? frontiers ‘ Frontiers in Neuroscience

@ Check for updates

OPEN ACCESS

EDITED AND REVIEWED BY
Elisabeth Petrasch-Parwez,
Ruhr University Bochum, Germany

*CORRESPONDENCE
Ana Maria Estrada-Sanchez
ana.estrada@ipicyt.edu.mx

SPECIALTY SECTION
This article was submitted to
Neurodegeneration,

a section of the journal
Frontiers in Neuroscience

RECEIVED 06 January 2023
AccepTED 20 January 2023
PUBLISHED 02 February 2023

CITATION
Estrada-Sanchez AM, Rebec GV and Galvan L
(2023) Editorial: New insight into Huntington's
disease: From neuropathology to possible
therapeutic targets.

Front. Neurosci. 17:1138712.

doi: 10.3389/fnins.2023.1138712

COPYRIGHT

© 2023 Estrada-Sanchez, Rebec and Galvan.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Neuroscience

TypE Editorial
PUBLISHED 02 February 2023
pol 10.3389/fnins.2023.1138712

Editorial: New insight into
Huntington's disease: From
neuropathology to possible
therapeutic targets

Ana Maria Estrada-Sanchez!*, George V. Rebec? and Laurie Galvan®

!Division de Biologia Molecular, Laboratorio de Neurobiologia, Instituto Potosino de Investigacion Cientifica
y Tecnologica (IPICYT), San Luis Potosi, Mexico, ?Program in Neuroscience, Department of Psychological
and Brain Sciences, Indiana University, Bloomington, IN, United States, *Sciences Department, Université de
Nimes, Nimes, France

KEYWORDS

mutant huntingtin, acanthocytes, irritable behavior, interneurons, cortex, hypothalamus,
calcium imaging

Editorial on the Research Topic

New insight into Huntington’'s disease: From neuropathology to possible
therapeutic targets

In 1872, George Huntington described an illness that is “confined to certain families... in
whose veins the seeds of the disease are known to exist.” That seed was later identified as the
expansion of the cytosine-adenine-guanine (CAG) repeats within the huntingtin gene that leads
to an expanded glutamine repeat tract in the N-terminal end of the huntingtin protein (Gusella
et al,, 1983; MacDonald et al., 1993; Huntington, 2003). This illness is known as Huntington’s
disease and depending on the length of the expanded glutamine tract, it can manifest during
childhood or adulthood. In the former, the main phenotypical alterations are body rigidity
and epileptic seizures. The presence of psychiatric disturbances, the progressive development
of generalized involuntary movements, and dementia characterize the onset of Huntington’s
disease during adulthood.

Interestingly, nine other neurodegenerative disorders are caused by CAG expansion (Stoyas
and La Spada, 2018). Although each disorder has a particular set of phenotypical alterations
related to the affected gene, all share common molecular neuropathological mechanisms elicited
by the CAG expansion. Among these disorders, Huntington’s disease is the most studied,
allowing us to understand its neuropathology better and bringing us closer to a possible
treatment. Furthermore, these advances have improved our understanding of the common
pathological mechanisms between all CAG-related neurodegenerative disorders.

Although the genetic mutation for Huntington’s disease was identified 40 years ago, no
effective treatment has emerged, partly due to the complexity of the disease. However, multiple
efforts are currently being made using new technologies or approaches to clarify these knowledge
gaps and allow us to propose new therapeutic strategies. This Research Topic aimed to bring
together new advances in understanding Huntington’s disease etiology, and here we describe the
contribution of each of the research published papers on the Research Topic.

Ubiquitously expressed throughout the body, the huntingtin protein is involved in several
key molecular and cellular mechanisms. Therefore, its mutation in Huntington’s disease affects
genetic, molecular, and cellular functions, mainly in the brain, but the mutation affects other
cell types in the body. In this regard, Yu et al. suggest that Huntington’s disease patients could
also present erythrocytes with irregular surfaces and the presence of several spicules, which is
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also known as acanthocytosis (Redman et al., 1989). However, these
results should be considered cautiously. Peikert et al. raised key
methodological issues that make these results premature to conclude
that acanthocytosis occurs in Huntington’s disease (Peikert et al.,
2022). Therefore, more rigorous and detailed follow-up studies are
necessary to support this early data collection phase but it could open
anew field of research in HD.

