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Introduction: Functional magnetic resonance imaging (fMRI) has shown that

aging disturbs healthy brain organization and functional connectivity. However,

how this age-induced alteration impacts dynamic brain function interaction has

not yet been fully investigated. Dynamic function network connectivity (DFNC)

analysis can produce a brain representation based on the time-varying network

connectivity changes, which can be further used to study the brain aging

mechanism for people at di�erent age stages.

Method: This presented investigation examined the dynamic functional

connectivity representation and its relationship with brain age for people at an

elderly stage as well as in early adulthood. Specifically, the resting-state fMRI data

from the University of North Carolina cohort of 34 young adults and 28 elderly

participants were fed into a DFNC analysis pipeline. This DFNC pipeline forms

an integrated dynamic functional connectivity (FC) analysis framework, which

consists of brain functional network parcellation, dynamic FC feature extraction,

and FC dynamics examination.

Results: The statistical analysis demonstrates that extensive dynamic connection

changes in the elderly concerning the transient brain state and the method of

functional interaction in the brain. In addition, variousmachine learning algorithms

have been developed to verify the ability of dynamic FC features to distinguish the

age stage. The fraction time of DFNC states has the highest performance, which

can achieve a classification accuracy of over 88% by a decision tree.

Discussion: The results proved there are dynamic FC alterations in the elderly, and

the alterationwas found to be correlatedwithmnemonic discrimination ability and

could have an impact on the balance of functional integration and segregation.

KEYWORDS

aging, dynamic functional network connectivity, graph theory, mnemonic discrimination

ability, functional integration and segregation

1. Introduction

Aging has a profound influence on the brain’s structure and function at both local and

global scales. These effects are responsible for decreased mental and physical fitness (Cole

et al., 2018) and increased risk of neurodegenerative diseases such as Alzheimer’s

disease (Abbott, 2011), or Parkinson’s disease (Dennis and Thompson, 2014; Reeve et al.,

2014). Functional magnetic resonance imaging (fMRI) is a powerful and efficient, accessible

and non-invasive tool, which has been extensively used to reveal neural mechanisms engaged

in the normal aging process. It has also contributed greatly to elucidating the role that aging

plays in the decline of brain function [e.g., the cognitive (Uddin et al., 2017) or motor

function (Thomason et al., 2008)]. More precisely, resting-state fMRI studies have frequently
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reported altered connectivity both within-network and between-

network. In human aging the findings encountered include:

the functional connectivity (FC) decreases within higher-order

networks and segregation of networks diminishes with advancing

age. For example, within the default network, the salience network,

and the frontoparietal control network, FC has been reported to be

reduced (Fjell et al., 2016; Grady et al., 2016). This FC alteration

could be a sign of neural or functional network reorganization,

however, these findings rely on the static functional network

connectivity analysis (SFNC). One potential limitation of SFNC

is the theoretical assumption that the FC exhibits a constant

state during a rest MRI period. This means that the fine-grained

temporal evaluation of resting state has been neglected, and

the flexibility of the functional network reorganization cannot

be assessed.

Recently, with the advances in understanding of the temporal

resolution of resting-state fMRI, the interest in how normal human

aging affects the time-varying or dynamic functional network

connectivity (DFNC) has increased (Calhoun et al., 2014). For

instance, the loss or decline of FC dynamics has been wildly

found in the elderly adult group (Schaefer et al., 2014; Chen

et al., 2017). This temporal variation of FC reflects the network

flexibility necessary for brain function response, which fits our

intuitive perception of the elderly who have the loss of physical

flexibility. In contrast with SFNC, an advantage of DFNC is that it

allows the fluctuation of FC, within or between the brain functional

networks, over short periods to be observed. Identification of

the FC fluctuation patterns allows the brain’s FC state profile

to be identified. Following which, features characterizing the FC

dynamics, such as the transition trajectories between distinct brain

states (Allen et al., 2014; Vidaurre et al., 2021) can then be used to

interpret brain behaviors.

