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Background: Brain–computer interfaces (BCIs) have been proven to be e�ective

for hand motor recovery after stroke. Facing kinds of dysfunction of the paretic

hand, the motor task of BCIs for hand rehabilitation is relatively single, and the

operation of many BCI devices is complex for clinical use. Therefore, we proposed

a functional-oriented, portable BCI equipment and explored the e�ciency of hand

motor recovery after a stroke.

Materials andmethods: Stroke patients were randomly assigned to the BCI group

and the control group. The BCI group received BCI-based grasp/open motor

training, while the control group received task-oriented guidance training. Both

groups received 20 sessions of motor training in 4 weeks, and each session lasted

for 30min. The Fugl–Meyer assessment of the upper limb (FMA-UE) was applied

for the assessment of rehabilitation outcomes, and the EEG signals were obtained

for processing.

Results: The progress of FMA-UE between the BCI group [10.50 (5.75, 16.50)]

and the control group [5.00 (4.00, 8.00)] was significantly di�erent (Z = −2.834,

P = 0.005). Meanwhile, the FMA-UE of both groups improved significantly (P <

0.001). A total of 24 patients in the BCI group achieved the minimal clinically

important di�erence (MCID) of FMA-UE with an e�ective rate of 80%, and 16 in

the control group achieved the MCID, with an e�ective rate of 51.6%. The lateral

index of the open task in the BCI group was significantly decreased (Z =−2.704, P

= 0.007). The average BCI accuracy for 24 stroke patients in 20 sessions was 70.7%,

which was improved by 5.0% in the final session compared with the first session.

Conclusion: Targeted hand movement and two motor task modes, namely grasp

and open, to be applied in a BCI designmay be suitable in stroke patients with hand

dysfunction. The functional-oriented, portable BCI training can promote hand

recovery after a stroke, and it is expected to be widely used in clinical practice.

The lateral index change of inter-hemispheric balance may be the mechanism of

motor recovery.

Trial registration number: ChiCTR2100044492.
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Background

Stroke causes the highest morbidity associated with disability-

adjusted life years lost in China, with 2 million new cases

annually (Wu et al., 2019). Approximately 66% of stroke survivors

experience upper limb motor impairments, which results in

functional limitations in activities of daily living and leads to a low

life quality (Kwah et al., 2013; Morris et al., 2013) and increases

the burden for family and society. Hand function rehabilitation is a

research hotspot and a challenge in the field of stroke rehabilitation.

Among all the neural modulation technologies, brain–computer

interfaces (BCIs) have been proven to be effective for hand motor

recovery after stroke (Biasiucci et al., 2018; Cervera et al., 2018;

Baniqued et al., 2021).

The workflow of BCI includes acquiring brain signals,

extracting features, transforming the signal into command via

external devices, and activating the sensory feedback. The BCI

equipment has been updated from a fixed-position device to

a mobile one (Mattia et al., 2020). However, a portable BCI

device may be more flexible for use in stroke rehabilitation. In a

typical electroencephalography (EEG)-based non-invasive BCI, the

user’s movement intention such as motor imagery (MI) or motor

attempt (MA) is decoded in real time from the ongoing electrical

activity of the brain by extracting relevant features (Cervera et al.,

2018). Many BCI-based motor rehabilitation systems traditionally

encompass neural activity decoders of ipsilesional sensorimotor

activity (sensorimotor rhythm, SMR, 9–15Hz) (Cervera et al.,

2018). SMRs can be measured over the sensorimotor cortex (SMC)

and modulated by MI, MA, or motor execution (ME) tasks

(Frenkel-Toledo et al., 2014; Yuan and He, 2014). Task-related

modulation in EEG-based SMRs is usually manifested as ERD or

ERS in low-frequency components [mu rhythm (8–12Hz) and beta

rhythm (13–26Hz)] (Pfurtscheller and Lopes, 1999). MI or MA

is associated with ERD of mu rhythm oscillations recordable over

SMC (electrode sites C3 and C4) using EEG (Hasegawa et al., 2017;

