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Spiking neural networks (SNNs) have attracted intensive attention due to the

e�cient event-driven computing paradigm. Among SNN training methods,

the ANN-to-SNN conversion is usually regarded to achieve state-of-the-

art recognition accuracies. However, many existing ANN-to-SNN techniques

impose lengthy post-conversion steps like threshold balancing and weight

renormalization, to compensate for the inherent behavioral discrepancy between

artificial and spiking neurons. In addition, they require a long temporal window to

encode and process as many spikes as possible to better approximate the real-

valued ANN neurons, leading to a high inference latency. To overcome these

challenges, we propose a calcium-gated bipolar leaky integrate and fire (Ca-LIF)

spiking neuron model to better approximate the functions of the ReLU neurons

widely adopted in ANNs. We also propose a quantization-aware training (QAT)-

based framework leveraging an o�-the-shelf QAT toolkit for easy ANN-to-SNN

conversion, which directly exports the learned ANN weights to SNNs requiring

no post-conversion processing. We benchmarked our method on typical deep

network structures with varying time-step lengths from 8 to 128. Compared

to other research, our converted SNNs reported competitively high-accuracy

performance, while enjoying relatively short inference time steps.

KEYWORDS

neuromorphic computing, spiking neural network, ANN-to-SNN conversion, deep SNNs,

quantization-aware training

1. Introduction

Deep learning technology has achieved unprecedented success in versatile intelligent

applications in modern society. However, the real-valued deep artificial neural network

(ANN) models are quite power-hungry due to their intensive matrix multiplication

operations (LeCun et al., 2015). By contrast, neuromorphic computing with spiking neural

networks (SNNs) is more promising for ubiquitous cost- and energy-constrained mobile,

embedded, and edge platforms (Roy et al., 2019). The SNN adopts spatiotemporally sparse

spike events to encode, transmit, and process information the way human brain cortical

neurons do.
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However, training deep SNNs is highly challenging because it

is difficult to directly apply the backpropagation (BP) method to

SNNs owing to the inherent discontinuity of discrete spikes. A

common indirect approach to overcome this problem is to train

a structurally equivalent ANN model offline and then convert it to

an SNN with the learned synaptic weights for inference, where the

real values of inputs and outputs of ANN neurons correspond to

the rates of presynaptic (input) and postsynaptic (output) spikes

of the SNN neurons (Diehl et al., 2015; Hunsberger and Eliasmith,

2016; Rueckauer et al., 2017; Zhang et al., 2019; Han and Roy, 2020;

Han et al., 2020; Kim et al., 2020; Lee et al., 2020; Yang et al., 2020;

Deng and Gu, 2021; Dubhir et al., 2021; Ho and Chang, 2021; Hu

et al., 2021; Kundu et al., 2021; Li et al., 2021b; Bu et al., 2022; Liu

et al., 2022). Although previous ANN-to-SNN techniques usually

obtain state-of-the-art object recognition accuracies, they require

complicated post-conversion fixations such as threshold balancing

(Diehl et al., 2015; Rueckauer et al., 2017; Han et al., 2020; Liu et al.,

2022), weight normalization (Diehl et al., 2015; Rueckauer et al.,

2017; Ho and Chang, 2021), spike-norm (Sengupta et al., 2019),

and channel-wise normalization (Kim et al., 2020), to compensate

the behavioral discrepancies between artificial and spiking neurons.

In addition, a few of those methods require a relatively long time

window (e.g)., 2,500 algorithmic discrete time steps (Sengupta et al.,

2019), allowing for sufficient spike emissions to precisely represent

the real values of the equivalent ANNs. This incurs high latencies

and additional computational overheads, severely compromising

the efficiency of SNNs.

To mitigate the aforementioned overheads in ANN-to-SNN

conversion, this study proposes a simple and effective deep ANN-

to-SNN framework without any post-conversion tuning, and the

converted SNN can achieve a high recognition accuracy in a

relatively shorter temporal window (i.e., 128 down to 8 time

steps). This framework adopts our proposed calcium-gated bipolar

leaky integrate and fire (Ca-LIF) spiking neuron model to well

approximate the function of the ReLU neuron widely used in deep

ANNs. It fully leverages off-the-shelf quantization-aware training

(QAT) toolkit to train the ANNs with low-bit precision ReLU

activations, which can be captured as the spike rate of the Ca-LIF

neuron in an intermediately short time window.

The rest of this article is organized as follows: Section 2

explains the background of neural networks, including the ReLU

and the basic LIF neurons. Section 3 proposes our Ca-LIF spiking

neuronmodel and theQAT-based ANN-to-SNN framework, which

are validated with elaborate experiments mentioned in Section 4.