Given such a capacity, DFNC has been increasingly applied to

brain aging. For instance, the DFNCmethod has demonstrated that

the FC dynamics degenerate in normal aging. This degeneration is

reflected by the lower switching rate between brain states within

salience network (Snyder et al., 2021) and default network (Xia

et al., 2019), as well as by the decreased connectivity flexibility in

the right middle frontal gyrus (Yin et al., 2016). The FC dynamics

has also been demonstrated to correlate with cognitive ability (Xia

et al., 2019). Studies using DFNC methods have revealed other

opinions regarding dynamic FC. For example, FC dynamics is

usually characterized by the switching rate of connectivity states,

which is defined as the rate at which a state transitions between

potential functional brain states over a certain period. However,

in a study investigating the human brain across the lifespan,

for example, the switching rate of brain state was observed to

have no difference between different age groups (Viviano et al.,

2017). These distinct results are possibly due to differences in the

implementation method and the data samples. While the results

are not consistent, all these collected findings imply that the DFNC

analysis is a promising method for providing insight into human

aging neuromechanisms from multiple views and means.

Therefore, in this research, we explore the brains of two age-

different groups with the DFNC method, to track the FC dynamics

in the elderly over the MRI scan and to investigate the relationship

between dynamic FC and age. Overall, we expect that the study

of DFNC can reveal and track the change in flexibility of function

coordination and interaction in the elderly, and this alteration can

facilitate brain age estimation at an individual level. This research

also has the potential to form the basis for further investigations

which may provide a deeper understanding of brain changes and

aging. This could offer clues to the relationship between brain

maturity and brain behaviors as well as age-induced diseases.

Specifically, the resting-state functional MRI data from 34

younger adults aged 19–22 and 28 elderly adults aged 60–80

have been tested by an implemented DFNC analysis pipeline. The

fMRI data is used to identify the intrinsic connectivity networks

(ICNs), from which the brain states are estimated and the dynamic

features extracted. The alterations in FC dynamics caused by aging

were examined, and the power of dynamic features in individual

age prediction was evaluated in this framework. In addition, we

have also discussed the relationship between dynamic features

and mnemonic discrimination ability and the dynamic balance of

functional integration and segregation in healthy aging.

2. Materials and methods

2.1. fMRI acquisition

Resting-state scans were obtained from the University of North

Carolina samples at Greensboro1 after request, without any rights

conflicts. The participants were 28 elderly adults (61–80 years old,

mean age ± standard: 69.82 ± 5.64; 20 female) and 34 young (18–

32 years old, mean age ± standard deviation(SD): 22.21 ± 3.65;

20 female). Participants were instructed to lie motionlessly in the

scanner and stay awake with their eyes open. All functional images

were collected using a Siemens Trio 3.0T scanner with a 16-channel

head coil and the following recording parameters: 32 slices with 4.0

mm thickness and no skip, time of echo = 30 ms; time of repetition

(TR) = 2,000 ms; flip angle = 70, field of view = 220 mm, matrix size

= 74× 74× 32 voxels, 300 volumes in 10 min.

2.2. fMRI data preprocessing

The data for each participant has 300 measurements recorded

over 10 min. The first five volumes of each scan were discarded to

allow for magnetic stability and thus to generate a steady blood

oxygenation level-dependent activity signal. The functional data

was then processed with the following steps:

1. Realignment to correct head motion (see Section 2.3 for

verification details).

2. Slice time correction.

3. Outlier identification.

4. Normalization (normalize to 3mmMNI space using a templates

from the SPM software package; Ashburner and Friston, 2005).

5. Spatial smoothing with a Gaussian kernel of 8 mm full-width at

half-maximum (FWHM).

1 https://openneuro.org/datasets/ds003871/versions/1.0.2
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The processing pipeline was executed using the CONN

toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012).

2.3. Verification of head motion correction

To verify there was no significant head movement in the data,

for each participant the individual mean and maximum framewise

displacements (FD) (Power et al., 2012) were calculated. As the

participants with large outlier scans have been removed from the

raw data, none of the available participants had headmotion greater

than 0.5 mm. No significant group difference in FD was observable

when comparing the final sample of 28 old adults and 34 young

adults (p = 0.92).

2.4. Static functional network connectivity
analysis

To assess static connectivity, pairwise Pearson correlations

were computed over the entire timeseries and then Fisher’s

Z-transformed. Group ICA-based was used to produce brain

parcellations according to the same procedure as described in

Section 2.5.1. This calculation resulted in correlation coefficients

per participant, which represent the connectivity strength between

the given ICNs. Then, the static connectivity matrices were

averaged across the young and elderly adult groups.