In the brain, the huntingtin mutation affects all cell types,
including interneurons, which, based on early postmortem brain
studies, were thought to be relatively spared by the course of the
disease (Harper, 1991). Then, the technology advancements, such
as transgenic mouse lines and optogenetics, have allowed many
laboratories to assess these cellular subpopulations. Consequently,
many interneuron dysfunctions have been reported in HD (Cepeda
et al, 2013; Mehrabi et al., 2016; Holley et al., 2019). Voelkl et
al. thoroughly evaluated cortical GABAergic interneurons in the
R6/2 and the zQ175DN knock-in mice models. In the primary
motor cortex of the R6/2 model, the authors identified a generalized
reduction in cell body size of somatostatin, vasoactive intestinal
peptide, and parvalbumin-positive interneurons. In the same model,
the primary motor and cingulate cortex showed a selective reduction
in somatostatin and vasoactive intestinal peptide markers but not in
parvalbumin-positive interneurons, while no changes were observed
in the knock-in model of zQ175DN. Indicating that differential
cellular changes occur depending on the transgenic models used.
However, this finding adds to the growing relevance of cortical
alterations in eliciting and shaping the phenotypical alterations of this
disorder (Estrada-Sanchez and Rebec, 2013; Estrada-Sanchez et al.,
2015, 2019). Postmortem brain evaluation of Huntington’s disease
indicated that patients with more prominent motor signs showed a
specific reduction in calbindin-positive interneurons in the primary
motor cortex, while patients with mood signs had a loss of calbindin,
calretinin, and parvalbumin interneurons in the anterior cingulate
cortex (Thu et al, 2010; Kim et al, 2014). Therefore, a region-
specific loss of cortical interneurons correlates with the prevalence
of motor or mood signs. Thus, it is relevant to study functional
changes of cortical interneurons during the progression of the
disease, at least in transgenic models, which can be possible with the
methodology reviewed by Barry et al.. In this minireview, the authors
describe a state-of-the-art method that uses the latest technology
to follow cellular circuits (neurons, interneurons, or astrocytes)
functioning through endogenously encoded calcium indicators and
a miniaturized microscope or miniscope during the progression
of the disease. This technology will provide new insights into
the progressive functional changes in cortical and striatal neurons,
interneurons, and astrocyte microcircuits and its correlation with the
development of phenotypical signs in transgenic mouse models of
Huntington’s disease.

In addition to involuntary motor symptoms, altered body
and brain energy metabolism are one of the main pathological
features of Huntington’s disease. In this sense, pre-symptomatic and
symptomatic Huntington’s disease patients showed altered peripheral
circulating metabolic hormones even before the symptoms appeared,
indicating possible alterations in the hypothalamic-pituitary system
(Wang et al, 2014). Dickson et al. evaluated hypothalamic
transcriptome profiles of overexpression of the wild-type huntingtin
gene, mutant huntingtin, or full-length human mutant huntingtin in
the BACHD model. Although the transcription profiles are different
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between the models used, their results indicated alterations in
sterol and cholesterol metabolism in the over-expressing wild-type
huntingtin gene and mutant huntingtin; in the case of full-length
mutant huntingtin, changes in the hypothalamic gene expression
differ between young and old BACHD mice, which might be related
to the phenotype of this transgenic model. Impaired cholesterol and
sterol metabolism emerges as a key alteration in Huntington’s disease,
as evidenced by the evaluation of postmortem brain samples and
transgenic models (for a review, see Kacher et al., 2022). Therefore,
these data suggest clinical interventions to modulate cholesterol
metabolism, which could positively impact disease progression
(Kacher et al., 2022).

Finally, as mentioned above, Huntington’s disease patients
present psychiatric disturbances, which often occur before the
motor signs. Among these alterations, depression, anhedonia,
apathy, anxiety, obsessions-compulsions, and irritability are the most
commonly reported (Paoli et al., 2017). McLauchlan et al. expand
our understanding of irritable and impulsive behavior in patients
with Huntington’s disease. By combining a set of questionnaires
to measure irritability and other tasks that measure provocation,
motor inhibition, and decision-making, the authors identified that
irritability in a cohort of patients with Huntington’s disease is
related to an excessive response to provocation. Teasing apart
the components that influence irritability is the first step toward
increasing the probability of successful therapeutic interventions.
In this sense, a recent publication by the same research team,
showed that motivational anhedonia (impaired effort for reward)
underlies depression in Huntington’s disease, which is improved
with bupropion treatment and when combined with serotonin
reuptake inhibitors elicited a better efficacy to alleviate depression in
Huntington’s disease (McLauchlan et al., 2022).

Opverall, the research articles and the minireview that comprise
this Research Topic expand our knowledge on previous topics and
open new venues to deepen our understanding of the etiology of
Huntington’s disease in the hope of identifying new therapeutic
targets and future treatments that help patients beyond just
alleviating symptoms of the disease.
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