Section 5 summarizes this study.

2. Preliminaries

2.1. Convolution neural network

The typical structure of a deep neural network (shown

in Figure 1) is composed of alternating convolutional (CONV)

layers for feature detection and pooling layers for dimensionality

reduction, followed by stacked fully connected (FC) layers as a

feature classifier. In a CONV layer, each neuron in a channel is

connected via a shared weight kernel to a few neurons within a

spatial neighborhood called receptive field (RF) in the channels

of the precedent layer. In a pooling layer, each neuron aggregates

the outputs of the neurons in a p × p spatial window from

the corresponding channel of its precedent CONV layer, thereby

realizing data dimensionality reduction and small translational

invariance. In an FC layer, each neuron is fully connected to all

neurons in its precedent layer. The neuron with the most active

outputs in the final layer indicates the recognition result.

2.2. ReLU neuron in ANN

The output of the ReLU neuron widely used in ANNs is

formulated as follows:

y = fReLU(z) = max(0, z) (1a)

where z is the net summation which is calculated as follows:

z =
∑

i

wixi + b (1b)

with xi as the i-th input value to the neuron, wi the connecting

weight, and b a bias term. Figure 2A depicts the ReLU function.

2.3. Basic LIF neuron in SNN

The LIF neuron is the most commonly adopted model in SNNs

(Roy et al., 2019). It is biologically plausible with an internal state

variable called membrane potential Vm (initialized to 0 at the

beginning of spike trains of every input image) and exhibits rich

temporal dynamics. Once the neuron receives a spike event via any

of its synapses, the corresponding synaptic weight wi is integrated

into its Vm. Meanwhile, the neuron linearly leaks all the time. The

event-driven LIF model can be described as follows:

Vm(tk) = Vm(tk−1)+ wi(k) − λ(tk − tk−1) (2)

where tk and i(k) are the algorithmic discrete time step and the

index of the synapse when and where the k-th input presynaptic

spike arrives, respectively, and λ is a constant leakage at every time

step. Whenever Vm crosses a pre-defined threshold V th > 0, the

neuron fires a postsynaptic spike to its downstream neurons and

resets Vm by subtracting V th from it. Suppose an input image has

a presentation window of T time steps (i.e., the length of spike

trains encoded from the image pixels), one would estimate the total

output spike count of the LIF neuron as follows (Han et al., 2020;

Lee et al., 2020):

yS = fLIF(zS) = max(0, floor(zS/Vth)) (3a)

where floor returns the largest integer no larger than its

argument, and zs is the net integration across all the T time steps:

zS =
∑

k

wi(k) − λT =
∑

i

wixSi − λT (3b)
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FIGURE 1

Typical structure of deep neural networks. In convolutional (CONV) layers, the Receptive Field (RF) is a spatial neighborhood around a neuron in a

channel connected by a shared weight kernel to the next layer’s neurons. The pooling layer is utilized to reduce the size of its preceding CONV layer

feature map by a pooling window. Each neuron in a fully connected (FC) layer are connected to all the neurons in its previous layer. The outputs of

the final layer indicate the image object recognition result.

FIGURE 2

Input–output relationships of (A) the ReLU neuron, (B) the basic LIF neuron, and (C) the quantized ReLU approximation based on rounding (Deng and

Gu, 2021). In (A), when the input z > 0, the output y = z, otherwise y = 0. In (B), zS is the integrated membrane across the total time steps and Vth is

the threshold. In (C), zQ, yQ are the input and output of the quantized ReLU function based on rounding.

with xsi being the total count of input spikes via synapse i.

Equation (3a) is depicted in Figure 2B.

3. Materials and methods

3.1. Motivation

From the similarities between Eqs. (1) and (3) and between

Figures 2A, B, it appears that the LIF neuron can be used

to approximate the ReLU function by treating its pre- and

postsynaptic spike rates or counts xsi, ys as ReLU’s input and output

values xi, y. The leakage term -λT in Equation (3b) acts as the bias

b in Equation (1b). Thus, we can first train a deep ANN using

standard BP, and then export the learned weights and biases to a

structurally equivalent SNN of LIF neurons for inference.

However, there are three challenges hindering such a direct

ANN-to-SNN conversion:

1) The input and output spike counts of the LIF neuron are

discrete integers, while ReLU allows continuous-valued inputs and

output. Particularly, the ys in Figure 2B is a scaled (by the factor

of 1/V th) and staircase-like approximation of the ReLU output y

in Figure 2A. To reduce their discrepancy, a long time window is

often needed to generate sufficient output spikes, resulting in a high

inference latency.

