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An in-silico framework for
modeling optimal control of
neural systems

Bodo Rueckauer* and Marcel van Gerven

Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behavior, Radboud
University, Nijmegen, Netherlands

Introduction: Brain-machine interfaces have reached an unprecedented capacity
to measure and drive activity in the brain, allowing restoration of impaired sensory,
cognitive or motor function. Classical control theory is pushed to its limit when
aiming to design control laws that are suitable for large-scale, complex neural
systems. This work proposes a scalable, data-driven, unified approach to study
brain-machine-environment interaction using established tools from dynamical
systems, optimal control theory, and deep learning.

Methods: To unify the methodology, we define the environment, neural system,
and prosthesis in terms of di�erential equations with learnable parameters,
which e�ectively reduce to recurrent neural networks in the discrete-time case.
Drawing on tools from optimal control, we describe three ways to train the
system: Direct optimization of an objective function, oracle-based learning, and
reinforcement learning. These approaches are adapted to di�erent assumptions
about knowledge of system equations, linearity, di�erentiability, and observability.

Results: We apply the proposed framework to train an in-silico neural system to
perform tasks in a linear and a nonlinear environment, namely particle stabilization
and pole balancing. After training, this model is perturbed to simulate impairment
of sensor and motor function. We show how a prosthetic controller can be
trained to restore the behavior of the neural system under increasing levels of
perturbation.

Discussion: We expect that the proposed framework will enable rapid and flexible
synthesis of control algorithms for neural prostheses that reduce the need for in-
vivo testing. We further highlight implications for sparse placement of prosthetic
sensor and actuator components.

KEYWORDS

control theory, reinforcement learning, dynamical systems, neurotechnology, neural

prosthesis

1. Introduction

Closed-loop recording and stimulation in neurotechnology is becoming increasingly

feasible (Roelfsema et al., 2018) and calls for algorithmic advances in developing adaptive,

self-calibrating feedback controllers (Ritt and Ching, 2015). Together with patient-specific

models of neural systems, closed-loop controllers have the potential to tackle many of

the challenges identified within the NeurotechEU initiative1, including long-term stable

prosthetics and precise neuromodulation in digital brain health pipelines. However, studies

in human and animal models come with a number of practical and ethical hurdles

that motivate the development of algorithms in simulation prior to deployment in a

clinical setting.

1 https://theneurotech.eu/mission-vision/
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Wepropose a control-theoretic framework to study the stability

and controllability of biologically motivated artificial neural

systems (Sussillo, 2014) embedded in simulated environments.

From a high-level perspective, this framework models the brain-

machine-environment interaction. We first consider the problem

of modeling a neural system to perform a behavioral task in

a virtual environment. In the language of control theory, the

neural system forms a feedback controller in closed loop with the

environment process. In a second step, we simulate a deterioration

of the neural system (e.g., at the sensor or actuator) and add

a secondary controller (a prosthesis) with the goal to restore

behavioral function. In doing so, we account for uncertainty in the

model of the brain, nonlinearities, measurement noise, and limited

availability of observable states and controllable neurons.

Neural systems, from single neurons to large-scale populations,

are characterized by complex dynamics that can be challenging

to model and control (Ritt and Ching, 2015). Classical control

theory (Khalil, 2002; Brunton and Kutz, 2017; Astrom and

Murray, 2020) provides powerful tools for designing control

laws and has found numerous applications in neurotechnology,

for instance in closed-loop brain-machine interface (BMI)

control of robotic arms or computer cursors (Shanechi et al.,

2016), model-predictive control for epileptic seizure mitigation

(Chatterjee et al., 2020), and a mechanistic explanation of the

brain’s transition between cognitive states (Gu et al., 2015).

A particularly successful application of closed-loop control is

the treatment of Parkinson’s disease via deep brain stimulation.

There, pathological beta-band oscillatory activity can be suppressed

at a desired target level using threshold-based, proportional-

integral, or self-tuning controllers (Fleming et al., 2020a,b). A

canonical approach linking control theory to neuroscience and

biomedicine has been established by Schiff (2011), where models

of spatiotemporal cortical dynamics are combined with Kalman

filters to estimate unobserved states and track unknown or drifting

model parameters. Groups in the neuromorphic community have

recently contributed to this work by implementing biologically

plausible operations and learning rules for state-estimation and

control (Friedrich et al., 2021; Linares-Barranco et al., 2022),

as well as neuromorphic BMI circuits (Donati and Indiveri,

2023), which promise better biocompatibility at low-power

operation.

Some of the challenges recurring in many of the mentioned

approaches are the assumption of linear (-izable) or lower-

dimensional systems, knowledge of the underlying dynamics, or

availability of a desired target state (as in DBS for Parkinson’s

disease). The present paper makes two main contributions

addressing these limitations. First, we propose the consistent use

of dynamical systems to model the brain, the environment, and

the prosthesis. Aside from unifying the methodology, this choice

enables flexible experimentation with models of varying degrees of

realism. Here we showcase the use of recurrent neural networks

(RNNs) as simple, highly scalable building blocks for both the

neural system and the prosthesis. Second, we stepwise remove

the assumptions of linearity, system knowledge, full observability,

and supervised target state, by using reinforcement learning

(RL) (Sutton and Barto, 2020) both for system identification and

synthesizing the prosthesis controller.