The difference in static connectivity between the young

and elderly groups was evaluated through a two-sample t-

test (a significance level of p < 0.05). The correction for

multiple comparisons was applied using false discovery rate

(FDR)-correction to determine statistical significance at p <

0.05 (Benjamini and Hochberg, 1995).

2.5. Dynamic functional network
connectivity analysis

Figure 1 shows the framework of our DFNC approach.

Specifically, there are five main steps in this pipeline:

1. Group independent component analysis (ICA) parcellation for

intrinsic connectivity network (ICN) recognition,

2. Sliding window cross-correlation,

3. Clustering analysis for brain state estimation,

4. Dynamic feature extraction,

5. FC dynamics examination via statistics and machine learning

tests.

Details of each step are provided in the following sections.

2.5.1. Step 1: Group independent component
analysis parcellation

Group ICA was performed in order to parcellate the brain into

various functional networks. Following the recommendations from

previous studies (Allen et al., 2014; Abrol et al., 2017; Xia et al.,

2019), the number of components that can functionally parcellate

the brain was predefined at 100. The configuration for the group

information-guided ICA algorithm was developed according to the

detailed description provided by Salman et al. (2019). In particular,

we adopt the two-stage Principal Component Algorithm (PCA) to

preserve the components that account for the most variance. In the

first stage, each participants’ functional data was decomposed into

120 principal components (PCs), and the PCs of all participants

were concatenated across time and then further reduced to 100

in the second stage. Finally, the infomax algorithm, from the

ICASSO software package (Himberg and Hyvarinen, 2003), was

used with 20 repeats to find steady independent components (ICs).

After back reconstruction, the participant-specific spatial maps and

corresponding time courses can be obtained. Three methods were

employed to detect the ICNs from potential functional networks:

(1) The spatial activation maps from the ICs were visually inspected

to identify if they match the large-scale functional network

locations from previous studies (Di and Biswal, 2015; Kim et al.,

2017) and anatomical brain regions.

(2) The multiple regression method was used to select ICs whose

spatial pattern matches with the existing functional networks

template given by:

Y = β1X1 + β2X2 + · · · + βnXn + ε, (1)

where Y is the collection of the spatial vector of template ICNs,

Xi represents the spatial vector of the i-th IC and β is the

regression coefficient. The regression analysis is used to select

the ICs closest to the functional network template spatially (the

first rank of β), and the calculation is done by least-squares

estimation.

(3) The power spectrum of the ICs was checked to see if it follows

a low-frequency peak and a high-frequency steady pattern

(the time courses of ICs are characterized by high dynamic

range) (Griffanti et al., 2017).

Following the practice presented in Tu et al. (2019) and

Bonkhoff et al. (2020), before passing the ICNs to the subsequent

steps of the DFNC pipeline, additional post-processing of

the time courses of all included ICNs was performed. The

post-processing involved (a) linear, quadratic, and cubic

detrending, (b) regressing out motion parameters (six realignment

parameters and their first temporal derivatives), (c) low-

pass filtering with a high-frequency cut-off of 0.15 Hz (to

retain only BOLD-related signal fluctuations; Calhoun et al.,

2001), and (d) despiking using 3D despike. These actions

ensure artifact noise has minimal impact on the signal

analysis.

2.5.2. Step 2: Sliding window cross-correlation
scheme

In the second step a sliding window is used to segment

the timeseries of the ICNs into sub-fragments. For each time

window the correlations between the ICNs during that window

were calculated. There is no consensus in terms of the window

size and the length of the sliding step. However, prior studies

provide evidence that a window size between 30s and 60s enables

successful estimation of DFNC giving an appropriate balance
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FIGURE 1

The dynamic functional connectivity analysis pipeline. The timeseries signal was extracted from the network regions recognized from the group ICA

parcellation method. Then, the regional timeseries were decomposed with a sliding window scheme for a time-varying function network

connectivity (FNC) estimation. Those FNC matrixes were fed into a clustering algorithm to obtain di�erent transient brain states by forming a cluster

centroid. After that, two types of dynamic features were calculated based on the acquired transient states and temporal signals. Finally, statistical and

machine learning methods were applied to verify the extracted dynamic FC features.

