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Objectives: Leveraging a large population-level morphologic, microstructural,

and functional neuroimaging dataset, we aimed to elucidate the underlying

neurobiology of attention-deficit hyperactivity disorder (ADHD) in children. In

addition, we evaluated the applicability of machine learning classifiers to predict

ADHD diagnosis based on imaging and clinical information.

Methods: From the Adolescents Behavior Cognitive Development (ABCD)

database, we included 1,798 children with ADHD diagnosis and 6,007 without

ADHD. In multivariate logistic regression adjusted for age and sex, we examined

the association of ADHD with different neuroimaging metrics. The neuroimaging

metrics included fractional anisotropy (FA), neurite density (ND), mean-(MD),

radial-(RD), and axial diffusivity (AD) of white matter (WM) tracts, cortical region

thickness and surface areas from T1-MPRAGE series, and functional network

connectivity correlations from resting-state fMRI.

Results: Children with ADHD showed markers of pervasive reduced

microstructural integrity in white matter (WM) with diminished neural density and

fiber-tracks volumes – most notable in the frontal and parietal lobes. In addition,

ADHD diagnosis was associated with reduced cortical volume and surface

area, especially in the temporal and frontal regions. In functional MRI studies,

ADHD children had reduced connectivity among default-mode network and the

central and dorsal attention networks, which are implicated in concentration and

attention function. The best performing combination of feature selection and

machine learning classifier could achieve a receiver operating characteristics

area under curve of 0.613 (95% confidence interval = 0.580–0.645) to predict

ADHD diagnosis in independent validation, using a combination of multimodal

imaging metrics and clinical variables.

Conclusion: Our study highlights the neurobiological implication of frontal lobe

cortex and associate WM tracts in pathogenesis of childhood ADHD. We also

demonstrated possible potentials and limitations of machine learning models to
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assist with ADHD diagnosis in a general population cohort based on multimodal

neuroimaging metrics.

KEYWORDS

attention-deficient hyperactivity disorder, brain connectivity, white matter
microstructure, cortex morphology, machine learning

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is estimated
to affect 6.1% of children in the U.S. (Danielson et al., 2018).
Neuroimaging studies can help elucidate the underlying
neurobiology of ADHD, suggesting that abnormal brain
connectivity plays a central role in pathogenesis of ADHD (Aoki
et al., 2018). Children with ADHD also have shown abnormalities
in axonal density and volume of multiple white matter (WM)
tracts (Wu et al., 2020). In addition, subtle differences in cortical
surface area, involvement of the frontal cortex and reduced cortical
volume (Kumar et al., 2017) as well as alterations in functional
connectivity in the left insula and left inferior frontal gyrus (Chiang
et al., 2020) have been reported in children with ADHD. The
variable range of reported neuroimaging correlates of ADHD may
be due to small sample size and differences in diagnostic criteria
of prior studies. Large studies – such as the ABCD (Adolescent
Brain and Cognitive Development) – can provide powerful tools to
determine neuroimaging correlates of ADHD among the general
population children.

In this study, we aimed to determine the imaging metrics
of brain microstructure, morphology and functional connectivity
associated with ADHD diagnosis in a large cross-sectional cohort
of preadolescent American children. While prior large-scale studies
focused on one set of neuroimaging characteristics (e.g., cortical
thickness) in relation to ADHD diagnosis (Hoogman et al., 2019;
Bernanke et al., 2022; Sudre et al., 2022), we examined multimodal
imaging metrics among the same children cohort to achieve a
comprehensive assessment of brain morphology, microstructure
and connectivity changes in associated with ADHD. We also
trained, finetuned, compared, and validated different combinations
of feature selection and machine learning classifiers to predict
ADHD diagnosis in children based on multimodal MRI metrics.
Such neuroimaging-based tools may complement the clinical
assessment for the diagnosis of ADHD among children, particularly
in the presence of cultural, language, or communication barriers.