Reinforcement learning is particularly suited for the proposed

in-silico control framework because in general we cannot assume

knowledge of the environment and brain dynamics, and may

only have access to some observations from the environment, the

actuator output from the neural system, plus perhaps a temporally

sparse reward signal. Even operating under these constraints, RL

in principle enables learning arbitrarily complex nonlinear models.

In Q-learning (Watkins and Dayan, 1992), a strategy underlying

many state-of-the-art RL algorithms, an agent learns a control

policy that optimizes a Hamilton-Jacobi-Bellman equation online

and without knowing the system dynamics. In optimal control

theory, equations of this type are solved analytically (offline and

assuming system knowledge) to derive optimal controllers. This

common class of equations forms the link between RL and optimal

control (Lewis et al., 2012). Examples for the use of RL in neural

control include (Pohlmeyer et al., 2014; Sussillo et al., 2016) (in

vivo), Wülfing et al. (2019) (in vitro), Mitchell and Petzold (2018)

and Castaño-Candamil et al. (2019) (in silico). These studies show

great promise of RL to reduce the need for repeated calibration and

instead adapt controllers autonomously to changes in the neural

code or the sensor/actuator space.

A distinguishing feature of our approach is the unified

treatment of environment, brain, and prosthesis as dynamical

systems using (stochastic) differential equations. Most of previous

work focused either on the brain-environment loop (e.g., to model

neuronal dynamics) (Schiff and Sauer, 2008; Sauer and Schiff,

2009), or on the brain-prosthesis loop (e.g., to train a neural

decoder to control a prosthetic limb) (Héliot et al., 2010; Kumar

et al., 2013; Lagang and Srinivasan, 2013). Combining the two loops

as proposed here enables end-to-end optimization of the brain

model and controller, with adaptation to noise or deterioration

appearing in any of the subsystems. The proposed framework

provides a substrate for neural control engineering to test new

computational models of brain function (Wander and Rao, 2014),

exploit recent advances in brain-inspired RL (Botvinick et al.,

2020), safe RL (García and Fernández, 2015; Gu et al., 2022), few-

shot learning (Wang et al., 2020), and continual learning (Parisi

et al., 2019; Traoré et al., 2019; van de Ven et al., 2020; Wang et al.,

2021).

2. Materials and methods

2.1. Using dynamical systems to model the
brain-machine-environment interaction

Before considering the full brain-machine-environment loop,

we first concentrate on the unimpaired case and model how

an agent (represented by its neural system) interacts with the

environment to generate meaningful behavior. From a high-

level perspective (Figure 1), the neural system transforms state

observations yE from the environment into motor commands uE.

Both the neural system and the environment can be modeled by

controlled stochastic differential equations (SDEs) of the form

dx = µ(x, u)dt + σ (x, u)dw , (1)
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FIGURE 1

Classical agent-environment loop, where a neural system interacts
with its environment by observing its states and applying feedback
control. Here, the deterministic case is shown for simplicity; see
Equation (1) for the stochastic form.

Where the drift µ models the evolution of the states x under

some external input u and the diffusion σ models how Brownian

noise w enters the system. In the absence of noise, the model

reduces to the ordinary differential equation ẋ = µ(x, u).

So far, we formulated the system dynamics as continuous

differential equations. Various discretization methods can be

applied for the purpose of simulating the system dynamics on

digital hardware or solving for the states x numerically. A common

approximation for SDEs is afforded by the Euler-Maruyama

method. Starting from some initial value x0, the solution is

recursively defined as

xt+1 = xt + 1t · µ(xt , ut)+ 1wt . (2)

Here, 1t = T/N is the step size obtained by dividing the

integration interval T into N steps. The noise term 1wt is drawn

from a normal distribution N(0,1t · S) with S = 6p6
T
p . Here we

assume a fixed diffusion matrix σ (x, u) = 6p with 6p the process

noise covariance.

Closed-loop control of a dynamical system requires observing

its states. In real-world scenarios, one typically has access to just a

subset of the states, which may moreover be perturbed by sensory

noise. The resulting observations can be described as

y = g(x)+ ǫ, (3)

Where g(x) could be a matrix-vector product Cx and ǫ ∼

N(0,6o) with 6o the observation noise covariance.

2.2. Example environments

To illustrate the general applicability of the concepts developed

in this paper, we introduce one linear and one nonlinear example of

dynamical systems, which will be used to represent an environment

for the neural system to act in.

2.2.1. Double integrator for particle control
A canonical example from control theory is the double

integrator, which models the dynamics of a particle in a

one-dimensional space under the influence of an external force

u. The environment’s states are given by the particle’s position q

and velocity q̇. Their dynamics are determined by the differential

equation q̈(t) = u(t), which identifies the particle acceleration

with the control force. For the stochastic double integrator, the

combined state x = (q, q̇) evolves according to

dx =

([

0 1

0 0

]

x+

[

0

1

]

u

)

dt + 6pdw . (4)

Given a moving particle away from the origin (x(0) 6= 0),

the task of the neural system consists in determining the sequence

of motor commands u(t) that force the particle to the origin and

stabilize it there (x(0) = 0). The task can be made more challenging

by increasing the process noise covariance and by allowing the

neural system to observe only a noisy version of the position but

not the velocity:

y =
[

1 0
]

x+ ǫ . (5)

We will discuss ways to solve this task in Section 2.4 below.