2) Due to the extra temporal dimension of the LIF neuron,

Equation (3a) may be significantly violated sometimes. As

illustrated in Figure 3, the earlier input spikes via positive synaptic

weights trigger output spikes, which could not be canceled out

by later input spikes via more negative synaptic weights, as the

information accumulated into the negative Vm of the LIF neuron

cannot be passed on to other neurons via any output spikes.

Therefore, even when the LIF neuron has weights and inputs values

xsi = xi identical to those of the ReLU neuron, with a leakage

constant set to be λ = -b/T, LIF output spike count ys still severely

deviates from ReLU output y and largely violates Equation (3a).

3) Note that there is a floor(zs/V th) operation in Equation

(3a) due to the discrete fire thresholding mechanism, leading to a

shift of V th/2 along the positive zs axis in Figure 2B, compared to

the rounding-based quantized ReLU approximation as shown in

Figure 2C (Deng and Gu, 2021). Indeed, a better approximation

to the ReLU neuron expects a round operation instead of the

floor function to obtain statistically zero-mean quantization errors

(Deng and Gu, 2021).

To overcome the first challenge, we can leverage QAT

ANN training toolkits to produce an ANN with low-precision

ReLU outputs, while minimizing the accuracy loss compared to

a full-precision ANN. The complete QAT-based ANN-to-SNN

framework is proposed in Section 3.3. For the other two challenges,

we propose a Ca-LIF neuron model. It reserves the spike-based

event-driven nature of a biological neuron, while mathematically

better aligning with the (quantized) ReLU curve regardless of the

input spike arrival order, as introduced later.

Frontiers inNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2023.1141701
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gao et al. 10.3389/fnins.2023.1141701

FIGURE 3

Comparison of the input–output relationships of the ReLU neuron, the basic LIF neuron, and the proposed Ca-LIF neuron.

TABLE 1 Benchmark datasets.

Dataset Pixel resolution # of categories Training samples Testing samples

MNIST 28× 28 10 60,000 10,000

CIFAR-10 32× 32 10 50,000 10,000

CIFAR-100 32× 32 100 50,000 10,000

Caltech-101∗ 128× 128 101 6162 1695

Tiny-ImageNet 64× 64 200 100,000 10,000

∗Resized from original 300 × 200 resolution. A Difference-of-Gaussian (DoG) filter is applied to each of the red, green, and blue channels, before the pixels are encoded into spike trains.
#Number of categories.

3.2. The proposed Ca-LIF spiking neuron
model

We proposed the Ca-LIF spiking neuron model to correct the

output mismatches between the basic LIF model and the quantized

ReLU function, as exhibited in Figure 3. It performs the same

leaking and integration operations as in Equation (2) but employs

a slightly different firing mechanism. The Ca-LIF neuron holds

symmetric thresholds V th > 0 and -V th < 0. Once its Vm up-

crosses V th, or down-crosses -V th with the gating condition yS(t-

1) > 0 satisfied, the neuron fires a positive or negative spike,

respectively, where yS in the Ca-LIF neuron represents signed

output of the spike count. i.e., the positive output spike countminus

the positive negative spike count. Actually, ys resembles the calcium

ion concentration (Ca+) in a biological neuron (Brader et al., 2007).

Note that if a Ca-LIF neuron receives a negative spike sent by

another neuron via its synapse i, -wi is instead integrated onto the

Vm in Equation (2). This neuron resets by adding V th to the Vm

after it fires a negative output spike.

Moreover, as mentioned earlier, the spiking neuron should

perform a rounding function to replace the floor operation on

(zs/V th) in Equation (3a) to better align with the quantized ReLU

behavior. Mathematically, the Ca-LIF neuron should execute:

yS = fLIF(zS) = max(0, round(zS/Vth)) (3c)

To achieve this, after all the spike events input to the SNN

composed of Ca-LIF neurons have been processed, each Ca-LIF
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FIGURE 4

The testing accuracies of the SNNs (T = 128) converted from quantized ANNs. The numeric in the bracket below the accuracy is the loss of the

converted SNN compared with the corresponding quantized ANN.

neuron in the first SNN layer with their Vm between V th/2 ∼ V th

(or between -V th ∼ -V th/2, and yS > 0) is a force to fire a positive (or

negative) spike. These rounding spikes propagate to other Ca-LIF

neurons in subsequent layers, trying to trigger their own rounding

spikes based on their halved thresholds ±V th/2. This progresses

until the final layer is completed.