2. Materials and methods

2.1. The ABCD database and study
population

The ABCD Study (RRID: SCR_015769) is the largest
longitudinal study of neurodevelopment and child health in
the United States. Using a school-based recruitment strategy, data
from over ten thousand 9–10-year-olds were collected from 21

sites, which included multimodal neuroimaging, and standardized
cognitive and clinical assessments (Casey et al., 2018). The study
population is representative of the demographics of the general
U.S. population (Garavan et al., 2018). The inclusion criteria
were children’s age and attending a public or private elementary
school in the catchment area; whereas, exclusion criteria were: (1)
child not being proficient in English language; (2) having severe
limitations in sensory, neurological, medical, or intellectual abilities
that would prevent the child from following the study protocol;
and (3) not being able to complete a baseline MRI scan. The study
adheres to the policies and procedures of the Institutional Review
Board at each site, and all participants have given their informed
consent (for parents) or assent (for children) to participate.

2.2. Subjects’ ascertainment

Figure 1 summarizes the subjects’ ascertainment process.
We retrieved the tabulated imaging information and clinical
information from the third public ABCD data release (Yang
and Jernigan, 2020) including baseline and the 2-year follow-
up assessments. Following the recommendations of the ABCD
Consortium in the Release Notes to the 3.0 release, we removed
all patients who had an fMRI scan using Philips scanners due to
incorrect post-processing (Yang and Jernigan, 2020). To identify
patients with ADHD, we used the ABCD Parent Diagnostic
Interview scale for the Kiddie-Schedule for Affective Disorders and
Schizophrenia (K-SADS) DSM-5 to label the children as having
ADHD or not. For assessment, the computerized version of the
KSADS (KSADS-COMP) was used by the ABCD Consortium.
We selected the KSADS-COMP categorical diagnosis of ADHD
as the primary outcome due to its availability in the ABCD
dataset, alignment with DSM-5 criteria, established validity and
reliability in both research and clinical settings, including in
epidemiological studies (Kaufman et al., 1997). Anyone with a
present, past or (partial) remission ADHD diagnosis at baseline
or 2-year follow-up assessment was assigned to the ADHD-
positive group, and remaining subjects were labeled as “without
ADHD.” We included following covariates from the ABCD
dataset: children’s age (months), biological sex (female, male), race
(White, Black, Asian, Hispanic, Mixed/Other), highest parental
education (no Highschool Degree, Highschool/General Education
Degree, College/Associate Degree, Bachelor’s Degree, Postgraduate
Degree), and handedness (Right, Left, Mixed). Biological sex, race
and highest parental education were assessed by parental reported
questionnaires at baseline. Handedness was assessed at baseline
using the Youth Edinburgh Handedness Inventory Short Form.
We excluded those with incomplete K-SADS ADHD diagnosis at
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baseline or 2-year-follow-up, history of traumatic brain injury, and
failure to pass the image quality control performed manually by the
ABCD Consortium (e.g., due to artifacts) (Hagler et al., 2019).

2.3. MRI acquisition and neuroimaging
measures

The ABCD image acquisition protocol includes structural
(sMRI), diffusion (dMRI), and functional (fMRI) MRI collected
using Siemens Prisma, GE 750 and Philips Achieva and Ingenia
3 T scanners. According to the ABCD Consortium, standardized
imaging protocols were used to create harmonized scans across all
sites and scanner manufactures.1 Full details on image acquisition
and image processing steps can be found in paper provided by the
ABCD Consortium (Casey et al., 2018; Hagler et al., 2019). Details
about acquisition parameter have been described previously (Casey
et al., 2018). The standardized processing pipeline was performed
with Freesurfer (version 5.3.0). A list of all cortical, subcortical, and
WM regions of interest (ROI) can be found in section “1. List of
Atlas Regions (Supplementary material).” In the following section
we will give a brief overview.

2.3.1. Structural MRI
Morphometric and macrostructural properties of different

cortical regions of interest (ROI) based on the Desikan-
Killiany atlas (Desikan et al., 2006) were extracted from high
resolution T1-weighted images (1 mm isotropic) – including
cortical volume, thickness, surface areas, and sulcal depths of 35
ROI. The standardized processing included skull stripping, WM
segmentation, topological defect correction, surface optimization,
and non-linear registration to a spherical surface-based atlas.

