

BVP SDNNBVP 0.052 0.058 0.054 * 0.048/0.0586 0.056/0.063 0.059/0.056 *

RMSSDBVP 0.052 0.060 0.053 * 0.049/0.061 0.057/0.057 0.056/0.054 *

MEANRRBVP 0.780 0.782 0.779 *(—) 0.778/0.776 0.783/0.776 0.768/0.776 —

LFBVP −0.097 −0.091 −0.089 * −0.094/−0.094 −0.092/−0.090 −0.091/−0.090 —

HFBVP −2.735 −2.758 −2.728 — −2.741/−2.754 −2.749/−2.741 −2.722/−2.740 —

WIDTHBVP 0.007 0.008 0.007 — 0.007/0.009 0.007/0.007 0.008/0.008 —

HIGHBVP 0.132 0.134 0.147 * 0.138/0.151 0.137/0.163 0.165/0.150 —

H_WBVP 11.643 9.591 10.470 * 12.313/8.270 9.979/9.901 10.151/9.832 *

MAXPABVP 0.881 0.816 0.885 * 0.920/0.769 0.849/0.835 0.851/0.848 *

STDPABVP 0.094 0.100 0.107 *(—) 0.096/0.115 0.102/0.117 0.124/0.111 —

MEANPABVP 0.722 0.623 0.705 *(—) 0.761/0.544 0.648/0.624 0.647/0.653 *(—)

MEANRRBVP 79.054 79.214 79.361 *(—) 79.163/79.786 79.035/79.322 80.210/79.408 —

GSR MEANTGSR −0.135 0.093 −0.406 * −0.724/−0.021 0.082/0.319 −0.157/0.087 *

STDTGSR 0.200 0.227 0.196 — 0.148/0.346 0.216/0.322 0.218/0.255 —

AUCTGSR −55.086 1.026 −31.418 * −39.036/42.155 −0.383/−17.245 −20.940/−55.341 —

STDRGSR 0.108 0.272 0.145 * 0.092/0.368 0.243/0.394 0.243/0.220 *

AUCRGSR −3.475 −6.607 3.511 * 22.190/−35.097 −9.232/−26.143 7.429/−13.874 —

NUMPGSR 24.394 39.248 24.170 * 21.771/42.145 39.229/37.855 32.181/29.024 —

MAXPAGSR 2.192 5.479 2.775 * 1.846/7.109 4.468/6.450 4.449/3.657 *

MEANPAGSR 0.372 0.907 0.424 *(—) 0.299/1.184 0.768/0.967 0.608/0.526 *(—)

STDPAGSR 0.472 1.163 0.586 *(—) 0.377/1.479 0.981/1.363 0.867/0.771 *(—)

MEANPRGSR 1.002 0.685 0.885 * 0.905/0.651 0.607/0.679 0.711/0.788 —

STDPRGSR 0.829 0.607 0.719 * 0.799/0.569 0.579/0.584 0.633/0.724 *

PSDGSR 3.777 13.366 5.116 * 5.491/12.204 9.096/8.068 2.999/3.660 —
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2.3.3. Feature selection method based on
emotional state transition

Figure 5 shows the flowchart of the proposed feature selection

method. For each extracted physiological signal feature. If the

feature value follows the normal distribution, a parametric test

(paired sample t-test) will be conducted. If not, a non-parametric

test (Wilcoxon signedrank test) will be conducted. Afterward,

the features with significant differences before and after each

emotional state transition will be selected. If the Pearson correlation

coefficient of the newly selected feature and any feature in the subset

is greater than 0.9, this feature will be discarded, the whole process

will end until all the extracted features are screened. Finally, the

optimal feature subset is built.

3. Experiments and results

In this section, the emotion models based on machine learning

algorithms are built and evaluated utilizing MathWorks’s Statistics

and Machine Learning Toolbox in Matlab R2018a., and SPSS

software (Ver. 20, IBM, USA) was used to perform all statistical

analyses in this paper.

3.1. Feature selection results

As mentioned above, two classical feature selection methods

and the proposed method were applied to analyze all the extracted

features for building the optimal feature subset. The feature

selection results of method 1 and method 3 are listed in Table 1,

where the sign “*” in Table 1 represents the P-value is less than 0.05.