2.2.2. Balancing an inverted pendulum
Another classic benchmark for control algorithms is the

inverted pendulum, or cartpole balancing problem (Barto et al.,

1983). It consists of a cart with a pole attached that has its center of

mass above the pivot point. The task is tomove the cart horizontally

so as to keep the pole in its unstable vertical position.When limiting

the pendulum to one degree of freedom, the system has four states:

cart position x, velocity ẋ, pole angle θ , and angular velocity θ̇ . The

system is nonlinear: In absence of control forces, the angle evolves

as θ̈ =
g
l
sin θ with standard gravity g and pole length l. Thus,

d
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



dt + 6pdw . (6)

2.3. Analytic solution of known linear
systems

For a linear system with known dynamics, an optimal direct

feedback controller can be derived analytically. The central idea

is that the controller should minimize the squared deviation of

states from their desired values, while expending the least amount

of energy to do so. In the case of static target states, the problem

is called Linear Quadratic Regulator (LQR), with the quadratic cost

function

J =

∫

(xTQx+ uTRu)dt . (7)

The matrices Q,R weigh the contribution of individual states

and controls to the overall cost. In general, adjusting these

parameters to a particular problem can be challenging; for the

particle control we find a uniform weighting Q = R = I sufficient.

The LQR cost function is minimized by a simple proportional

feedback rule u = Kx. The LQR gain matrix K can be computed

using standard numeric libraries.
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In Equation (7) we assumed full access to the states, i.e.,

g(x) = x and ǫ = 0 in Equation (3). More realistic is the case

of partial noisy observations. Fortunately, the optimal solution

may still be applied by combining the controller with a Kalman

filter, which enables estimation of unobserved and denoising of

observed states in linear systems. Given the system dynamics, the

Kalman filter operation can be applied via a simple matrix-vector

multiplication x̃ = Ly, mapping noisy partial observations to full

state estimates, which can be used in the LQR loss (Equation 7). The

combination of LQR with a Kalman filter is called Linear Quadratic

Gaussian (LQG) control. In the next section, we consider the case

where linearity and system knowledge cannot be assumed.

2.4. Modeling the neural system using a
recurrent neural network

Research in control theory over the past decades has resulted

in a wealth of techniques to solve tasks like the ones described in

Section 2.2. Which approach to take depends on the stringency

of assumptions we make about the system. At one end of the

spectrum, one can compute an optimal control policy analytically

if the system is linear and the state equations are known (Section

2.3). The controller (or neural system in our terminology) is then

a simple matrix that maps the state observation vector x to a

control signal u. At the other end of the spectrum, one can employ

reinforcement learning to find a control policy for a nonlinear

system with unknown dynamics and partial noisy observations. In

that case, the neural system controller is usually an artificial neural

network with a large number of parameters.

Here, we use recurrent neural networks (RNNs) to model

the controller. RNNs have a long history in modeling of neural

systems (Sussillo, 2014) and use in control applications (Sussillo

et al., 2012; Meng et al., 2021), making them an ideal candidate

in the context of this paper. We will see in Section 2.5 that these

networks are compatible with both ends of the spectrum—they can

adapt to analytic optimal control laws just as to data-driven policy

search through RL. In particular, the statefulness of RNNs turns out

to be a crucial component in dealing with partially observed and/or

noisy observations.

The continuous-time RNN used here follows work by Sussillo

(2014) and is defined by the ordinary differential equation

τ v̇ = −v+ Ax+ Bu , (8)

Where the vector v represents the neurons’ membrane

potentials, x = h(v) are the firing rates obtained by passing the

membrane potential through a sigmoidal activation function h, and

τ is the time constant of charge integration and decay. The neurons

integrate inputs u via synaptic weights B, and are recurrently

connected through the matrix A. Layers of such RNN units may

be stacked hierarchically, so that the rates x of one layer become the

input u to the next. The network is further assumed to include a

fully-connected readout layer

y = g(x) = tanh(Cx) . (9)

Using A (split-step) Euler method, the continuous-time

(Equation 8) can be discretized. By choosing a step size 1t that

matches the time constant τ , we obtain an expression for the state

evolution that is equivalent to the RNN model commonly used by

the AI community:

xt = tanh(Axt−1 + But) . (10)

Choosing an RNN as controller has the important consequence

that our neural system now becomes a dynamical system itself, just

as the environment which it aims to control. This way we can unify

the proposed methodology for studying the brain-environment

interaction.

In terms of free parameters, the model described by

Equations (9, 10) is characterized by the synaptic weight matrices

A (recurrence), B (input), and C (output). In the context of this

paper, we find it useful to interpret the input component Bu as

sensory subsystem, the output layer Cx as motor system, and the

recurrent term Ax as an association area. Figure 2 illustrates these

RNN components within the original control loop of Figure 1. The

next Section describes three approaches to fit the model parameters

θ = {A,B,C}. Note that biases are included in the models but not

shown in the equations to simplify notation.