between accurate calculation of the correlation and the ability to

detect time variations in the ICN timeseries (Hindriks et al., 2016;

Liegeois et al., 2016; Preti et al., 2017). Thus, in our experiment,

we opted for the common parameter settings, where the width

of the window is 22 TR time (Kim et al., 2017; Bonkhoff et al.,

2020), windows were convolved with a Gaussian of σ = 3 TR

to smooth the transition between windows (Allen et al., 2014),

and the window shifted with a step of 1 TR (Tu et al., 2019;

Bonkhoff et al., 2020). The window cross-correlation produced

273 correlation matrices, representing the fluctuation of functional

connectivity between the identified ICNs. These matrices are

Fisher’s Z transformed before being passed to step 3 for clustering

analysis.

2.5.3. Step 3: Clustering analysis for brain state
estimation

Recurrent or repeating connectivity patterns in an fMRI scan

are known as dynamic brain states. To identify these brain

states clustering is performed using the k-means based clustering

algorithm. The distance between clustering points was computed

using the Manhattan distance (i.e., the “city-block”), which is

the distance metric recommended for high-dimensional-space

clustering (Aggarwal et al., 2001). The number of clusters is

automatically computed by maximizing the ratio of within-cluster

distance and between-cluster distance, and the optimal candidate is

thenmanually estimated using the elbowmethod (Allen et al., 2014;

Bonkhoff et al., 2020). For each subject the correlation matrices

from step 2 were grouped into different clusters according to the

distance from the clustering centroid. This results in state labels for

each of the time windows which are used in the dynamic feature

calculations in the next step in order to investigate the difference

between the young and elderly adult groups.

2.5.4. Step 4: Dynamic feature extraction
Next, the FC temporal characteristic evaluation as well as the

dynamic graph analysis were performed. Following (Allen et al.,

2014; Bonkhoff et al., 2020), using the state labels, four FC temporal

characteristics were calculated as features for the between-group

difference: (i) state fraction: the percentage of the total number

of FC windows for one subject which take the given state; (ii)

mean dwell times: the mean time a subject spent in a state without

switching to another one; (iii) number of transitions: how many

times a subject changed states; and (iv) transition probability

matrix: the transition likelihood between the k connectivity states.
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The rationale behind the dynamic graph analysis is that, with

the FC potentially fluctuating with each time window, so too the

topological structure of the graph can vary. For the dynamic graph

analysis, as shown in step 4 in Figure 1, the ICNs were defined as

the nodes in the graph and the FC between them as the edges,

thus for each participant a graph is obtained for each time window.

To define the adjacency of the nodes a threshold can be applied

to the edges in the graph to produce an undirected and binary

adjacency matrix. However, as the topological structure is not

constant within one graph if using different network thresholds,

the network sparsity method has been adopted in our experiment

to avoid the bias of unstable measures in between-group dynamic

feature comparison (Zhang et al., 2011; Kim et al., 2017; Xia et al.,

2019; Rashid et al., 2021). Similar to prior studies (Hashmi et al.,

2017; van den Heuvel et al., 2017; Tu et al., 2019), 10 thresholds

ranging from 0.05 to 0.50 with a step of 0.05 were used to obtain

the sparse network. Each threshold produced an adjacency matrix

for each DFNC matrix.

Having obtained the adjacency matrices then, graph theory was

applied to investigate the topological organization of the DFNC

state and the series of graphs. Specifically, we use 12 graph metrics

to measure the graph characteristics and dynamics during the fMRI

scan. For example, network efficiency, measures how efficiently a

node exchanges information or communicates with other nodes

within a network. The other selected metrics include assortativity,

global and local efficiency, and synchronization, which depict a

brain function network’s resilience, segregation, and integration.

Detailed definitions of these graph metrics and their formulas

are listed in Supplementary Table 1: Appendix 1. To balance the

sparsity selection for the sequence of thresholds, the area under the

curve (AUC) for the metric values was computed. Then, the AUC

was utilized as a graph feature for further analysis.