2.3.2. Diffusion MRI
The dMRI data was collected in the axial plane using a

resolution of 1.7 mm in all directions, which is the same as the
dMRI data acquisition resolution, and a multiband acceleration
factor of 3. Images were corrected for eddy current distortion, head
motion, spatial, and intensity distortion correction and gradient
non-linearity correction. The dMRI data was aligned with T1w
structural images using mutual information after a rough initial
alignment with atlas brains. To examine WM microstructural
integrity, neurite density (ND) and fiber tract (FT) thickness as
well as water diffusion metrics – including fractional anisotropy
(FA), mean- (MD), longitudinal- (RD), and axial diffusivity (AD) –
were calculated for 35 WM tracts and only ND for 12 subcortical
structures from dMRI scans. These metrics from major WM tracts
were extracted using AtlasTrack implemented (Hagler et al., 2009).

2.3.3. Resting-state fMRI
High resolution resting state fMRI data was acquired in

four runs of 5 min each, for a total of 20 min. Other resting-
state parameters have been previously described.2 In the ABCD
study, a software package called Multi-Modal Processing Stream

1 https://abcdstudy.org/wp-content/uploads/2021/05/ABCD_Website_
MRI_Acq.pdf

2 https://abcdstudy.org/images/Protocol_Imaging_Sequences.pdf

(MMPS) is used for pre-processing data and incorporates other
software packages such as FreeSurfer, AFNI, and FSL. The pre-
processing steps include correcting head motion by aligning each
frame with the first one, fixing B0 distortions, and resampling
the scans to align with each other. The scans are also registered
to T1-weighted structural images using mutual information.
Linear regression is used to remove quadratic trends, signals
that are correlated with estimated motion time courses, and
average time courses for WM, ventricles, and the whole brain.
Motion regression includes six parameters and their derivatives
and squares, and only frames with framewise displacement (FD)
less than 0.3 mm are included. Time points with FD more than
0.2 mm are excluded from variance and correlation calculations.
The average FD is 0.25 mm. The time courses are filtered
between 0.009 and 0.08 Hz. Motion censoring is applied to reduce
remaining effects of head motion that survive the pre-analysis
regression. Additional censoring is applied based on detecting
time points as outliers with respect to spatial variation across
the brain to account for lingering effects of head motion. The
average correlation between the baseline functional networks
according to Gordon parcel atlas (Gordon et al., 2016), were
calculated and transformed to z-scores, representing the functional
connectivity.

2.4. Multivariate models

In separate multivariate logistic regression models, we
tested the association of different neuroimaging metrics with
presence versus absence of ADHD. In each model, we tested
the association of one neuroimaging variable with ADHD
presence after correction for children’s age, biological sex,
race, highest parental education and handedness as covariates.
Biological sex, race and highest parental education were
assessed by parental reported questionnaires. Handedness
was assessed by the Youth Edinburgh Handedness Inventory
Short Form. All variables were treated as unordered factors,
except of age. The neuroimaging metrics included the averaged
FA, ND, MD, RD, FT, and AD of 35 WM tracts and ND
of 12 subcortical regions, thickness, and surface areas of 68
cortical regions, the inter- and intra-network correlations of 13
functional networks. To correct for multiple comparisons, we
applied false discovery rate separately for each neuroimaging
metrics to generate adjusted p-values. p-Values < 0.05
were considered as significant. All analyses were performed
using R software (version 4.1.2) using the stats-package
(version 3.6.2).

2.5. Feature selection and machine
learning

We trained, finetuned, and compared combinations of six
different machine learning classifiers and five feature selection
methods to predict the presence versus absence of ADHD. The
input included all multimodal MRI metrics with and without the
clinical information (i.e., sex, age, race, highest parental education,
and handedness). Detailed description of the different machine
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FIGURE 1

Workflow after we proceed to extract our cohorts regarding to the exclusion criteria and showing the remain subjects.