2.5. Learning a control policy in the neural
system

While control theory provides tools to synthesize controllers

for systems that are nonlinear, only partially observable, and

whose dynamics are unknown, these methods often include an

attempt to linearize the system around an operating point, perform

system identification, or include an (extended/unscented) Kalman

filter (Julier and Uhlmann, 1997) to estimate unobserved states. If

successful, these approaches result in a system where the control

policy can be derived analytically, and often provide performance

guarantees and safety/ stability regions. On the other hand, they

may not always be applicable or scale well to high-dimensional

systems. The considerable complexity of the multi-stage processing

pipeline makes some of these approaches difficult to maintain and

to transfer between problem domains. Training an RNN controller

using RL has the benefit of being conceptually simple and at

the same time highly scalable. It assumes no linearity or prior

knowledge of the system dynamics. Due to the persistent states of

the neural network model, the RNN controller performs temporal

integration and can adopt the role of a Kalman filter, estimating

unobserved states while filtering out noise in the observed ones.

The present paper aims to study how a neural system (the

primary controller) can be stabilized by a secondary controller in

the presence of perturbations. In this context we do not attempt to

find the best tool from classic control theory to solve the primary

control problem. We focus instead on obtaining a neural-network-

based controller that can serve as test bed for developing the

secondary controller. These considerations motivate the use of an

RNN-based controller.

Once settled on an RNN as neural system, the training method

is usually going to involve a form of stochastic gradient descent with

back-propagation through time (Werbos, 1990), which updates

the network parameters to optimize some objective function. This

generic trainer component is depicted in Figure 2, with the gradient
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FIGURE 2

Both the environment and the neural system are modeled as dynamical systems using ordinary or stochastic di�erential equations. Here, the neural
system is represented by an RNN with a sensory input component, a motor output component, and an association area which provides the
input-output mapping. The system can be trained using backpropagation through time (Werbos, 1990).

flow marked by a dashed arrow. The question that remains is

how motor commands uE and environment observations yE are

combined to obtain a learning signal. To answer it we need to

consider the properties of the environment on which the controller

acts, and how much knowledge of the environment dynamics

we can assume. These considerations, together with the possible

training methods, are listed in Table 1 and described in more detail

in the following sections.

2.5.1. Direct optimization of LQR cost
We consider first the most optimistic case, where the state

(Equation 1) are known and we assume that we may differentiate

through the environment. Because the neural system is a

differentiable RNN, the entire brain-environment model becomes

end-to-end differentiable, allowing direct optimization of the

parameters using automatic differentiation (Baydin et al., 2017).

That is, after defining a suitable loss function, the neural system

can be trained via gradient descent, with the environment in the

loop. The samples for training can be generated on the fly: As the

neural system steps through the environment, it observes states

xt and produces motor commands ut , which are passed to the

loss function to generate a learning signal that is propagated back

through the network. In the backwards pass, only the parameters

in the neural system are updated; the environment parameters are

frozen.

We now turn to defining the objective function. For a linear

regularization problem like the particle stabilization described

in Section 2.2.1, we can simply choose the LQR cost (7). The

hypothesis is that the neural system will learn a control policy that

follows the analytically derived optimal solution.

In case of partial or noisy observations, the same objective

function may be used. We can estimate the latent state explicitly by

including a Kalman filter, whose matrix-vector-product operation

is straightforward to implement in a neural network and thus

integrates well with the direct optimization approach. Alternatively,

a Kalman filter can be learned implicitly by the stateful RNN as we

demonstrate in Section 3.1.2.

2.5.2. LQG oracle
Next we consider the case that direct optimization on some

loss function is not possible because the environment is not

differentiable, for instance due to discontinuities in the dynamics.

We may still be able to exploit tools from optimal control theory

like the LQR and Kalman filter introduced in Section 2.3. As before,

we assume knowledge of the state Equations (1). In addition, the

system should either be linear or linearizable. Full observability is

not a requirement as a Kalman filter is available under the current

assumptions.

Following Section 2.3, the optimal LQG controller, could

be used directly as surrogate neural system. Here, however,

we illustrate the case of using the analytically derived optimal

controller as teacher for the RNN-based neural system2. The LQG

teacher can be deployed in the environment to collect a dataset

of inputs y and labels u, which are then used for conventional

supervised training of the RNN.

2.5.3. Reinforcement learning
The most general case, requiring the fewest assumptions, is to

use RL for training the neural system RNN. Reinforcement learning

is a form of machine learning which only requires reward signals rt
as typically encountered by agents in a realistic environment, rather

than labeled input/output pairs as required in supervised learning.

At time t, an agent in state st = s learns to take an action at = a

according to a policy π(a, s) = Pr(at = a|st = s) which maximizes

2 A black-box source of knowledge about a target function is sometimes

called an ‘oracle’ in the machine learning community.
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TABLE 1 Selecting a training method for the RNN neural system depends on properties of the environment.