2.5.5. Step 5: Statistics and machine learning tests
The final step in the pipeline conducts statistical testing to

examine the results. To obtain robust and reliable results on aging-

related variations within and between groups, a non-parametric

permutation test with 5,000 randomizations was implemented

for all of the dynamic features produced in the DFNC analysis

pipeline. The difference in the means of the distributions yielded

after the 5,000 random permutations served as the t statistic. In

addition, we investigated the presence of the distinct transient brain

states across different age groups by performing a two-sample t-

test. All statistical results were corrected by false discovery rate

(FDR) for multiple comparison correction with a significance level

of p < 0.05.

Meanwhile, nine machine learning algorithms were

implemented to examine the power of the dynamic features

to predict the age of an individual. These algorithms were exploited

to learn a mapping from the raw fMRI space, X , to the age

distribution of participants, Y . That is: Φ :G (X ) → Y given the

fMRI scan collection of training samples T =
{ (

xn, yn
) }N

n=1. Here,

N is the number of training sample scans, xn ∈ X is the input scan

and yn ∈ Y is the associated age label indicating if the participant

is an elderly adult. G =
{

gi
}V

i=1 is the function extracting dynamic

FC features, and V is the number of features.

TABLE 1 Machine learning algorithms and their parameters.

Algorithm Parameters

Nearest neighbors Number of neighbors = 2

Linear SVM Regularization parameter = 0.025

RBF SVM Same as linear SVM

Gaussian process Default

Decision tree Depth = 5

Random forest Number of neighbors = 5, number of estimators = 10

These algorithms were all implemented using the sklearn

python package. For the 6 methods listed in Table 1 the default

setup with the given parameters was used. In addition, we

developed a neural network method using Keras’s deep learning

package. Considering our small sample data size could cause

problems with over-fitting in the training phase for complicated

network structures, a 2-layer forward neural network (FNN) was

developed. The first and second layers of the neural network

compose of 256 and 2 neurons (corresponding to the number of age

categories). At the end of the first and second layers, there is a tanh

and sigmoid activation function to learn the non-linear mapping

relationship. The model is trained by minimizing the loss function:

Lloss =
1

N

∑

i

−
[

yi · log
(

pi
)

+
(

1− yi
)

log
(

1− pi
)]

, (2)

where pi is the predicted probability. Finally, we test two ensemble

fusion-basedmethods: one is Adaboost (Hastie et al., 2009), and the

other one is Voting (Ruta and Gabrys, 2005). Both algorithms try to

promote prediction performance by weighting multiple embedded

estimators. In the Adaboost method, the default setup was opted

for. In the voting method, the ensemble rule was set to be “hard”,

which means that the predicted class labels for majority voting will

be the final prediction results.

The dynamic feature output by gi was singly fed into these

machine learning methods to examine whether the aging group

classification facilitates dynamic classification. In addition, we have

also cascaded the outputs of G (X ) together to examine if the

concatenated dynamic feature can promote the performance.

3. Results

3.1. Intrinsic connectivity networks

Of the 100 ICs identified by the group ICA, 40 ICs were

identified as noise components and then discarded. The remaining

60 components were finally identified as ICNs. The 60 ICNs were

assigned to one of six domains that have been widely studied in

normal aging (Xia et al., 2019; Snyder et al., 2021) (Figure 2):

subcortical domain (SC), auditory domain (AUD), visual domain

(VIS), sensorimotor domain (SM), cognitive control domain (CC),

and default mode domain (DMN). The detailed component labels

and peak coordinates of each ICN have been provided in the

Supplementary material: Appendix 2.
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FIGURE 2

Spatial maps of the 60 independent components result from the entire group (28 elderly and 34 younger adults). The coordinates denote the max

peak location of functional domains, and di�erent colors pass spatial information. AUD, auditory domain; CC, cognitive control domain; DMN,

default mode domain; SC, subcortical; SM, sensorimotor domain; VIS, visual domain.

3.2. Static functional network connectivity
analysis

Figure 3 shows the static functional network connectivity

aggregated over the entire scanning time series using the group

ICA method. The red color indicates a positive correlation,

and the blue color represents a negative correlation between

functional spatial regions. With the static functional network

connectivity, we observed strong intra-domain connectivity, i.e.,

connectivity within the DMN, SMN, VIS, and AUD domains was

positively correlated. In contrast, the inter-domain connectivity

was comparably low, where the functional regions in the 6 domains

were either independent of each other or negatively connected.