learning algorithms and featured selection methods are in section
“2. Machine learning (Supplementary material)” and reported
previously (Haider et al., 2020). The dataset was randomly split
into training/cross-validation and independent validation cohorts
in a 4-to-1 ratio. Selection of features were done on the training
folds before training the machine-learning classifier to prevent
information leakage and reduce overfitting. In every iteration of
the cross-validation process, the training data was standardized and
certain features were selected, and then a machine learning model
was trained using that data. This method ensures accurate estimates
of the model’s performance on independent validation sets. For
each combination we created a framework of five repeats of 10-fold
cross-validation for finetuning of feature selection and machine
learning hyperparameters using the Bayesian optimization within
the training/cross-validation cohort. For every hyperparameter
and the number of selected features, an upper and lower bond
was set as described previously (see section “2.3. Hyperparameter
bounds for Bayesian optimization (Supplementary material)”;
Haider et al., 2020). The optimized parameters were then adopted
in the machine-learning/feature-selection framework followed by
five repeats of 10-fold cross-validation. In each fold of cross-
validation, we calculated the area under curve (AUC) of receiver
operating characteristics (ROC) for prediction of ADHD presence
in validation fold. The averaged AUC across all validation folds was
used to identify the best combination. Finally, we trained the best
performing model with optimized parameters on all training/cross-
validation cohort, and tested the model in independent validation
set, which was isolated from the training, optimization, and
cross-validation process. The trained model was applied to the

independent test set and the performance was evaluate by AUC
(95% CI).

3. Results

3.1. Subjects’ demographics

Figure 1 depicts the inclusion flowchart of children for
our analysis. After excluding those with incomplete clinical
information, history of traumatic brain injury, and failure to pass
image quality control, a total of 7,805 participants (average age
of 119.33 months) were included in our analysis – 1,798 with
and 6,007 without ADHD. Table 1 summarizes demographic
characteristics of each subcohort. In multivariate analysis, there
was a significant difference in racial/ethnicity distribution between
those with and without ADHD (Table 1), with ratio of black
children slightly higher while Asian children lower among those
with ADHD. In addition, the rate of handedness and parental
education were different between children with and without ADHD
(Table 1).

3.2. ADHD and cortical morphology

Children with ADHD had reduced cortical surface area
and volume compared to those without – especially in frontal
and temporal lobes (Figure 2). The presence of ADHD
was associated with lower cortical surface area with most
pronounced differences in the right middle-temporal gyrus
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TABLE 1 Characteristics of children with and without ADHD diagnosis.

Demographics description

With ADHD Without ADHD Total p-value

1,798 6,007 7,805

Age (in months) 0.83

Mean (SD) 119.5 (7.5) 119.3 (7.6) 119.3 (7.55)

Min–max 107–132 107–133 107–133

Median (IQR) 120 119 119

Sex, n (%) <2.2 × 10−16

Female 654 (36.4%) 3,224 (53.7%) 3,878 (49.7%)

Male 1,144 (63.6%) 2,783 (46.3%) 3,927 (50.3%)

Race, n (%) <6.53 × 10−4

White 997 (55.5%) 3,324 (55.3%) 4,321 (55.4%)

Black 293 (16.35%) 818 (13.6%) 111 (14.2%)

Asian 21 (1.2%) 136 (2.3%) 157 (2.0%)

Hispanic 325 (18.1%) 1,244 (20.7%) 1,569 (20.1%)

Undetermined 6 (0.3%) 17 (0.3%) 23 (0.3%)

Mixed/Others 156 (8.7%) 468 (7.8%) 624 (8.0%)

Handedness, n (%) 3.46 × 10−5

Right 1,388 (77.2%) 4,912 (81.8%) 6,300 (80.7%)

Left 137 (7.6%) 406 (6.8%) 543 (7.0%)

Both 273 (15.2%) 689 (11.5%) 962 (12.3%)

Highest parental education, n (%) 1.91 × 10−3

No highschool degree 96 (5.3%) 345 (5.7%) 441 (5.7%)

Highschool/General educational development 139 (7.7%) 482 (8.0%) 621 (8.0%)

Some college/Associate degree 534 (29.7%) 1,439 (24.0%) 1,973 (25.3%)

Bachelor’s degree 483 (26.9%) 1,559 (26.0%) 2,042 (26.2%)

Postgraduate 543 (30.2%) 2,177 (36.2%) 2,720 (34.8%)