3.3. QAT-based ANN-to-SNN conversion
framework

Using the aforementioned Ca-LIF neurons, we now propose

the details of the simple QAT-based ANN-to-SNN conversion

framework. First, utilize any off-the-shelf QAT toolkit available

to train a deep quantized ANN. Next, export the learned ANN

weights to an SNN composed of Ca-LIF neurons organized in the

same network structure as the ANN, and analytically determine the

neuron thresholds. Typically, a QAT toolkit would provide the low-

bit precisionmantissawQ
i associated with a scaling factor Sw of each

learned quantized weight in the ANN, as well as the bias b, the input

and output scaling factors Sx and Sy of the neurons. One quantized

ReLU neuron performs inference with its such learned parameters

as follows:

yQ = max(0, round(
∑
i

(Sww
Q
i )(Sxx

Q
i )+b

Sy
))

= max(0, round(
∑
i

w
Q
i x

Q
i +b/SwSx
Sy/SwSx

)) (4)

Wherein the superscript Q denotes quantized. By comparing

the forms of Equations (3c) and (4), it can be found that, if we

simply set

Vth = Sy/(SwSx), λ = −b/(SwSxT) (5)

for a Ca-LIF neuron, it can seamlessly replace the quantized

ReLU neuron and reproduce its input–output relationship of

Figure 2C in the form of spike counts, with exactly the same

learned weights.

In addition, one neuron in an average pooling layer of the

quantized ANN performs a quantized linear operation as follows:

yP = round(
∑

j∈PW

yQ
j
/p2) (6)

where PW denotes the set of ReLU neurons in the p× p pooling

window connecting to the pooling neuron. Such pooling neuron

can also be approximated by our Ca-LIF neuron but without the ys
gating constraint on negative firing, and with its V th being p2, the

leakage constant λ being 0, and all synaptic weights being 1.

4. Experiments

4.1. Benchmark datasets

We evaluated our method on five image datasets: MNIST,

CIFAR-10, CIFAR-100, Caltech-101, and Tiny-ImageNet. Their

image resolution, number of object categories, as well as the

training/testing subsets partition are listed in Table 1. The MNIST

dataset contains 28× 28 handwritten digit images of 10 classes, i.e.,

0–9. It is divided into 50,000 training samples and 10,000 testing

samples. The CIFAR-10 dataset contains 10 object classes, including

50,000 training images and 10,000 testing images with an image

size of 32 × 32. For CIFAR-100, it holds 100 object classes, each

owning 500 training samples and 100 testing samples. The Caltech-

101 dataset consists of 101 object categories, each of which holds

40–800 image samples with a size of 300 × 200 pixels. The Tiny-

ImageNet benchmark is composed of as many as 200 object classes,

each of which has 500 training samples and 50 testing samples with

an image size of 64× 64.
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FIGURE 5

The inference accuracy performance of the converted VGG-16 SNN on the CIFAR-10 and CIFAR-100 datasets using varying numbers of time-steps.

We employed the inter-spike interval (ISI) coding method

(Guo et al., 2021) to encode pixel values into spikes. The pixel

brightness Pix (for color images, this refers to the color component

in each of the red, green, and blue channels) was converted to

a spike train with N spikes in a T time-step window, with N

= floor(α · T· Pix / Pix_max), where function floor(x) returned

the biggest integer no larger than x, Pix_max was the maximum

value a pixel could reach (for 8-bit image pixels which used in

our work, Pix_max = 255), and α ≤ 1 controlled the spike rate,

which was set to 1 throughout our experiments unless otherwise

stated. The n-th spike happened at time step tn = floor(n ·

tint), where tint = T / (α· T· Pix / Pix_max) = Pix_max /

(α·Pix) ≥ 1 was the temporal interval (non-rounded) between

two successive spikes. In particular, the brightest pixel value of

255 would be converted to a spike train of totally N = floor(α·

T · 255/255) = T spikes with tint = α = 1. In other words, its

converted spike train reached the maximum rate of one spike per

time step.

4.2. Network structure configuration

We adopted five typical deep network structures to evaluate

our Ca-LIF spiking neuron and ANN-to-SNN framework: (1)

Lenet-5 (Lecun et al., 1998), (2) VGG-9 (Lee et al., 2020), (3)

ResNet-11H, which only kept half of the channels in each CONV

layer of the Resnet-11 (Lee et al., 2020), and (4) MobileNet-

20, a reduced version of MobileNetV1 (Howard et al., 2017)

with the original 16th – 23rd CONV layers removed, and (5)

VGG-16. We modified all pooling layers in these networks to

perform average pooling. Moreover, for each network, the kernel

size in its first layer and the number of neurons in its last

FC layer had to accommodate the image size (i.e., the image

resolution and number of color channels) and the number

of object categories, respectively, when coping with different

image datasets.