This phenomenon was particularly obvious for the SC domain,

where the connectivity with the other 5 domains was nearly all

negative. Within the SC domain, the brain areas also exhibit

negative connectivity.

Further reviewing the difference in connectivity from the

elderly group and the younger using a two-sample t-test, 193

connectivity pairs show significantly altered between-network

connectivity components. The significant alterations in ICNs have

been denoted with an asterisk in Figure 3A, from which we can

see that these alterations are mainly related to the CC domain.

Post t-tests, contrasting elderly adults and younger controls, reveals

aging-induced reduced connectivity (p < 0.05, FDR-corrected).

From Figure 3B, we can see only the connectivity between SM and

CC domains was left after post t-tests in group ICA (p < 0.05,

FDR-corrected). This result shows consistency with the studies that

show higher connectivity between the somatosensory and control

network (Geerligs et al., 2015).

3.3. Dynamic functional network
connectivity analysis

3.3.1. DFNC State
Four DFNC states were identified from the clustering.

The identified states were the functional patterns that

frequently reoccurred across all the participants, and are stable

characterizations of the brain activity during the fMRI scanning.

The four states are presented in Figure 4A indexed with the order

given by k-means.

According to the connectivity pattern, the states can be

grouped into two categories. State 1 and 4 compose the first class,

characterized by dense inter-and intra-domain connectivity. We

can observe highly positive between-AUDdomain connectivity and

negative between-SC domain connectivity. State 1 closely matches

the static connectivity in terms of Manhattan distance. The second

category involves states 2 and 3. Compared with the first, this

class featured relatively weak and sparse connectivity, which is

particularly obvious for the SC and AUD domains. Thus, we refer

to the category as the weakly connected class. The state frequency

of two connectivity types also supports this classification, in which

the frequencies of two states in class 1 are no more than 20%, which

is less than that of class 2 (which accounts for 70% in total for all

subjects). Meanwhile, it is worth noting that the strong positive

connectivity within VIS can be observed for all 4 states.

Even though the DFNC states exhibit two categories, group

differences for each state are varied (see Figure 4B). Within state

1, the elderly adults have slightly lower connectivity between

VIS and CC while having relatively higher connectivity between

VIS and the AUD domain (p < 0.05, FDR-corrected). In state
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FIGURE 3

(A) Static functional network connectivity between 60 independent components resulting in 1770 ( 60× (60-1)/2 )connectivity pairs for the entire

group. Asterisks indicate significant di�erences between the elderly and younger groups. (B) Circle plot of significant static functional network

connectivity di�erences of 6 domain between the elderly adult and younger group.

FIGURE 4

(A) Four functional connectivity states as well as their frequencies across all participants using the group-ICA method. (B) Group di�erences of the 6

selected brain networks between elderly and younger adults in the 4 states. AUD, auditory domain; CC, cognitive control domain; DM, default mode

domain; SC, subcortical; SM, sensorimotor domain; VIS, visual domain.

2, the connectivity between VIS and CC in the elder group

shows a further decline. At the same time, significantly increased

connectivity between DMN and AUD and CC and AUD can be

found in this state. The only significantly different intra-domain

connectivity was observed in state 4. The result shows that within

state 4, the elderly group has markedly stronger connectivity in
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FIGURE 5

Dynamic connectivity feature analysis for the elderly and younger groups. (A) The fraction of time the occurrence of DFC state 2 and state 3 has

significant between group di�erence. The elder prefer state 2 (P < 0.05) and state 3 (P < 0.05). (B) The dwell time. Once again, the senior group is

more like to stay within state 2 and state 3. (C) The number of transition between states. There is no significant di�erence in the number of state

transition between two groups. (D) State Transition Probability matrix. Comparing with younger adults, the older people more inclined to switch to

state 3 when they are in state 1, 2, or 4. However, they are also more likely to transfer to other state when they are entering state 3 than younger

people. *p < 0.05, ***p < 0.001, and ****p < 0.001 FDR corrected.

the VIS domain than younger adults (post t-tests: p < 0.05, FDR-

corrected). Similar to state 1, the weaker connectivity between VIS

and AUD domains can also be observed in state 4. We did not

find any significantly different connectivity in state 3 between the

two groups (post t-tests: p < 0.05, FDR-corrected). In contrast to

the connectivity difference that the static connectivity state exhibits

between the two groups, there is no significant difference between

CC and SMN after the FDR-corrected in all 4 states.