System must be Known? Linear? Di�erentiable? Observable?

LQR direct Yes No Yes Yes

LQG oracle Yes Yes No Yes

RL No No No No

Note that observability can be achieved by adding a (non-)linear Kalman filter, provided that the system equations are known.

the discounted future reward R =
∑

t γ
trt , where rt is the reward

at time t. It does so by striking a balance between exploring new

states and actions, and exploiting those already known to have high

value. The optimization of a value function Vπ (s) = E[R|s0 =

s], starting from state s0, links RL to the field of optimal control

and combines it with the benefits and drawbacks of data-driven

model-free control.

In terms of the criteria in Table 1, RL is applicable to linear

or nonlinear systems with known or unknown dynamics. While

there are no guarantees for the learning performance, a noisy partial

observation of states together with a scalar reward signal after

possibly long time intervals is usually enough to train the neural

system.

In the present work, we employ the proximal policy

optimization (PPO) algorithm (Schulman et al., 2017), which is

an established online policy-gradient RL method that is relatively

easy to use while achieving state-of-the-art results. Other benefits

of PPO include its support of both discrete and continuous action

spaces, and compatibility with recurrent models. We adapted the

Stable-Baselines3 (Raffin et al., 2021) implementation of PPO to

work with our RNN model.

2.6. Restoring behavior of a perturbed
neural system using a secondary controller

The previous sections outlined various approaches of training a

neural system to perform meaningful behavior in an environment.

With this model at hand we can now study ways to maintain

the system performance when parts of the neural system begin to

degrade.

Impairment of a biological sensory-motor controller can take

many forms, such as cell death or loss of sensor function. Plasticity

and a drift in neural representations call for controllers that coadapt

with the neural code (Sorrell et al., 2021). Here we implement

model perturbation in a generic way by adding univariate Gaussian

white noise of various strengths to the synaptic weights of the

trained neural system. We consider perturbation of the association

(A), sensory (B) and motor (C) populations separately.

Perturbing the neural system can be seen from a control-

theoretic perspective as increasing model uncertainty in the SDE

(Equation 1). The brain-environment loop (Figure 2) is then

described by a set of coupled SDEs and can be redefined as a new

composite dynamical system. With this unified view we can apply

the same control techniques as earlier for the brain-environment

interaction, but now with the aim to restore the function of

the impaired neural system. Specifically, we add a secondary

RNN controller as shown in Figure 3. It follows the same state

(Equation 10) as the neural system RNN, but its components can

be interpreted in terms of a neural prosthesis. The input uP takes

on the role of an external sensor (such as a camera or microphone),

or a neural recording device such as a microelectrode array, or a

combination of sensors. The output component yP represents an

action on the environment (e.g., via a prosthetic limb), the brain

(e.g., via stimulation electrodes), or both. The hidden RNN layer

closes the loop between neural recording and stimulus generation.

The observations yEN of the composite brain-environment

system could be a combination of states from both subsystems. For

instance, a visual prosthesis would process a camera feed of the

environment in addition to neural activity measurements. In our

experiments we read out the states xN from the association layer:

yEN = CENxN (11)

With CEN = I, assuming full observability initially. We show

in Section 3.3 that equivalent performance is achieved when only a

small fraction of neurons can be observed and controlled.

Another design choice concerns the feedback control signal

uEN. Following our interpretation of neural stimulation, we apply

it in form of charge injected in neurons of the association layer:

τ v̇N = −vN + ANxN + BNuN + BENuEN (12)

With BEN = I. We use the same training approach for the

prosthesis as for the neural system, i.e., if the latter was trained using

RL, the former is as well. The neural system parameters remain

fixed after perturbation, only the parameters of the secondary

controller are allowed to evolve.

3. Results

In this Section we outline first how the neural system was

trained on the two tasks described in Section 2.2. The brainmodel is

then perturbed and a prosthetic controller is trained to restore the

function of the neural system. Finally, we consider the case of an

underactuated system, where the number of controls is lower than

the number of neurons. Code to reproduce the results shown here

are available online3.

3.1. Training the neural system

3.1.1. Direct optimization of LQR cost
For stabilizing a drifting particle at the origin, we use a

neural system consisting of 50 artificial neurons, which form the

3 https://github.com/rbodo/neural_control
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FIGURE 3

Framework to model a perturbed neural system in interaction with its environment (left) and restoring its performance by training a secondary
controller (right).

association layer in Figure 2, and follow the dynamics (Equation

10). The sensory signal yE here consists of the full state xE,

i.e., position and velocity of the particle. The motor system

is represented by a single neuron which receives input from

the association population. Following Equation (9), this neuron

produces the real-valued control signal yN = uE representing the

acceleration applied to the particle. The environment (Equation 4)

is implemented in Python, using the Euler method to approximate

the continuous dynamics. The RNN neural system was trained for

10 epochs with the Adam optimizer. During each epoch, the system

traversed 10k trajectories in state space, with initial starting points

sampled at random from a grid of 100× 100 locations.