Remsik et al., 2019). MI is a mental activity in which a specific

movement is performed in the mind without actual movement

(Kilteni et al., 2018). MA is an attempt of the paralyzed limb to

move while there is still no actual or little movement, but the

electromyography activity in the affected arm is several orders

higher in the motion phase than in the rest phase (Antelis et al.,

2017). They were both used extensively in the BCI experiment as

an active way of neuromodulation. ME was mostly used in healthy

participants (Meng et al., 2018; Chen et al., 2019). Specifically, a

meta-analysis demonstrated that motor attempt-based BCIs seem

to be more effective than MI-based BCIs (Bai et al., 2020). MA-

based BCIs had superior effects compared to MI-based BCIs. The

SMR-based BCIs detect characteristic changes in SMC in response

to the motor task, and the paradigm was adopted in several studies

(Robinson et al., 2018; Li et al., 2021; Pinter et al., 2021). In a study

by Biasiucci et al. (2018), they asked the patients to attempt to

extend the affected hand (fingers and wrist) as the motor task; Chen

et al. (2020) designed an extension of the wrist as the motor task;

and Ramos-Murguialday et al. (2013) instructed their patients to

try to reach (even if the arm does not follow their intention), grasp,

and bring an imaginary apple to their lap, and finger extension was

involved in the reaching and grasping movement. They all obtained

functional improvement.

Currently, in clinical trials of BCI for basic motor training,

only a single motor task is designed, which is not able to fully

meet clinical requirements. Many stroke patients in the acute stage

undergo flaccid paralysis stage, and they can hardly move their

hands, let alone do a grasp or open movement. Many patients

may go through the synergetic motion mode stage, where they can

perform different levels of grasping activity. Similarly, a segregation

movement like the hand open motion is also a hard step; full

extension of affected fingers wouldmean great progress in recovery.

In total, many of them conform to the recovery of the Brunnstrom

I–VI recovery stages (Naghdi et al., 2010). Since grasp and open

movements are fundamental but essential hand motions, imaging

the grasp (Ang et al., 2014) or/and extension (Pichiorri et al.,

2015) of the affected hand was designed in many BCI studies. The

common motor tasks adopted in the BCIs experiment included

the movements of the proximal joints, shoulder, elbow, wrist, and

hand, especially for the distal joints. Simultaneously, the feedback

provided by robotic devices used in upper limb rehabilitation exists

in the form of exoskeletons or end effectors. Robotic exoskeletons

(i.e., powered orthoses or braces) are wearable devices where

the actuators are biomechanically aligned with the wearer’s joints

and linkages, allowing the additional torque to provide assistance,

augmentation, and even resistance during training (Molteni et al.,

2018; Baniqued et al., 2021). In comparison, end-effector systems

generate movement by applying forces to the most distal segment

of the extremity via handles and attachments (Molteni et al., 2018;

Baniqued et al., 2021). The recovery of the paretic hand is a harder

step and a core component in regaining functional movement.

The hand tasks consisted of both simple and complex forms.

Some complex forms include not only basic movements but also

movements related to daily life. Despite patients’ varied functional

needs, many brain–computer interface studies set only one motor

task. In a study by Ramos-Murguialday et al. (2019), they applied

two kinds of motor tasks with the assistance of robots, for patients,

namely the upper limb and the paretic hand, and the number

of sessions with hand or arm movements was balanced between

groups. Still, few of them have applied the different motor tasks to

BCIs experiments as patients needed.

Plow et al. (2015) pointed out that corticospinal plasticity,

return of balance between excitability of the ipsilesional and

contralesional motor regions, and vicarious recruitment of

widespread frontal and parietal synergistic regions promote the

clinical recovery of paretic hand function, and other researchers

assumed that the regrowth of ipsilateral descending fibers from

the unaffected hemisphere to denervated motor neurons may

contribute to the recovery (Gao et al., 2022). They both reflected

that the balance of the two hemispheres may be the key to

recovery after a stroke. The laterality index (LI) was considered the

normalized difference between brain activations in the left and the

right hemispheres (Caria et al., 2011). Therefore, facing the current

situation of the single motor task in BCI study and the difficulty in

clinical promotion, we propose two kinds of motor tasks for hands

by the robot for different patients and to testify the functional-

oriented, portable BCI training with an EEG-based hand robot for
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FIGURE 1

Flowchart of the trial. The flowchart shows the process of recruitment, grouping, intervention, and data analysis.

hand recovery after stroke and explored the balance changes in

brain activations of the bilateral hemispheres.

Methods

Participant recruitment and randomization

We conducted a randomized controlled trial. The

randomization allocation sequence was 1:1, the allocation

information (BCI group and control group) was sealed in opaque

envelopes, and each enrolled patient was randomly selected.