4.3. Recognition accuracy

In our experiments, we leveraged the off-the-shelf PyTorch

QAT toolkit (PyTorch Foundation, 2022) to train deep ANNs of the

aforementioned five neural network structures, and then exported

the learned parameters to construct structurally equivalent SNNs

for inference. The learned weights were directly translated to the

synaptic weights of SNN Ca-LIF neurons, while other parameters

like the biases and quantization scaling factors were used to

determine the thresholds and leakages of Ca-LIF neurons according

to Equation (5).

The PyTorch QAT toolkit quantized the inputs, outputs, and

weights of the ANN neurons all into a signed 8-bit format

during training. Note that we can freely leverage any other

available QAT toolkit supporting other ANN activation bit-

precisions, including binary and ternary activations. We employed

the standard stochastic gradient descent method to train ANNs

with a momentum of 0.9. The batch normalization (BN) (Ioffe and

Szegedy, 2015) technique was also employed in the QAT training

to improve the accuracy performance of some deep networks on

complex datasets. The BN layers’ parameters were updated with

other parameters in a unified QAT process and were already

incorporated into the convolution layers’ biases and quantized 8-

bit weights before being exported to SNNs. The training of the QAT

starts from scratch rather than relying on transferring learning. For

converted SNN inference, we set T = 128 time steps as the baseline

spike encoding window length. The testing accuracies of the SNN

(T = 128) under each network structure configuration in Section

4.2 are demonstrated in Figure 4. These results indicated that

our ANN-to-SNN conversion framework along with the proposed

Ca-LIF neuron model achieved competitively high recognition

performance. Indeed, the accuracy gap of the converted SNNs

(T = 128) and their pre-conversion quantized ANN counterparts

was negligibly below 0.04%. The results of experiments on

MNIST, CIFAR-10, CIFAR-100, Caltech-101, and Tiny-ImageNet

demonstrate the superiority and universality of our method.
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TABLE 2 Accuracy comparison between our and other ANN-to-SNN conversion methods.

Dataset Ref. Network
Structure

Spiking
Neuron
Model

# of
Time-Steps

SNN Acc. Full-
precision

ANN Acc.

Acc. Loss
ANN%
-SNN%)

MNIST Diehl et al. (2015) LeNet-5 IF∗ 500 99.12% 99.14% 0.02%

Sengupta et al. (2019) LeNet-5 IF∗ 2500 99.59% 99.57% −0.02%

Hu et al. (2021) ResNet-8 IF∗∗ 350 99.59% 99.59% 0.00%

Ours LeNet-5 Ca-LIF∗∗ 128 99.09% 99.07% -0.02%

Ours VGG-9 Ca-LIF∗∗ 128 99.62% 99.59% -0.03%

Ours ResNet-11H Ca-LIF∗∗ 128 99.52% 99.48% -0.04%

Ours MobileNet-20 Ca-LIF∗∗ 128 99.54% 99.48% -0.06%

CIFAR-10 Diehl et al. (2015) ResNet-11 IF∗ 500 90.98% 91.87% 0.82%

Sengupta et al. (2019) ResNet-11 IF∗ 2500 91.65% 91.87% 0.22%

Kundu et al. (2021) ResNet-12 LIF∗∗ 100 90.79% 92.04% 1.25%

Diehl et al. (2015) VGG-9 IF∗ 500 91.89% 91.98% 0.09%

Sengupta et al. (2019) VGG-9 IF∗ 2500 92.01% 91.98% −0.03%

Kundu et al. (2021) VGG-11 LIF∗∗ 100 89.84% 91.57% 1.73%

Sengupta et al. (2019) ResNet-20 IF∗ 2500 87.46% 89.10% 1.64%

Han et al. (2020) ResNet-20 IF∗∗ 2048 91.36% 91.47% 0.11%

Bu et al. (2022) ResNet-20 IF∗∗ 64 92.35% N/A N/A

Deng and Gu, 2021)

ResNet-20 IF∗∗ 128 93.56% 92.31% −1.25%

Li et al. (2021a) ResNet-20 IF∗∗ 128 95.42% 95.46% 0.04%

Sengupta et al. (2019) VGG-16 IF∗ 2500 91.55% 91.70% 0.15%

Han et al. (2020) VGG-16 IF∗∗ 2048 93.63% 93.63% 0.01%

Bu et al. (2022) VGG-16 IF∗∗ 32 95.54% N/A N/A

Deng and Gu, 2021)