For method 1, the Kruskal-Wallis test was employed to

analyze the significant difference between different emotional states

(Neutral emotion vs. Negative emotion, Negative emotion vs.

Positive emotion, and Positive emotion VS Neutral emotion),

and one feature will be selected if the p < 0.05 in the

above three cases. Twelve ECG features, ten BVP features,

and eleven GSR features were initially selected by M1. After

Pearson correlation analysis, 11 features were discarded. Then,

7 ECG features were selected from 15 extracted features, are

SDNNECG, RMSSDECG, NN50ECG, MSE3ECG, MSE4ECG, VLFECG,

and LF/HFECG, respectively. Six BVP features were selected from

12 extracted features, are SDNNBVP, RMSSDBVP, HIGHBVP, LFBVP,

H_WBVP, and MAXPABVP, respectively. Nine GSR features were

selected from 12 extracted features, they areMEANTGSR,AUCTGSR,

STDPAGSR, AUCPGSR, NUMPGSR, MAXPAGSR, MEANPRGSR,

STDPRGSR, and PSDGSR, respectively. Hence, a total of 22 features

were selected by applying method 1, and the dimension of selected

features is 22 (categories of feature)× 181 (number of each feature)

× 3 (emotion states)× 85 (subjects).

For method 2, PCA obtains the eigenvectors and eigenvalues

by decentralizing the original features and solving the covariance

matrix. In this study, the dimension of the original features for

each subject and each emotional state is 39 × 181, whereas the

feature dimension after dimension reduction is 17 × 181, and

the corresponding dimension of the ECG feature is 6 × 181, the

dimension of the BVP feature is 5× 181, the dimension of the GSR

feature is 6× 181.

For method 3, the parametric test (paired sample t-test)

or the non-parametric test (Wilcoxon signed-rank test) was

applied to examine the significant difference before and after

emotional state transition (Neutral emotion to Negative emotion,

Negative emotion to Neutral emotion, and Neutral emotion to

Positive emotion), and one feature will be selected if the p

< 0.05 in the above three cases. Then, 6 ECG features were

selected, are SDNNECG, NN50ECG, HRECG, LFECG, HFECG, and

LF/HFECG, respectively. Five BVP features were selected, they are

SDNNBVP, RMSSDBVP, H_WBVP, MAXPABVP, and MEANPABVP,

respectively. Six GSR features were selected, they are MEANTGSR,

STDRGSR, MAXPAGSR, MEANPAGSR, STDPAGSR, and STDPRGSR,

respectively. Whereas, HFECG, MEANPABVP, STDPRGSR, and

STDPAGSR were discarded because they are strongly correlated to

features in the subset [“*(—)” in Table 1 means the P < 0.05 and

the Pearson’s correlation coefficient> 0.9]. Hence, 13 features were

finally selected by applyingmethod 3, and the dimension of selected

features is 13 (categories of feature)× 181 (number of each feature)

× 3 (emotion states)× 85 (subjects).

3.2. Performance of selected features in
emotion recognition

The experimental results of the performance of three feature

selection methods in emotion recognition (negative emotion /

neutral emotion / positive emotion) are shown in Figure 6. It can

be concluded that the feature selection method based on PCA (M2)

achieved the worst performance on the emotion recognition task.

While the Recall, Precision, and F1-Score of the proposed feature

selection method (M3) are highest in ECG and BVP, are 0.885,

0.867, 0.876 and 0.910, 0.897, 0.903, respectively, indicating that

heart rate variability and pulse rate variability indicators are more

obvious for emotion recognition.

However, the GSR signal in Figure 6 has a better classification

performance based on method 1 (M1). The evaluation indicators

of the proposed method (M3) are 0.943 (Recall), 0.935 (Precision),

and 0.938 (F1-score), respectively. From these results above, it can

be concluded that the proposed method (M3) is better in ECG and

PPG, probably because most of the features extracted by ECG and

PPG are consistent with HRV and PRV. To be noted, HRV and

PRV change obviously when the individual’s emotion fluctuates,

especially when experiencing psychological stress.