Enrollment and assignment of participants were performed by one

researcher. As participant blinding was not feasible, all outcome

assessments were performed by an experienced therapist, who

was blinded to allocation. Figure 1 shows the flowchart of the

trial. Stroke patients were recruited from the Department of

Rehabilitation Medicine, Huashan Hospital, and the Department

of Rehabilitation Medicine, Jing’an District Central Hospital of

Shanghai, from February 2021 to December 2022. The inclusion

criteria for patients following stroke were as follows: (1) ischemic

or hemorrhagic stroke diagnosed through computed tomography

or magnetic resonance imaging (MRI); (2) age in the range of

18–80 years; (3) at least 2 weeks since stroke onset and less

than 1 year; (4) Brunnstrom stages of paretic hand are I–V; (5)

mini-mental state examination ≥20 scores, able to obey basic

commands; and (6) able to sit on a chair independently for at least

1 h. The exclusion criteria were as follows: (1) having a cardiac

pacemaker; (2) pregnancy; (3) allergy to EEG electrode cream;

(4) any osteoarthrosis (including joint deformity) that could cause

joint contracture in the hand or upper limb; and (5) unstable

fracture in the paretic upper limb. Written informed consent was

provided by all participants. This study was approved by the Ethical

Committee of Huashan Hospital [(2021) Provisional Examination

No. (039)] and was performed according to the Declaration of

Helsinki, and the trial was registered at the Chinese Clinical Trial

Registry (ChiCTR2100044492).

Primary and secondary outcomes

The primary clinical outcome of the study was the change in

the Fugl–Meyer assessment of the upper limb (FMA-UE), with a

total score of 0 to 66, which was used to assess the severity of

motor dysfunction. Secondary outcomes included EEG data and

BCI accuracy. Clinical evaluations were performed immediately

before and after the intervention.

Characteristics of the enrolled patients

A total of 66 patients were enrolled in this study. They were

randomly allocated into the BCI group (n= 33) and control group

(n= 33), and 30 cases in the BCI group and 31 cases in the control

group completed the intervention. The average age was 55.93 ±

11.05 years old in the BCI group and 59.00 ± 14.49 years old

in the control group. There were 23 (76.7%) male patients in the
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TABLE 1 Characteristics of the enrolled patients.

Item BCI group (n = 30) Control group (n = 31) t/χ2/Z P-values

Age (MD± SD) 55.93± 11.05 59.00± 14.49 −0.927 0.357

Male/(%) 23 (76.7%) 25 (80.6%) 0.144 0.704

Type

Infarction 24 (80.0%) 24 (77.4%) 0.061 0.806

Hemorrhage 6 (20.0%) 7 (22.6%)

Course/d 77.50 (33.75, 175.25) 64.00 (37.00, 150.00) −0.390 0.697

BCI group and 24 (80.6%) male patients in the control group. The

infarction cases were 24 (80.0%) in the BCI group and 24 (77.4%) in

the control group. The average course was 77.50 (33.75, 175.25) d in

the BCI group and 64.00 (37.00, 150.00) d in the control group. The

details are in Table 1, and there was no significant difference in the

demographic characteristics between the two groups. Additional

details are provided in Supplementary Table 1.

EEG recording

Participants were asked to sit in a chair in front of a computer

screen. An EEG cap was used to record EEG signals. A total of

10 channels of Ag/AgCl electrodes were distributed according to

the 10–20 system. The reference channel and the ground channel

were placed, respectively, on the right mastoid process and the

forehead. The impedance of electrodes was kept <5 kΩ . EEG

signals were amplified with the CommercialAmp (iRecorder W16,

Niantong Intelligence Ltd., China) and recorded at a sampling rate

of 500 Hz.

Feature extraction and classification

In this study, a common spatial pattern (CSP) (Ramoser et al.,

2000) was used for feature extraction, and the log variance of

the first and last two components produced by CSP filters were

selected as feature vectors (Shu et al., 2018). The method of linear

discriminative analysis was employed for discriminating different

tasks (MA vs. Rest). The pattern classifications were conducted

online with 10 channels of EEG signals. EEG features were extracted

from the time segment of [3 5] s and frequency band of [8 30] Hz.

This time segment can be viewed in Figure 2C (performance of the

motor task).