The training result is shown in the first row of Figure 4. The

panels on the left show example trajectories of the drifting particle

in phase space. When the neural system has not been trained

(dashed line), the particle drifts off with uniform or increasing

speed along the x-axis. After training directly on the LQR cost (solid

line), the particle is reliably brought to rest at the origin (marked by

a small cross). The trajectory then closely matches the analytically

derived optimal control baseline (dotted line).

3.1.2. LQG oracle
To illustrate the oracle approach, we trained an RNN controller

with the same specifications as in Section 3.1.1, with three main

differences. First, only the position but not the velocity of the

particle was observed, and overlaid with Gaussian white noise of

variance 0.1, as in Equation (5). Second, rather than training online,

the network was trained on batches of pre-collected data from an

LQG optimal controller. Third, rather than using the LQR cost

directly, we computed the mean squared difference between the

control signal generated by the neural system and the control signal

from the LQG oracle.

The second row in Figure 4 illustrates the training result. In

this case of partial noisy observability, the neural system again

succeeds in stabilizing the particle while following the optimal

control baseline closely.

3.1.3. Reinforcement learning
For the RL approach we use the same architecture as in the

previous sections. Again, the sensory signal is limited to a noisy

version of the particle position. The neural system is trained for

500k episodes with a linearly decaying learning rate of initially

2 · 10−4. All other hyperparameters of the PPO algorithm were left

at their default value.

An important component of training RL agents is to design the

reward function. Here, the reward is given by the negative LQR

loss, plus a reward of 1 when stabilizing within a distance of 10−3

from the origin, at which time the episode terminates as successful.

If the particle fails to stabilize within 100 steps, the episode times

out and is considered a failure. Row three in Figure 4 illustrates

that the sparse RL rewards are sufficient for the RNN to learn the

regularization task.

Unlike the particle stabilization problem, the inverted

pendulum (cf. Section 2.2.2) is nonlinear. To solve this second

task, the only changes we make to the RL training pipeline

are to increase the size of the association population to two

layers of 128 recurrent neurons each and increase the training

duration to 800k episodes. The sensory signal yE consists of

the position x of the cart and angle θ of the pole, but not

their respective velocities. The association population again

projects to only one motor neuron, which produces a real-valued

force to steer the cart left and right. To simulate the inverted

pendulum environment, we use the MuJoCo (Todorov et al.,

2012) implementation within the OpenAI Gym interface4.

The reward is defined as the number of steps for which the

pole can be kept upright. A balancing episode is aborted as

unsuccessful when the pole angle θ exceeds 11◦. Successful

episodes time out after 1,000 steps, achieving the maximum reward

of 1,000.

We observe in row four of Figure 4 that the pole tips over within

few steps (r < 30) when controlled by a randomly initialized RNN.

4 https://www.gymlibrary.dev/environments/mujoco/inverted_

pendulum/
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FIGURE 4

Learning a control policy in the neural system. The panels on the left illustrate the evolution of the environment in state space. The panels on the
right show the training curves of the RNN neural system. The rows illustrate the training methods discussed in Section 2.5, applied to the particle
stabilization and pendulum balancing problem. The last row also shows the final rewards. In all four cases, the RNN system succeeds in learning a
control policy to solve the task.

The trained neural system is able to stabilize the pole up to the

time limit of 1,000 steps. In phase space, a successful trial is often

characterized by a harmonic oscillation, and a failure by an outward

spiral or straight line.

3.2. Training the prosthetic controller

The result of training the prosthesis directly on the LQR

cost after perturbing sensor, association, and motor populations

is shown in Figure 5 for the particle control task. The panels

on the left show example trajectories for increasingly strong

perturbation levels. The final column compares the performance

of the perturbed system with and without a prosthesis against

the optimal LQR baseline. The secondary RNN controller is

able to restore the behavior of the neural system across a wide

range of perturbation levels, regardless where the perturbation

was applied.

This direct learning shows what can be achieved under

optimistic assumptions (Table 1). In a real-world behavioral

setting, the environment dynamics will likely be unknown,

nonlinear, noisy, and only partially observable. Then, one can

approximate the optimal control solution via reinforcement

learning, using only sparse reward signals to learn from.

Figure 6 demonstrates that even under these conditions, the

prosthesis manages to restore neural system performance. RL

training results on the nonlinear pole balancing task are shown

in Figure 7.
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FIGURE 5

Restoring particle stabilization performance by training a prosthetic controller directly on the LQR cost. The panels on the left show example
trajectories at increasing perturbation strengths (from left to right). The rightmost column compares the loss of the system after training the
prosthetic controller against the uncontrolled and unperturbed baselines. The three rows illustrate the case of an impaired sensory, association, or
motor population.

3.3. Underactuated case: Reducing
controllability and observability

In the previous section we assumed access to all neurons

in the association layer for recording and stimulation. With

a microelectrode array for instance, only a limited number

of recording and stimulation locations may be accessible.

Due to reactions of the neural tissue, the usable set of

electrodes may change over time, as well as the set of neurons

corresponding to a given electrode. Safety limits for local

charge density may add further constraints. See Fernández

et al. (2020) for a review. To account for these properties

we reduce the number of observable and controllable states

in the association population by removing columns in BEN
and rows in CEN. The prosthetic controller is then trained as

before with the aim to restore the function of the perturbed

neural system. Figure 8 shows the performance after training

with different degrees of stimulation and recording electrode

coverage. The combined brain-prosthesis system maintains

the performance of the unperturbed neural system with

as little as 10% of the association neurons being observed

and controlled.