Undetermined 3 (0.2%) 5 (0.1%) 8 (0.1%)

(adjusted p-value = 1.574 × 10−9), left rostral-middle-frontal
gyrus (adjusted p-value = 1.475 × 10−8), left superior frontal gyrus
(adjusted p-value = 1.475 × 10−8), and right inferior/superior
temporal gyrus (both adjusted p-value = 1.475 × 10−8). An ADHD
diagnosis was also associated with reduced cortical volumes
(Figure 2B), most pronounced in the left rostral middle-frontal
gyrus (adjusted p-value = 8.044 × 10−8), left superior frontal gyrus
(adjusted p-value = 5.107 × 10−7), right middle-temporal gyrus
(adjusted p-value = 6.347 × 10−7), and the right inferior-temporal
gyrus (adjusted p-value = 6.347 × 10−7) regions. No differences
in sulcal depths and cortical thickness remained significant after
FDR correction [see section “3.1. Structural MRI (Supplementary
material)”].

3.3. ADHD and WM microstructure

Children with ADHD had a significantly lower FA and
ND, but higher MD and RD compared to children without
ADHD – especially in frontal and parietal WM [see section “3.2.

Diffusion MRI (Supplementary material)”]. In addition, ADHD
was associated with lower FT. The highly significant changes
(p < 0.001) in DTI metrics and FT were most notable in the
corticostriatal tract which connects the superior frontal and parietal
cortex with the striatum; WM tract connecting inferior frontal
cortex and superior frontal cortex; and superior longitudinal
fasciculus connecting parietal and frontal lobe (Figure 3). There
were no differences in WM AD between children with and without
ADHD diagnosis.

3.4. ADHD and functional connectivity

Children with ADHD showed increased connectivity between
the default network and the dorsal attention network (adjusted
p-value = 3.721 × 10−6) and the cingulo-opercular network
(adjusted p-value = 3.981 × 10−4) (Figure 4). Moreover, the
correlation between the dorsal and the ventral attention networks
(adjusted p-value = 5.324 × 10−4) was also higher among those
with ADHD. In contrast, ADHD was associated with decreased
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FIGURE 2

Children with ADHD tend to have a decrease in both in (A) cortical surface area and (B) cortical volume, particularly in the temporal and frontal
lobes, as indicated by the blue area – independent of age, biological sex, race, handedness, and highest parental education as a marker of
socioeconomic status, and after correction for multiple comparisons.

intra-network connectivity of the dorsal attention (adjusted
p-value = 2.169 × 10−4), default mode (adjusted p-value = 0.020),
and retrosplenial temporal (adjusted p-value = 2.169 × 10−4)
networks [see section “3.3. Rest-state fMRI (Supplementary
material)”].

3.5. Machine learning classifiers for
predicting ADHD

The rate of ADHD diagnosis in both training/cross-validation
(1,420 out of 6,244, 22.8%) and independent validation test
(378 out of 1,561, 24.2%) sets were similar (p = 0.229).
Table 2 summarize the demographics of subjects in training
and independent validation sets. The Figure 5A heatmap depicts
the mean AUCs across validation folds from five repeats
of 10-fold cross-validations with neuroimaging variables alone
(without any clinical information) as input. The combination
of eXtreme Gradient Boosting (XGB) and RIDGE regularized
logistic regression (RIDGE) for feature selection had the highest
averaged AUC of 0.58. For combined input of clinical and
neuroimaging variables, the best performance was achieved by
the combination of Support Vector machine with radial kernel
(SVM_rad) in combination with Hierarchical Clustering (HClust)
feature selection with mean AUC of 0.627 (Figure 5B). In
this model all clinical features (i.e., sex, age, race, highest
parental education, and handedness) were selected by HClust.
Selected feature with the feature importance can be found in
section “2.4. Selected feature in final model (Supplementary
material).” In the independent validation test set, the best
performing model using neuroimaging variables achieved an
AUC of 0.576 (95% CI = 0.546–0.610) with sensitivity of
56.61% and specificity of 64.86% compared to a model using
clinical and neuroimaging variables which achieved AUC of
0.613 (95% CI = 0.580–0.645), with sensitivity of 60.05% and
specificity of 56.47%. However, the difference between models
using neuroimaging versus combined variables for prediction of

ADHD diagnosis in the independent validation test cohort was not
statistically significant (p = 0.0851).