BCI group

EEG calibration
Before training, the patients would go through EEG calibration

for each task, and the voice instructions were “attempt to grasp,

rest,” and “relax, rest” 10 times but in a random order. After 20 trials

for calibration (Shu et al., 2018), BCI training was then performed.

BCI training
Patients were instructed to undergo two kinds of MA training:

hand grasping and opening. During the grasp training process,

the instruction for training was “attempt to grasp, rest” for each

trial, which lasted for 11 s and repeated 30 times for each session

and three sessions of one-time training. As for the open task,

the training was the same process, the only difference being the

instruction, “attempt to open, rest.” This was recycled 30 times for

each session, with three sessions for one-time training. During the

training, we paid close attention to their behavioral movements and

corrected the movement of other body parts in a timely manner.

The training was arranged one time a day, 30min foat a time, 5 days

for a week, for 4 weeks, and 20 times in total. The grasp/open task

was trained once each time. The BCI system setup and trial pipeline

can be seen in Figure 2.

Feedback-hand robot

Wearable hand exoskeletons were used formotor feedback. The

patients wore a robot, and the EEG rhythms in the sensorimotor

area of the brain were detected to control the opening and grasping

of a robotic hand. When the intention of the attempt to grasp/open

was successfully detected, the robot could assist the movement of

the paretic hand.

Control group

They received motor task-based task-oriented training

guidance, including grabbing a block of wood, toy grasp, and

release. Even some severely injured patients can wear robots to

assist their hand movement. The training was arranged once a

day, 30min a session, 5 days for a week, for 4 weeks, with 20

sessions in total. The two group patients also received 20min of

physical therapy, 20min of occupational therapy, and 20min of

neuromuscular electrical stimulation.

EEG processing

The EEGLAB v2021.1 and MATLAB R2021a were used in the

EEG analysis. EEG data from 10 channels were used in processing.

The left hemisphere was covered with FC3, CP3, C1, C3, and C5

(five channels) while the right with FC4, CP4, C2, C4, and C6
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FIGURE 2

(A) Overview of the BCI system pipeline. The device is mainly composed of an amplifier, EEG cap, and hand robot. A 10-channel

electroencephalogram (EEG) device was used to record the movement intention of the subjects in real time, and the movement commands were

analyzed by artificial intelligence algorithms and sent to the hand robot wirelessly. The signal parsing part adopts the on-chip decoding technology,

which can be run independently from the computer. The hand robot part uses a combination of the rigid transmission mechanism and flexible

fixation material, which can be worn by the patient with one hand to assist the complete grasping and stretching movements. The maximum output

of grasping force is 5N, and it can be connected with the EEG cap part with a one-button connection. (B) Hand robot. (C) Experimental setup of one

trial. −1.5 to 0 s voice commands for preparation, subjects’ state for resting preparation, 0 to 3 s voice commands for attempting to open the hand or

attempting to grasp the hand, patients begin to prepare to do the action, 3–5 s, no voice commands, patients perform the motor task, 5– 9.5 s, voice

commands for rest, and subjects also rest.

(five channels). The preprocessed EEG data consisted of high-pass

filtering at 8Hz and low-pass filtering at 30Hz. Stop-band filter

filtering was 49–51Hz. Since the artifacts might still exist between 8

and 30Hz, the frequency of artifactual oscillations often overlaps

with the interest frequency; thus, the independent component

analysis components representing eyeblink, head movement, and

power line interference were removed from the data (Goncharova

et al., 2003; Fatourechi et al., 2007). Manual checking was

performed in the EEG data of all 10 channels and all trials. The

power spectrum of all 10 channels was computed at the frequency

of alpha (8–13Hz) to identify ERD on grasp and open tasks.

Time–frequency distributions of EEG trials were estimated using a

windowed Fourier transform (WFT) with a fixed 400ms Hanning

window. WFT yielded, for each trial, a complex time–frequency

estimate F(t, f ) at each time–frequency point (t, f ), extending from

−1,500 to 8,500ms (in steps of 2ms) in the time domain and

from 8 to 30Hz (in steps of 1Hz) in the frequency domain. Power

spectrum (P), P(t, f ) = |F(t, f )|2, was obtained. The percentage of

relative power change was calculated to obtain the ERD concerning

a resting-state baseline ([−1.5, 0] s). The interest time was set both

at [3, 5] s after the cue [0, 2] s of the event. During the [3, 5] s,

the patient was performing the MA tasks. The power spectrum of

interest in the period after the event is given by A whereas that

of the preceding baseline period is given by R. ERD or ERS was

calculated according to the equation:

ERD/ERS = (A − R)/R× 100%.