Control theory provides tools to measure the observability

and controllability of a controlled system. In a known linear

system, one can use the system matrices A,B,C to analytically

compute an observability matrix O and controllability matrix C

(see e.g., Brunton and Kutz, 2017). The system is called observable

or controllable, if the corresponding matrix is full rank. In a

nonlinear or unknown system, it is possible to estimate an

empirical Gramian matrix by measuring the system response to

stereotypical control impulses (Lall et al., 1999; Himpe, 2022).

Eigenspectrum analysis of the controllability and observability

Gramians reveal directions (given by the eigenvectors with the

largest eigenvalues) along which a system can be steered with the

least amount of control energy, and observed with the highest

signal-to-noise ratio. These directions lie in eigen- rather than

state-space, so we cannot use them directly e.g., to select the

most suitable subset of electrodes for recording and stimulation.

However, the eigenspectrum does provide an indicator for the

intrinsic dimensionality of the system and thus the number

of electrodes required. Specifically, we can count how many

eigenvectors are needed to explain 90% of the variance of

the controllability and observability Gramians. This number of

dimensions gives a lower bound on the number of electrodes

needed for stimulation and recording. We indicate it with an

arrow in Figure 8. It turns out that for the particle stabilization

problem, this lower bound coincides with the minimum number of

electrodes found empirically. In other words, the RNN controller

learns to make optimal use of the small number of probes it

has available.
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FIGURE 6

Restoring particle stabilization performance by training a prosthetic controller using RL. See caption of Figure 5 for a more detailed description.

4. Discussion

The present work proposes a framework based on dynamical

systems to model interactions between the brain, its environment,

and a prosthesis. Established methods from optimal control theory

and reinforcement learning are applied to train the neural system

to perform a task and then train a prosthesis to restore its

function when the neural system is perturbed. Here we discuss the

design choices of this conceptually simple framework as well as

implications for the development of neural controllers.

4.1. Modeling the neural system and
prosthesis

In this work we used an RNN to model both neural system

and prosthetic controller. Choosing this class of model has several

advantages. An RNN can be described by a set of differential

equations, which makes the combined environment-brain-

prosthesis system uniform in structure and amenable to a common

methodology. The statefulness of RNN neurons facilitates working

with temporal data, which is ubiquitous in realistic settings.

Statefulness has the additional advantage of enabling the RNN

to adopt functions of a Kalman filter such as denoising and

state estimation (Sussillo et al., 2012; Hosman et al., 2019). The

explicit inclusion of a (possibly nonlinear) Kalman filter becomes

optional, thus lifting the requirement to identify the system

equations. Further, RNNs have been used to describe actual

neural dynamics and thus lend themselves to model sensorimotor

impairment.

Degradation or impairment of this neural system can be

modeled by perturbing the RNN parameters. We demonstrated

that its function can be restored by adding a secondary controller

(modeling a prosthesis), which interacts with a subset of neurons in

the neural system.

Beyond using RNNs for the neural system, alternative

model choices may be desired to increase the biological

realism using e.g., Wilson-Cowan equations (Wilson and Cowan,

1972), a spike-based neuron model (Izhikevich, 2004), cortical

microcircuits (Antolík et al., 2021), hierarchical (Antolík et al.,

2016), or anatomical (Lindsey et al., 2019) constraints, or by

explicitly including the resistive properties of neural tissue. To

be compatible with our framework, the only requirement is

that the model can be expressed in a form that supports

automatic differentiation using e.g., Jax (Bradbury et al., 2018) or

PyTorch (Paszke et al., 2019).

4.2. Choosing the learning method

We highlight three approaches to train the neural system

and prosthesis, the choice of which depends on the properties

and knowledge of the system. Direct optimization of some cost

function (Section 2.5.1) is the most efficient in terms of training
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FIGURE 7

Restoring performance of the neural system on the pole balancing task by training a prosthetic controller using RL. See caption of Figure 5 for a
more detailed description.

FIGURE 8

E�ect of reducing controllability and observability. The loss is shown when the prosthesis can record from and stimulate only a fraction of neurons in
the neural system. The prosthesis restores the performance of the unperturbed neural system when about 10% of the neurons are accessible. This
number approximately matches the lower bound estimated from the controllability and observability Gramians (indicated by arrows).

data and time, but assumes a differentiable and known system,

plus the existence of a suitable loss function. The use of an oracle

teacher (Section 2.5.2) assumes a linear and known system, for

which an analytic solution from optimal control theory can be

computed. Then the training is similarly efficient as the direct

method. Both achieve excellent accuracy as measured against the

optimal control baseline and are a viable tool for the development

of prosthetic controllers in silico. In practical settings, assumptions

such as system knowledge or differentiability may not be satisfied,

in which case one can resort to reinforcement learning. The

outcome of RL-based training (Section 2.5.3) is less reliable and

requires substantially more time, training data, and insight into

relevant hyperparameters (though for the problems considered

here, PPO defaults were sufficient). The major advantage of
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RL is its broad applicability even if the system equations are

unknown, nonlinear, not differentiable, or only a part of the

states is observed. Another promising feature of using RL is

that it enables moving experimental design beyond mechanistic

objectives (of neuronal activation) toward behavioral objectives

(of real-life tasks) (Küçükoğlu et al., 2022b). Further, by using

controllers based on deep neural networks, we gain access to

powerful training tools from deep learning which are beneficial

for neural control applications. In practice, the amount of training

data will be limited, requiring sample-efficient (Hessel et al.,

2018; Küçükoğlu et al., 2022a) or few-shot learning (Wang et al.,

2020).