3.3.2. DFNC temporal features
With four dynamic functional connectivity states and window-

based FNC matrices, we subsequently tested for between-group

differences in the measures of dynamic features (see Figure 5). Two

sample t-tests comparing younger and elderly adults revealed a

significant difference in the dynamic measures (fraction and dwell

time) of state 2 as well as state 3 (i.e., the weak connectivity

pattern, p < 0.05, FDR-corrected). In contrast to younger adults,

the elderly prefer states 2 and 3 (p = 0.0001), and they are

more likely to stay in states 2 and 3 once they enter these

states (p = 0.0001). The between-group difference in dwell

time of state 3 is more prominent (p < 0.0001). No significant

between-group difference was observed in terms of the number of

state transitions.

With respect to the transition probability matrix between states,

there were significant between-group effects on the likelihood of

staying in one state stably or switch to another. Consistent with the

finding that the elderly prefer to spend more time on state 3, results

showed that the elderly are more inclined than younger people

to switch to state 3 when the current state is not state 3. This is

particularly true when the current state is state 2 (p = 0.0001, FDR-

corrected), demonstrating why the elderly prefer state 2 but have

less dwell time than state 3. However, when entering State 3, older

people are less likely to remain in this state than younger ones.More

elderly people prefer to switch to state 1 or state 2, while younger

people tend to maintain a stable state (p < 0.05, FDR-corrected).

When the next state is state 4, the transition probabilities of elderly

and younger people do not differ.
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TABLE 2 Dynamic state features correlated with age.

Dynamic connectivity features r p

Fraction time of state 2 −0.639 0.000

Fraction time of state 3 0.651 0.000

Dwell time of state 2 −0.502 0.000

Dwell time of state 3 0.555 0.000

Transition probability from state 1 to state 3 0.316 0.012

Transition probability from state 3 to state 1 0.265 0.038

Transition probability from state 3 to state 2 0.254 0.046

Transition probability from state 3 to state 3 −0.409 0.001

To better utilize the dynamic connectivity features to serve

aging classification, we next explored the correlation between these

features and the age of participants. The dynamic connectivity

features correlated with age have been listed in Table 2. As can

be seen, the fraction time and dwell time of state 2 are negatively

correlated with age (fraction time: r = −0.639, p = 0.000; dwell

time: r = −0.502, p = 0.000). In contrast, the fraction time and

dwell time of state 3 are positively correlated with age (fraction

time: r = 0.651, p = 0.000; dwell time: r = 0.555, p = 0.000).

In terms of transition probability between states, the likelihood of

state 1 switching to state 3, of state 3 switching to state 1, as well

as state 3 switching to state 2 all have a positive correlation with

age (r = 0.316, 0.265, 0.254, p = 0.012, 0.038, 0.046, respectively),

while the probability of switching from state 3 to state 3 is negatively

correlated with age (r = −0.409, p < 0.001).

3.3.3. Dynamic graph analysis
To explore the age effect on the functional network topology,

the subsequent work employed graph theory to characterize the

dynamic graph changing during fMRI scanning. Various graph

metrics have been utilized, which can describe multiple network

properties. These graph measures were calculated based on the

sparsing-threshold binary networks per participant and then

averaged within the group. Subsequently, they were tested for

between-group differences in terms of graph dynamics.