Under this definition, ERD was usually expressed as a

negative value, while ERS was usually expressed as a positive

value. The time–frequency maps were drawn with the above

mentioned calculation, representing the signal magnitude as a joint

function of time and frequency at each time–frequency point.

The topographies were drawn with an interesting time of 3–5 s,

concerning a resting-state baseline ([−1.5, 0] s). We calculated

the ERD from the affected hemisphere (C3/C4) of the brain and

obtained the average power spectrum for all 30 trials. The laterality
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TABLE 2 Progress of the FMA-UE for the two groups.

Item BCI group (n = 30) Control group (n = 31) Z P-values

1FMA-UE 10.50 (5.75, 16.50) 5.00 (4.00, 8.00) −2.834 0.005

1FMA-UE represents the changes of FMA-UE before and after the intervention, and it does not follow a normal distribution; these data are expressed as the median (P25, P75).

index (LI), expressed as the normalized difference between brain

activation in the left and the right hemisphere, approached a value

of 1 or −1 when the activity was either purely contralesional or

ipsilesional (Caria et al., 2011; Chen et al., 2021), and we calculate

by the ERD from C3/C4 electrode according to the equation:

LI =
(

ERDipsilesiional − ERDcontralesional
)

/
(
∣

∣ERDipsilesiional

∣

∣ + |ERDcontralesional|) .

Statistical analysis

Sample size
The sample size was calculated based on the primary outcome,

that is, BCI intervention is superior in improving the FMA-UE.

Based on preliminary findings effect size d = 0.8, the alpha level

at 5%, statistical power at 80%, the ratio between the two groups

was 1:1, G power 3.1 was used to calculate the sample size, and 26

patients per group was needed, assuming a drop-out rate 20%, and

33 participants per group were enrolled in the study.

The statistical analysis was performed with SPSS version 26.0

(SPSS Inc.) and figures were drawn with GraphPad Prism 8

(GraphPad Software, Inc.). Kolmogorov–Smirnov tests were first

applied to check the normality of the variables. For Gaussian

variables, data were expressed as mean ± standard deviation,

and for non-Gaussian variables, they were expressed as median

(P25, P75). The chi-square test was used for binary variables,

such as gender and diagnosis (Infarction/hemorrhage); the t-test

was used for Gaussian variables, such as the age of patients;

otherwise, a non-parametric test (the course of the disease) was

used for basic feature descriptions. Since FMA-UE and LI do

not follow a normal distribution, paired non-parametric rank-

sum tests (Wilcoxon rank-sum test) were used before and after

the intervention for each group, and independent-sample non-

parametric rank-sum tests (Wilcoxon rank-sum test) were used

for the two groups’ analysis. Studies have shown that 4.6 scores

reached the minimal clinically important difference (MCID) (Chen

Ruiquan, 2015); thus, we calculated the effective rate by dividing

the number of MCID reached by each group by the total number.

Statistical significance was set at a P-value of < 0.05 (two-tailed).

Results

Rehabilitation outcome of the patients

The change of FMA-UE between the BCI group [10.05 (5.75,

16.50)] and the control group [5.00 (4.00, 8.00)] was significant

(Z = −2.834, P = 0.005; Table 2). After 1 month of training, the

FMA-UE of both groups improved significantly (P < 0.001). Before

the intervention, the FMA-UE in the BCI group was 14.00 (8.75,

FIGURE 3

The upper limb of the Fugl–Meyer assessment (FMA-UE) improved

between the BCI group (P < 0.001) and the control group (P <

0.001) before and after the intervention, and the progress between

the BCI group and control group of FMA-UE (P = 0.005). The line

shows the median (P25, P75). **P < 0.01; ***P < 0.001.

27.75), compared with the control group’s 20.00 (10.00, 40.00),

and there was no significant difference between the two groups

(Z =−1.364, P= 0.173) at the baseline; while after the intervention

the FMA-UE in the BCI group was 31.50 (16.50, 45.75), compared

with the control group 32.00 (17.00, 46.00), and there still was

no significant difference between the two groups (Z = −0.115,

P = 0.908; Figure 3, Table 3). A total of 24 patients in the BCI group

achieved the MCID of FMA-UE with an effective rate of 80%, and

16 in the control group achieved the MCID, with an effective rate

of 51.6%.