4. Discussion

Leveraging a large population dataset, we identified the
multimodal neuroimaging correlates of ADHD in 9–10-year-old
children. While many prior studies have examined smaller selective
cohorts of ADHD children versus typically developing controls,
we adopted more inclusive criteria comparing multimodal
neuroimaging correlates of those with and without ADHD
diagnosis in a large demographically representative population
of American children. By having a large sample size, our study
approach highlights the neuroimaging correlates of ADHD in
demographically representative cohort. Our study population
are more representative of all-comers children presenting
to clinical practices, when ADHD is often accompanied by
other comorbidities. We found that children with ADHD had
WM microstructural disintegrity and reduced neural density
(particularly in frontal and parietal lobes), decreased cortical
volume and surface area (most striking in the frontal and
temporal lobes); and altered connectivity of attention functional
networks compared to those without – after correction for
children’s age, sex, race/ethnicity, handedness, and highest
parental education (as a marker of socioeconomic status). Our
findings highlight the neurobiological and connectome mechanism
of ADHD among preadolescent children at demographically
representative population-level. In addition, we showed the
potentials and limitations of machine learning classifiers in
combining neuroimaging metrics (and clinical variables) to predict
ADHD diagnosis. In addition, multimodal framework of our
study further highlights the role of frontal lobe cortical regions
and associated WM tracts in neurobiology of childhood ADHD
(Bernanke et al., 2022).

Children with ADHD have been found to have morphological
differences in brain structure compared to typically developing
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FIGURE 3

Children with ADHD compared to those without had lower fractional anisotropy (FA), neurite density (ND), and fiber tract (FT) volume but higher
mean (MD) and radial (RD) diffusivity – most pronounced in the frontal and parietal white matter – independent of age, biological sex, race,
handedness, and highest parental education as a marker of socioeconomic status, and after correction for multiple comparisons.

children. Our study shows that childhood ADHD is associated
with reduced cortical volumes and surface areas in the frontal
lobe, cingulate, and temporal lobe. These areas are known to
be associated with complex cognitive behaviors such as decision-
making, reasoning, personality expression, and maintaining social
appropriateness (El-Baba and Schury, 2022) and visuo-attentional

processes (Zarka et al., 2021). Prior studies have proposed an
association between smaller prefrontal cortex volume in ADHD
children and their ability to suppress their responses to salient
but otherwise irrelevant events (Casey et al., 1997). Diffusion MRI
results complement our morphological findings as children with
ADHD also had lower FA, FT, and ND but higher MD and RD
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FIGURE 4

The connectogram summarizes reduced (blue) and increased (red) network connectivity between functional areas among children with ADHD
compared to those without – independent of age, biological sex, race, handedness, and highest parental education as a marker of socioeconomic
status, and after correction for multiple comparisons. Functional network was split using Gordon Parcellation.

in WM tracts originating from the frontal cortex compatible with
reduced microstructural integrity and neuronal density, which can
affect attention, school function, and non-verbal intelligence (De
Zeeuw et al., 2012; Tung et al., 2021).

Furthermore, functional connectivity is also perturbed in
individuals with ADHD (Cortese et al., 2018; Gao et al., 2019;
Sutcubasi et al., 2020). In our study, children with ADHD had
reduced intra-connectivity in the dorsal attention network, the
default-mode network and the retrosplenial network. The dorsal
attention network as part of task positive network is active while
focusing on a particular task and it is important for processing
of relevant information and filter out irrelevant information
(Rohr et al., 2017). Of note, parts of the dorsal attention network
are within the middle temporal region which we prior identify as
a region with reduced cortical volume and sulcal depths. On the
other hand, default mode network is active while the patient is
engaging in internally focused tasks (Buckner, 2013). According
to the default-mode network hypothesis, lapses in attention,
among ADHD children, are caused by spontaneous intrusions
of this network (Sonuga-Barke and Castellanos, 2007). Recent
neuroanatomical models localize parts of the default-mode network
to prefrontal region and cingulum (Alves et al., 2019). We found
that although the intra-connectivity of both dorsal attention and
default-mode networks decreases, their network interconnectivity
increase implying an overstimulation between these two networks
(Figure 4). A recent study confirms these findings reporting
hyperconnectivity of the default-mode with task-relevant networks
(Duffy et al., 2021). Association of ADHD with default mode
network dysconnectivity was also reported in a meta-analysis of 21
studies with 700 ADHD patients and 580 controls (Gao et al., 2019),