Plasticity in the neural system or a deterioration of the

implant is currently a major limiting factor for neurotechnology

(Fernández et al., 2020; Sorrell et al., 2021). Periodic refinement

of our neural system model would ensure that we maintain an

accurate digital twin of the patient and enables updating the

controller to take into account neural plasticity. A promising but

still under-explored approach is the inclusion of techniques from

continual learning (Parisi et al., 2019), which reduces "catastrophic

forgetting" of previous knowledge when the model is updated.

Other groups have successfully applied reinforcement learning

to adapt the controller to neural variability and reorganization

of neural inputs (e.g., neurons appearing or being lost amongst

electrode recordings) by training online with the animal in

the loop (Pohlmeyer et al., 2014) or offline on a large and

diverse dataset (Sussillo et al., 2016). On the other hand, neural

plasticity could be seen as a feature to be exploited. An exciting

application of our framework would be to model the effect of

repeated stimulation on neural plasticity, thereby guiding efforts in

neurorehabilitation (Jackson et al., 2006).

4.3. Limitations and future work

The neural system RNN in the present work was trained

to perform a control task in a simulated environment without

constraining the resulting dynamics to approximate those observed

in real neural systems. Within the scope of this paper, the

restoration of functional performance was sufficient. An accurate

reconstruction of real neural dynamics will become relevant for

instance to detect and suppress pathological band-power features

in Parkinson’s disease (Castaño-Candamil et al., 2020). A more

mechanistic model of the neural system (c.f. Section 4.1) will

be an important step toward neurobiological validation of our

framework. We are therefore currently using electrophysiological

recordings of behaving animals to identify the neural systemmodel.

By perturbing the resulting model as in Section 2.6 and repeating

the training with a prosthesis model in the loop, we can design

a prosthesis controller fully in silico. This controller can then

be deployed in the original behavioral setting for validation and

further refinement. We expect that such an offline pretraining

will improve the efficacy of the prosthesis while reducing the

burden on the animal or patient compared to fully online

approaches (Pohlmeyer et al., 2014).

A limitation of our contribution is the small state space

of the environments used. We are currently exploring

behavioral tasks in higher-dimensional spaces with agents

performing visual navigation in a virtual environment such

as AI Habitat (Szot et al., 2022) and BEHAVIOR-1K (Li et al.,

2022). These studies also investigate different types of model

degradation, e.g., simulating cell death or complete loss of sensory

function.

We have shown in Section 3.3 that controllability and

observability Gramians can be used to determine a lower bound

on the number of stimulation and recording electrodes of an

implant. The Gramians can be calculated analytically if the

system is known and linear, but here we used a data-driven

estimation technique (Lall et al., 1999) to demonstrate applicability

to unknown nonlinear systems. In a behavioral setup, the required

data could be obtained readily via psychophysical experiments. The

Gramians indicate directions of efficient control and readout. A

promising area of research concerns the combination of our work

with the field of sparse sensor and actuator placement (Dhingra

et al., 2014; Münz et al., 2014; Pequito et al., 2016; Manohar et al.,

2018), which will facilitate the optimal selection of stimulation and

recording probes. This approach aligns well with recent studies that

reveal stable low-dimensional latent dynamics of cortical neurons

in a behavioral task (Gallego et al., 2020).

Recent work (Bonassi et al., 2020) used Lyapunov theory to

derive conditions for input-to-state stability in a multi-layer RNN.

These conditions depend only on the learnable network parameters

and can be used for safety verification, i.e., to ensure that outputs

lie within a predefined safe region (Kieboom and Jafarian, 2022).

These results are applicable to the RNNs used here. Together with

recent advances in safe RL (Simão et al., 2021), these techniques

enable AI-based controllers that adhere to ethical standards (Ienca

and Haselager, 2016; Durán and Jongsma, 2021; Sand et al., 2022)

and pave the way to a translation into the clinical setting.

Aside from its uses in research, we found the proposed

framework to be valuable in teaching undergraduate students

fundamental concepts from optimal control, dynamical systems,

recurrent neural networks, and reinforcement learning. The code

base can be converted directly to hands-on assignments applying

these concepts to neurotechnology and could become a useful

resource in the NeurotechEU initiative.

In light of these opportunities, we expect that the proposed

framework will have a significant impact on the development of

neural prostheses as it enables flexible in-silico testing of algorithms

for stimulation and closed-loop control, reducing the burden of

in-vivo testing in animal models and/or human subjects.
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