The lateral index changes

Before BCI training, the lateral index of the BCI group was

0.0567 (−0.740, 0.4688) for the grasping task and 0.0046 (−0.2108,

0.3650) for the open task, compared with post-BCI training, the

lateral index of BCI group was −0.0109 (−0.3183, 0.3290) for the

grasping task and −0.1909 (−0.3957, −0.0374) for the open task,

and there was a significant difference for the open task (Z=−2.704,

P = 0.007; Figure 4). Figure 5 shows the changes in the topological

graph for the two motor tasks before and after the intervention.

The lesioned side was flipped so that all the affected sides were

on the left side. It shows the topographies for the grasping task

before (Figure 5A) and after (Figure 5B) training in the BCI group

and the topographies for the open task before (Figure 5C) and after

(Figure 5D) training in the BCI group. After the BCI intervention,

the lesioned hemisphere shows great activations (ERD) compared
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TABLE 3 FMA-UE for the two groups before and after the intervention.

Item BCI group (n = 30) Control group (n = 31) Z P-values

Pre 14.00 (8.75, 27.75) 20.00 (10.00, 40.00) −1.364 0.173

Post 31.50 (16.50, 45.75) 32.00 (17.00, 46.00) −0.115 0.908

Z −4.784 −4.772

P-values <0.001 <0.001

Since FMA-UE does not follow a normal distribution, these data are expressed as the median (P25, P75).

FIGURE 4

(A) Lateral index (LI) of the BCI group for the open task (it was plotted as a median with an interquartile range); (B) LI of individual changes for the open

task; (C) LI of the BCI group for the grasping task (it was plotted as median with interquartile range); (D) LI of individuals changes for the grasping task.

to the topography before the intervention. These results can be seen

in both grasp and open tasks.

BCI accuracy

The average BCI accuracy for 24 strokes in BCI group patients

was 70.7% for 20 sessions, and it improved by 5.0% in the final

session compared with the original session (Figure 6). However,

the improvement in BCI accuracy does not have a significant

correlation with the improvement of the FMA-UE.

Discussion

We explored the clinical efficacy of the functional-orientedMA-

based BCI training for stroke patients after 1-month of training

with hand robotic feedback, and they obtained more FMA-UE

improvements than the control group after 20 sessions of BCI
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FIGURE 5

Before drawing the topology, we flip the lesion so that the a�ected side is on the left side. (A) Topography for grasping task before training in the BCI

group; (B) topography for grasping task after training in the BCI group; (C) topography for the open task before training in the BCI group; (D)

topography for the open task after training in the BCI group.

training. It indicated that functional-oriented BCI training can

promote hand and upper limb motor recovery for stroke patients.

FMA-UE in the BCI group improved [10.05 (5.75, 16.50)]

compared with the control group [5.00 (4.00, 8.00)]. They were all

within 1 year of stroke onset, and they made up the majority of

the inpatient ward population. Studies have shown that 4.6 scores

reached the MCID (Chen Ruiquan, 2015), and our study shows

that 80% can obtain functional improvement in the BCI group, and

over half of the patients in the control group can obtain functional

improvement. The importance of MCID has already been noticed

in Ramos-Murguialday et al.’s (2013) study, and they considered a

change in the range of 3.4 points on the modified FMA-UE (with

a maximal score of 54 points) motor activity-related scores as a

change from no activity to some muscles involved in lifting and

stretching the arm, turning the forearm, and extending the wrist

and/or fingers.

We carried out the functional-oriented training with our

portable, wireless Bluetooth-connected BCI equipment for hand

rehabilitation after stroke, and the results showed that the BCI

group achieved significant progress. Several stroke patients in the

acute stage could hardly move their hands, neither completely nor

incompletely grasp. An improvement from no active movement to
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FIGURE 6

Average BCI accuracy of 24 stroke patients, with a total of 20

sessions. The abscissa is 1–20 times of BCI intervention, and the

ordinate is the BCI accuracy. Since the average BCI accuracy of

patients is between 60 and 80%, the ordinate is set to 60%−80%. The

average BCI accuracy was 70.7% for 20 sessions, and it improved by

5.0% in the final session compared with the original session.

active movement is a hard step, and separation movement, being

able to open the finger, is also a difficult process. Patients with

moderate-to-severe brain injuries often have trouble in grasping or

opening their hands. We assigned grasp and open tasks to different

patients. If they have trouble with finger flexing or grasping the

hand, they may need more grasp training; once they grasp the hand

but have trouble with extending fingers, they may need more open

training. Therefore, with different kinds of injured hands, we can

induce the desired function to recover and reinforce the existing

function by use of our BCI equipment.