and a meta-analysis of 20 studies with 944 ADHD patients and
1,121 controls (Sutcubasi et al., 2020). Of note, our morphological
and microstructural findings in frontal and temporal lobes may –
at least partially – explain aberrations of functional connectivity
among ADHD children, especially in dorsal attention and default-
mode networks.

In contrast to several other studies, we found no significant
association between ADHD diagnosis and cortical thickness (unlike
cortical volume). Possible explanation could be: both surface
area and cortical thickness play a significant mediating role in
determining diagnostic differences in volume, with regional brain
variation, the contribution of surface area might be bigger than
thickness and by using multiple testing correcting the effect of
thickness was not statistically significant. Of note, Shaw et al. (2007)
reported a maturation delay in reaching peak cortical thickness
in children with ADHD. Different cortical and subcortical
regions have been implicated in pathogenesis of ADHD: the left
parahippocampal gyrus (Carmona et al., 2005), occipital associated
cortices (Narr et al., 2009), amygdala and nuclei accumbens
(Hoogman et al., 2017; Boedhoe et al., 2020). The difference
between our study and priors may be due to selection bias, age-
related differences, or sociodemographic variations (Hoogman
et al., 2019).

Neuroimaging studies may also facilitate ADHD diagnosis
in children. Currently, clinical interviews with children, parents,
and caregivers are mainstays of ADHD diagnosis in children
(Wolraich et al., 2019). However, the collected questionnaires are
subjective and sometimes inconsistent (Gualtieri and Johnson,
2005). Thus, quantitative objective methodologies can potentially
supplement clinical examination to achieve a more reliable
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TABLE 2 Demographic characteristics of train/Cross-validation versus independent test cohorts.

Patients’ characteristic in training/Cross-validation cohort and independent validation cohort

Training/Cross-validation cohort Independent validation cohort p-valuetraining vs. independent

6,244 1,561

Patients with ADHD
diagnosis

1,420 (22.7) 378 (24.2) 0.229

Age 0.930

Mean (SD) 119.2 (7.5) 119.6 (7.6)

Min–max 107–133 107–132

Median (IQR) 119 120

Sex, n (%)

Female 3,118(49.9) 760 (48.7) 0.292

Male 3,126 (50.0) 801 (51.3) 0.393

Race, n (%)

White 3,470 (55.6) 851 (54.3) 0.470

Black 901 (14.4) 210 (13.5) 0.343

Asian 130 (2.0) 27 (1.3) 0.422

Hispanic 1,241 (19.9) 328 (21.0) 0.333

Undetermined 17 (0.3) 6 (0.4) 0.639

Mixed/Others 485 (7.8) 139 (8.9) 0.153

Handedness, n (%)

Right 5,048 (80.8) 1,252 (80.2) 0.591

Left 440 (7.1) 103 (6.6) 0.477

Both 756 (12.1) 206 (13.2) 0.260

Highest parental education, n (%)

No highschool degree 338 (5.4) 103 (6.6) 0.080

Highschool/General
educational development

503 (8.1) 118 (7.6) 0.551

Some college/Associate
degree

1,596 (25.6) 377 (24.2) 0.266

Bachelor’s degree 1,619 (25.9) 423 (27.1) 0.364

Postgraduate 2,182 (34.9) 538 (34.5) 0.744

Undetermined 6 (0.1) 2 (0.1) 1.000

diagnosis particularly in presence of cultural, language, or
communication barriers. This is particularly important since
delayed diagnosis of ADHD is associated with higher risk of
developing mood and anxiety disorders, substance abuse, and/or
personality disorders (Katzman et al., 2017). In our study, we
evaluated the applicability of machine learning classifiers in
prediction of ADHD diagnosis using multimodal neuroimaging
metrics. By exploiting the multimodal data more information
for individual subject can be gathered and provide the chance
of finding missing links in complex mental illness and giving a
comprehensive overview of the same cohort.