VGG-16 IF∗∗ 128 92.24% 92.09% −0.15%

Li et al. (2021a) VGG-16 IF∗∗ 128 95.65% 95.72% 0.07%

Hu et al. (2021) ResNet-110 IF∗∗ 350 93.02% 93.47% 0.45%

Li et al. (2021a) MobileNet IF∗∗ 128 91.70% 92.48% 0.78%

Ours LeNet-5 Ca-LIF∗∗ 128 78.44% 78.70% 0.26%

Ours VGG-9 Ca-LIF∗∗ 128 93.63% 93.71% 0.08%

Ours ResNet-11H Ca-LIF∗∗ 128 93.58% 93.52% -0.06%

Ours MobileNet-20 Ca-LIF∗∗ 128 91.71% 92.20% 0.49%

Ours VGG-16 Ca-LIF∗∗ 128 93.68% 94.02% 0.34%

CIFAR-100 Kundu et al. (2021) ResNet-12 LIF∗∗ 120 63.02% 63.52% 0.50%

Sengupta et al. (2019) ResNet-20 IF∗ 2500 64.09% 68.72% 4.63%

Han et al. (2020) ResNet-20 IF∗∗ 2048 67.82% 68.72% 0.9%

Deng and Gu, 2021)

ResNet-20 IF∗∗ 128 69.49% 67.08% −2.41%

Kundu et al. (2021) VGG-11 LIF∗∗ 100 64.98% 67.40% 2.42%

Sengupta et al. (2019) VGG-16 IF∗ 2500 70.77% 71.22% 0.45%

Han et al. (2020) VGG-16 IF∗∗ 2048 70.93% 71.22% 0.29%

(Continued)
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TABLE 2 (Continued)

Dataset Ref. Network
Structure

Spiking
Neuron
Model

# of
Time-Steps

SNN Acc. Full-
precision

ANN Acc.

Acc. Loss
ANN%
-SNN%)

Deng and Gu, 2021)

VGG-16 IF∗∗ 128 70.47% 70.62% 0.15%

Hu et al. (2021) ResNet-110 IF∗∗ 350 70.62% 72.03% 1.45%

Li et al. (2021a) MobileNet IF∗∗ 128 71.02% 73.23% 2.21%

Ours VGG-9 Ca-LIF∗∗ 128 65.95% 67.48% 1.53%

Ours ResNet-11H Ca-LIF∗∗ 128 69.36% 69.55% 0.19%

Ours MobileNet-20 Ca-LIF∗∗ 128 68.20% 69.25% 1.05%

Ours VGG-16 Ca-LIF∗∗ 128 72.85% 72.47% -0.38%

Tiny-

ImageNet

Kundu et al. (2021) VGG-16 LIF∗∗ 150 52.70% 57.00% 4.3%

Ours VGG-9 Ca-LIF∗∗ 128 52.80% 54.39% 1.59%

Ours ResNet-11H Ca-LIF∗∗ 128 53.18% 54.26% 1.08%

Ours MobileNet-20 Ca-LIF∗∗ 128 59.70% 60.7% 1.00%

∗Using hard-reset mechanism, i.e., reset by clearing Vm to 0. ∗∗Using soft-reset mechanism, i.e., reset by subtracting Vth from Vm (and by adding Vth to Vm upon a negative firing, as in our

Ca-LIF neuron model). The bold values indicate the performance of our ANN-SNN conversion method. #Number of Time-steps.

TABLE 3 Testing accuracies of the SNNs on CIFAR-10 with di�erent time steps.

Network
structure

Ref. Full-precision

ANN Acc.

T = 8 T = 16 T = 32 T = 64 T = 128

VGG-16 Han et al. (2020) 93.63% - - 60.30% 90.35% 92.41%

Han and Roy (2020) 93.63% - - - 92.79% 93.27%

Ding et al. (2021) 92.82% - 57.90% 85.40% 91.15% 92.51%

Deng and Gu, 2021) 92.09% - 92.29% 92.29% 92.22% 92.24%

Li et al. (2021a) 95.72% - - 93.71% 95.14% 95.65%

Bu et al. (2022) 95.52% 94.95% 95.40% 95.54% 95.55% 95.59%

Li et al. (2022b) 95.60% 91.41% 93.64% 94.81% - -

Ours 94.02% 80.28% 90.35% 93.10% 93.32% 93.68%

The bold values indicate the testing performance of our conversion SNN on CIFAR-10 with different time steps.