3.3. Performance of selected features in
psychological stress detection

In this section, the negative emotion is considered as

psychological stress, while both the neutral emotion and the

positive emotion are considered as the non-stress state. Four

classifiers (KNN, DT, RF, and SVM) are adopted to classify

psychological stress state and non-stress state, the experimental

results of performance of three feature selection methods on

psychological stress detection are shown in Figure 7. It can be seen

that the feature selection method based on PCA (M2) achieved

the worst performance on the psychological stress detection task.
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FIGURE 6

Performance of di�erent feature selection methods in emotion recognition.

FIGURE 7

Performance of di�erent feature selection methods in psychological stress detection.

The Recall, Precision, and F1-Score of the proposed method (M3)

in ECG and PPG signals are the highest, which are 0.854, 0.889,

0.871 and 0.896, 0.913, 0.901, respectively. However, method 1

(M1) achieved the best performance on the GSR signal, while

the Recall, Precision, and F1-Score are 0.954, 0.963, and 0.958,

respectively. It can also be concluded that the feature selection

method based on emotional state transition achieved the best

performance on psychological stress detection in ECG signals and

pulse wave signals.

4. Discussion

This study aimed to optimize psychological stress detection

systems based on ECG, BVP, and GSR signals. After collecting

three different physiological signals from 85 healthy subjects while

watching three groups of images with different valence levels, an

efficient feature selection method for emotion recognition was

proposed based on emotional state transition. Table 1 showed the

results of feature selection using M1 and M3. The 17 features

preliminarily selected in method 3 are subsets of the 33 features

preliminarily selected in method 1. After Pearson correlation

analysis, method 1 discarded 11 features, and method 3 discarded

4 features. It can be concluded that the M3 can select the most

important features efficiently.

Four widely applied classification algorithms (KNN, DT,

RF, and SVM) were used to analyze the performance of

two conventional feature selection methods and the proposed

method. In three emotions classification models based on 10-fold

cross-validation, the proposed feature selectionmethod can achieve

better performance compared to conventional methods with fewer

ECG features or BVP features.

It is of great significance to build a psychological stress

detection system that can be applied to real life (Gjoreski et al.,

2016; Castaldo et al., 2019). Hence, we built binary classification

models (stress, non-stress). For psychological stress detection, the

proposed feature selection method can achieve better performance

compared to conventional methods with fewer ECG features or

BVP features. The feature selection method proposed in this paper

has great application prospects in the field of psychological stress

detection because this method can allow the model to achieve good

performance with fewer features.

5. Conclusion

In this paper, a novel feature selection method for stress

detection was proposed. An emotion-evoking experiment was

conducted to induce emotions with three valence levels from

participants. In the emotion-evoking experiment, participants were

presented with three groups of images with different valence levels.
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TABLE 2 Classification performance of di�erent physiological signal

combinations.

Di�erent combinations Emotion
recognition

Stress detection

ECG 0.887 0.913

BVP 0.926 0.951

GSR 0.960 0.970

ECG&BVP 0.962 0.984

ECG&GSR 0.974 0.989

BVP&GSR 0.977 0.990

ECG&BVP&GSR 0.988 0.991

ECG, BVP, and GSR signals were collected to train the four

classifiers (KNN, DT, RF, and SVM) in different classification tasks.

For feature selection, 13 features were selected by the proposed

method, 17 features were selected by the PCA (M2), and 22

features were selected by M1. The results in Table 2 showed that

the proposed method can achieve the highest accuracy when

three physiological signals are used for classification, the proposed

method can achieve 0.988 accuracy in three emotions recognition

and can achieve 0.991 accuracy in stress detection. The results of

this study confirmed the effectiveness of the proposed method. Our

study also indicated that the analysis of physiological signals during

emotional change is helpful to find sensitive features. In general,

the novel feature selection method proposed by this paper will

reduce the obstacles for the construction of an efficient healthcare

emotion recognition model. In the future research work, we will

deploy the proposed emotion recognition model to the hardware

platform, and further improve our model according to the actual

needs of healthcare.
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