Using a rigorous cross-validation framework we could
minimize the risk of overfitting and ensure the stability of the
model. The stability of our best performed model was proofed
with our independent validation set, which was isolated from
training and optimization process. A machine-learning model
using neuroimaging metrics alone could achieve an AUC of

0.576 (95% CI = 0.546–0.610), which was increased to 0.613
(95% CI = 0.580–0.645) by adding clinical variables, although not
statistically different (p = 0.0851). To mitigate the issue of class
imbalance in our study (with a 1:3 ratio of children with and
without ADHD), we employed the AUC of ROC as the primary
measure of performance, as it is not affected by class imbalance,
unlike classification accuracy. Prior studies have reported higher
accuracy of machine-learning models for prediction of ADHD;
however, they have used highly selective ADHD versus control
subjects (Ghiassian et al., 2016; Sen et al., 2018), or lacked true
independent validation cohort (Deshpande et al., 2015; Qureshi
et al., 2017). While our results show that prediction is possible in a
diverse group, it still needs to be optimized, e.g., inclusion of clinical
features. We demonstrate both the potentials and limitations of
machine-learning classifiers for prediction of ADHD diagnosis in
general population using multimodal neuroimaging metrics.
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FIGURE 5

Heatmap showing the mean receiver operating characteristics (ROC) area under curve (AUC) across 100 validation folds from combination of
different machine-learning classifiers and feature selection methods using imaging variables alone (A) or combination of clinical and imaging
variables (B).

The main strength of our study is large cohort of children
from a narrow age-group, who are reflective of demographically
diverse U.S. population. Indeed, one of the objectives of ABCD
study is to elucidate factors that influence the course of
mental illness (Jernigan and Brown, 2018), which also reflects
our aim to investigate microstructural, morphological, and
functional connectivity correlates of ADHD in preadolescent
children. At the same time, our analysis was limited by using
processed imaging metrics from ABCD Consortium. Although a
standardized protocol was used for harmonized image acquisition,
site differences might still influence our analysis. In addition,
different brain atlases were used for sMRI (Desikan-Killiany
atlas), dMRI (Atlas Track atlas), and fMRI (Gordon Network
Parcellation). It is important to note that these atlases may
have variations in the number and location of ROI partitions,
which complicates the understanding of the connecting between
structure and function. Our present study focused on cortical
volume with a few subcortical regions due to the natural noisiness
of subcortical measurements. In addition, WM tracts thickness
and microstructure provided complementary information for
evaluation of whole brain. Nevertheless, some studies suggested
that subcortical regions also show ADHD-dependent variations
(Hoogman et al., 2017; Boedhoe et al., 2020). The inclusion
of this information contains the potential to better understand
the pathological mechanisms. Additionally, the linear regression
method we employed may not be able to detect more intricate
relationships. Further limitations of our study were the absence
of cognitive parameters associated with ADHD and separation of
patients into subtypes. The diagnosis was generated by K-SADS
questionnaires at different sites with various levels of expertise and
there is no diagnostic validation study nested with the ABCD study.
Finally, we were not able to analyze the effects ADHD subtypes,
duration of diagnosis, or any treatment.

5. Conclusion

We could identify the neurostructural and -functional
correlates of ADHD in demographically representative cohort of
American children. The comprehensive and convergent results
implicated brain regions and networks involved in impulse control,
executive function, and concentration in pathogenesis of childhood
ADHD. Specifically, our results showed the association of
childhood ADHD with frontal lobe cortical volume reduction and
lower WM integrity and neuronal density. These morphological
and microstructural findings may also explain the observed
aberrations of functional connectivity in dorsal attention and
default-mode networks among children with ADHD. We also
showed limited potentials of machine-learning classifiers in
prediction of ADHD diagnosis at general population level.
Nevertheless, these neuroimaging correlates can potentially help
with diagnosis, treatment monitoring, and response prediction.
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