Motor tasks are the main component in BCIs. In our study,

we chose the MA as the mental task. We instructed patients to

attempt to grasp or open the hand, and then, the hand robot can

assist with the movement of the paretic hand as the feedback. We

adopted motor attempts in our study; before training, we trained

the patients on how to do the motor attempt movement, and in

the training, our instruction was “attempt to grasp” or “attempt to

open” with supervision, and they completed the motion smoothly.

MA-based BCIs established a closed sensorimotor loop, which can

potentially restore the normal timing order of motor preparation,

execution, and peripheral muscle effectors, and this form of

plasticity may further strengthen corticospinal tract projection (Bai

et al., 2020).

The inter-hemispheric balance between the ipsilesional and

contralesional motor cortices can return with recovery (Plow

et al., 2015). As we all know, the bilateral hemispheres are in

homeostasis through mutual transcallosal inhibition, but the stroke

disrupted the balance. Contralesional areas instead intensify their

inhibition upon the already weak ipsilesional, which explains

poststroke dysfunction (Murase et al., 2004). In our study, we

also investigated the LI by the EEG signal from electrodes C3/C4.

LI can be considered as the normalized difference between brain

activations in the left and the right hemisphere, approaching a

value of 1 or −1 when the activity was either purely contralesional

or ipsilesional. In Ramos-Murguialday et al.’s (2013) BCI study,

they explored the LI of brain activity in the motor and premotor

cortices during the “actual” movement condition under functional

MRI and testified that FMA improvements in the experimental

group correlated with changes in functional MRI laterality index.

In our study, we instructed the patients to attempt to move the

paralytic limb and calculated the LI from the C3/C4 by EEG,

thus, the brain activations from both or contralesional to only the

ipsilesional hemisphere may be a good sign for recovery. Therefore,

the balance between bilateral hemispheres returned generally and

may promote brain recovery and functional improvement. We

found that the LI for the open task was improved after the

BCI training, but there was no significant difference for the

grasp EEG assessment even though there are some tendencies to

decline. The average of the topological graph also demonstrated

the changes before and after the intervention. It showed the

change of brain activations from unaffected to both sides in

the grasping task, and in the open task, the brain activations

were from around the electrodes to the SMC areas also means a

big step.

Many previous studies have explored the relationship between

improvements in motor function and BCI accuracy. Some scholars

considered that (Chen et al., 2020) stroke patients with good

recovery showed relatively higher online BCI accuracy, and others

showed a slight decline in hit rate over time even though their

function was improved (Biasiucci et al., 2018). In our study, the

average BCI accuracy was 70.7% for 24 patients (six patients were

not calculated because the EEG data was ruined), and this is similar

to existing studies (Biasiucci et al., 2018; Miao et al., 2020). We

also found that the average BCI accuracy for patients was improved

after BCI training, but there was no correlation with the function

changes. Thus, a good BCI accuracymay be eligible for BCI training

(Ahn et al., 2013), but it may not be an appropriate index to predict

functional changes.

In brief, the use of 10-channel EEG could be a limitation

in our study, and because of the limited channels, we cannot

make further analysis, such as functional connectivity analysis.

We did not obtain EEG from the control group, and it might

influence the explanation of the LI for motor recovery. Although

we have achieved positive results, in the future, we will carry out

multi-center clinical trials on a larger scale across the country to

recruit more stroke subjects to reach a more reliable conclusion.

In addition, only two kinds of basic hand movement were adopted

in our study and could be another limitation of our study since

there are many types of dysfunction of the hand. In the future,

we can design more motor tasks in the BCI experiment to benefit

more patients.

Conclusion

The functional-oriented BCI training can promote hand

recovery after stroke, and the rebalance in brain activations of inter-

hemispheres may be the mechanism of motor recovery. Due to

its two motor task modes, portability, and Bluetooth-connected

characteristics, it is expected to be widely used in the clinic.
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