Moreover, to evaluate the accuracy vs. latency (i.e., the number

of inference time steps) tradeoff of our converted SNNs, Figure 5

depicts the accuracies of our converted VGG-16 SNN on the

CIFAR-10 and CIFAR-100 image datasets under different time

window length configurations with varying time steps of T = 8 to

512. The accuracies saturate above T = 128, as we utilized a signed

8-bit activation for the pre-conversion quantized ANN. A more

elaborate work comparison and discussion about this is provided

in Section 4.4.

4.4. Work comparison and discussion

Table 2 compares our work with other previous ANN-to-SNN

conversion research. Since a quantized ANN itself may suffer a bit

lower accuracy (sometimes a little higher) than its full-precision

version, we also trained and tested the recognition accuracies of

full-precision ANNs using the aforementioned network structures

for a fair comparison, and further evaluated the accuracy loss

between the converted SNNs and corresponding full-precision

ANNs.

For the MNIST dataset, the accuracies of our SNNs are a little

higher than full-precision ANNs due to the higher accuracies of

the QAT-trained ANNs. When it comes to CIFAR-10, the accuracy

of our VGG-9 (93.63% for T = 128) surpasses those provided by

Diehl et al. (2015), Sengupta et al. (2019), and Kundu et al. (2021).

Using fewer time steps, our ResNet-11H on CIFAR-10 (93.58% for

T =128) exceeds those using the same structure provided by Diehl

et al. (2015) and Sengupta et al. (2019) and the deeper ResNet

structure provided by Sengupta et al. (2019), Han et al. (2020), Hu

et al. (2021), and Deng and Gu (2021). As compared to Bu et al.

(2022) (92.35% for T = 64), our ResNet-11H (93.44% for T =

64) also has a better performance. The reason that the accuracy

of our ResNet-11H is lower than that of Deng et al. (2022) will

be discussed in section 4.4. The accuracy of our MobileNet-20 is

slightly superior to that of Li et al. (2021a), while our VGG-16 on

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1141701
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Gao et al. 10.3389/fnins.2023.1141701

TABLE 4 Testing accuracies of the SNNs on CIFAR-100 with di�erent time steps.

Network
structure

Ref. Full-precision

ANN Acc.

T = 8 T = 16 T = 32 T = 64 T = 128

VGG-16 Han et al. (2020) 71.22% - - - - 63.76%

Han and Roy (2020) 71.22% - - - - 69.86%

Deng and Gu (2021) 70.49% - 65.94% 69.80% 70.35% 70.47%

Li et al. (2021a) 77.89% - - 73.55% 76.64% 77.40%

Bu et al. (2022) 76.28% 73.96% 76.24% 77.01% 77.10% 77.05%

Li et al. (2022b) 77.93% 64.13% 72.23% 75.53% - -

Ours 72.47% 58.58% 66.32% 71.71% 72.68% 72.85%

The bold values indicate the testing performance of our conversion SNN on CIFAR-10 with different time steps.

CIFAR-10 is preferable to Sengupta et al. (2019) and Han et al.

(2020) in terms of both accuracy and latency (i.e., number of

time steps). The accuracy of our VGG-16 is a little lower than

that provided by Bu et al. (2022) and Li et al. (2021a) due to

their high-accuracy baseline full-precision ANN, while our method

relies on the QAT framework which produces a less-accurate

ANN model for conversion. Fortunately, our method requires no

complex operations like modifying the loss function mentioned

by Bu et al. (2022) or post-processing calibrations mentioned by

Li et al. (2021a). For the CIFAR-100 dataset, our ResNet-11H

SNN also transcends more complex ResNet structures (Sengupta

et al., 2019; Han et al., 2020; Hu et al., 2021) while falling behind

(Deng and Gu, 2021). The accuracy and the latency metrics of our

VGG-16 on CIFAR-100 outperform those using the same network

architecture (Sengupta et al., 2019; Han et al., 2020; Deng and Gu,

2021).

Regarding the Tiny-Image-Net dataset, the overall performance

(accuracy, latency, and ANN-to-SNN accuracy loss) of all our

networks defeat those of Kundu et al. (2021).

In general, Table 2 indicates that our SNNs converted

from QAT-trained ANNs can achieve competitively high

recognition accuracies across all the used network structures

on the benchmark image datasets, when compared to the

similar network topologies used in other studies. Our SNN

accuracy loss with respect to the corresponding full-precision

ANNs also keeps as low as that of other studies. Moreover,

in our study, the low-precision data quantization in ANNs

allows an intermediate temporal window of T = 128 time

steps for the converted SNNs to complete inference at an

acceptable computational overhead on potential neuromorphic

hardware platforms.

Table 3 Further uses the VGG-16 structure and CIFAR-10

dataset to test the accuracies of our converted SNNs with varying

time steps and compares them with some recent ANN-to-SNN

conversion researches. Our study surpasses Han et al. (2020), Han

and Roy (2020) and Ding et al. (2021) totally under all time-step

configurations. Our SNN accuracy is still comparably competent

when using a relatively short time length of T = 32 time steps.

However, when the time window is as extremely short as T = 16

or 8, our SNN accuracies start to obviously lag the ones obtained

by Deng and Gu (2021), Bu et al. (2022), and Li et al. (2022b).

Similar conclusions can be drawn from Table 4, where our study

is compared with other studies on the SNN accuracies on the

more challenging CIFAR-100 dataset. Our SNN accuracies are

comparable to the others when T is 32 time steps or longer,

but obviously lower for T = 8 and 16 time steps. We deem

this accuracy degradation as the cost of adopting an off-the-shelf

QATANN training toolkit without dedicated optimizations toward

low-latency inference as employed in Deng and Gu (2021), Bu

et al. (2022), and Li et al. (2022b). The recently emerged direct

SNN training methods can also reach a relatively high accuracy

while consuming much fewer time steps <10 (Guo et al., 2021,

2022a,b,c,d; Deng et al., 2022; Kim et al., 2022; Li et al., 2022a).

However, evaluating direct SNN training methods is out of the

scope of this article.

The concept of a negative spike has also been proposed by

Kim et al. (2020). However, this work differs from theirs mainly

in two aspects. First, the neuron model by Kim et al. (2020)

has no membrane potential leakage. Rather, it adopts an extra

constant input current to represent the bias term in the ANN

ReLU. By contrast, our Ca-LIF model naturally incorporates the

bias term in the more bio-plausible leakage term. Second and more

importantly, the purposes of firing negative spikes are different.

The negative spike mentioned by Kim et al. (2020) is only for

modeling the negative part of the leaky-ReLU unit widely required

in object detection, while our Ca-LIF neuron uses negative spikes

to counter-balance the early emitted positive spikes so that when

the net input zs in Equation (3b) aggregated over the entire

time window T is negative, the final signed spike count can be

zero, which thus closely emulates the quantized ReLU function

in classification tasks, as explained in Section 3.1 and 3.2. Some

previous ANN-to-SNN works do not adopt such methods but

employed more complex threshold/weight balancing operations

required to compensate for the early emitted positive spikes (Diehl

et al., 2015; Rueckauer et al., 2017; Han et al., 2020; Ho and Chang,

2021; Liu et al., 2022). In this regard, although judging the sign

of the spikes puts forward marginally additional computational

overhead, it considerably eliminates the tedious post-conversion

steps like threshold/weight balancing.

One limitation of the proposed QAT ANN-to-SNN conversion

framework, as well as other ANN-to-SNN conversion methods,

is that the input spike coding can only employ a rate-coding

paradigm, where input spike frequency or count is proportional to

the pixel intensity to be encoded. This requires multiple to dozens

of spikes for each pixel. These ANN-to-SNN conversion methods

cannot accommodate the more computationally efficient temporal
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coding scheme (Mostafa, 2018), where each pixel is encoded

into only one spike whose precise emission time is conversely

proportional to the pixel intensity, and each neuron in the SNN

is only allowed to fire at most once in response to an input sample.

However, as mentioned earlier, since our method can adapt to any

available QAT training toolkit, we can resort to those supporting

binary or ternary activations, so that the total spikes propagated

through our converted SNNs would be largely reduced, with the

required inference time window length considerably shortened.

Therefore, the gap between the computational overheads of our

converted SNNs and the one mentioned by Mostafa (2018) using

temporal coding can be well bridged.

5. Conclusion

This study proposes a ReLU-equivalent Ca-LIF spiking

neuron model and a QAT-based ANN-to-SNN conversion

framework requiring no post-conversion operations, to achieve

comparably high SNN accuracy in object recognition tasks with

an intermediately short temporal window ranging from 32 to

128 time steps. We employed an off-the-shelf PyTorch QAT

toolkit to train quantized deep ANNs and directly exported the

learned weights to SNNs for inference without post-conversion

operations. Experimental results demonstrated our converted

SNNs of typical deep network structures can obtain competitive

accuracies on various image datasets compared to previous studies

while requiring a reasonable number of time steps for the inference.

The proposed approach might also be applied to deploy deeper

SNN architectures such as MobileNetv2 and VGG-34. Our future

research will also include hardware implementation for SNN

inference based on our Ca-LIF neurons.
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