Firstly, we observed a significant between-group difference in

global efficiency (t = 6.5046, p < 0.0001), local efficiency (t =

−11.4388, p < 0.0001), synchronization (t = 2.2756, p = 0.0232),

hierarchy (t = 12.384, p < 0.0001), modularity (t = 16.1638, p <

0.0001), the shortest path (t = −11.4388, p < 0.0001), clustering

coefficient (t = −4.1766, p < 0.0001), and the betweenness

(t = 10.8943, p < 0.0001). Figure 6 displays the time course

of these graph metrics. In terms of efficiency, we can see that

the elderly group has a higher global but lower local efficiency

than the younger group, suggesting that the information transfer is

more efficient in the global but less efficient in the local functional

network as age grows. Across these dynamic measures, the elderly

people only have three measurements significantly higher than

the younger group: the synchronization coefficient, hierarchy

coefficient, and modularity. These higher measures indicate that

as the age increases, the synchronization ability of the functional

region in the brain network increases. The raised age increases

modularity and enriches the hierarchy structure. Note that the

significantly higher value in elderly people is not overwhelming. At

some transient time points, these younger people have a stronger

performance in these measures. Examples include the weaker

synchronization in the younger group at TR = 150, which is

consistent with the observed lower synchronization in transient

dynamic state 2 for older adults. A significant difference can also be

observed in the clustering coefficient and the shortest path, which

directly results in the distinguishing small-world property of the

two groups. The lower small-world property implies that the elderly

group is less robust to external perturbations, according to the

hypothesis by Barabási (2013). In that case, it fits our biological

intuition that older people are subject to damage by mutation or

viral infection. However, there may be a lack of direct evidence to

demonstrate a linear relationship.

Secondly, there are three other nodal graph measures

explored in our work: local efficiency, vulnerable coefficient,

and betweenness, which characterize the information-transferring

efficiency of a specific node, the vulnerability of a node, and the

importance of the node’s role in the network, respectively. Six sub-

networks were observed to have significant differences between

the two groups on the three measures. For the DMN network,

people 60–80 years old have significantly lower local efficiency

(t = −16.8892, p < 0.0001) and vulnerable coefficient (t =

−31.5046, p < 0.0001) than younger people, suggesting the DMN

has less efficient information transfer and a higher risk of slowing

global efficiency. The same situation occurs in the VIS network

(t = −19.9135 and −7.0166 for the two metrics, respectively).

The DMN network efficiency decline can also be supported by the

significantly decreased nodal betweenness (t = −31.8963, p <

0.0001), where the higher the nodal betweenness coefficient, the

more likely information will transfer through the node. Figure 7

shows the time-varying curve of these three measures in DMN

during the fMRI scan. We can see that older people’s metric curves

do not have an apparent trend, but they are always lower than

younger people’s. Besides, the correlation between the nodal graph

measures and the age for the six domains also behaved differently

(see Table 3). TheDMN’s local efficiency, vulnerable coefficient, and

nodal betweenness have some of the highest negative correlation

values compared to the other five networks. On the other hand,

the CC domain has the smallest correlation in all three measures

compared to other parts.

3.4. Machine learning test for individual age
prediction

Given that the dynamic features are significantly different

between the two groups, it is natural to test their power in

individual age prediction using a machine learning algorithm.

Firstly, the single dynamic state feature (the fraction,MDT, etc.)

was fed into the nine machine learning algorithms, respectively, to

test their prediction power, with the static functional connectivity

strength serving as baseline for comparison. The performance of

each pipeline was evaluated with five-fold cross-validation, and

the result of the test set is summarized in Table 4. The evaluation
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FIGURE 6

Time course of multiple dynamic measures for the di�erent age groups.

FIGURE 7

Time varying curve of the three dynamic measures of DMN network: local e�ciency, vulnerable, nodal betweenness in age-di�erent group, where

no matter which metric elder people are lowest.

metric is accuracy, i.e., the probability that the method correctly

categorizes the candidates into the correct class. We report the

mean of five-fold cross-validation results in each metric with a 95%

confidence interval.

As can be seen, by using the state fraction feature, all the

machine learning algorithms have an accuracy over 80%, which

is higher than any other feature (except the AdaBoost method

with concatenated feature). The decision tree achieves the highest

accuracy of 0.886 using this feature, which is also the best

performance in all of the dynamic state features. The highest

accuracy for the number of transitions and transition probability

is similar, 0.771 and 0.731, respectively. Meanwhile, the best

performance of the number of transitions is more stable than

that of transition probability, where the accuracy variance is less

by 0.04. However, the number of transitions has a large gap in

performance in terms of the different methods, where it can only

achieve an accuracy of 0.560 with the FNN algorithm. The MDT

has the lowest accuracy of 0.650. Concerning the concatenated

feature, even though the results are not much worse than those for

the number of transitions and transition probability, the highest

accuracy is only 0.855, which is still less than the state fraction.

On the other hand, with respect to the classic methods, the FNN
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TABLE 3 The correlation between nodal graph measures and age.

r
(p < 0.05)

Metric

Domain

Local
e�ciency

Vulnerable Nodal
betweenness

DMN −0.263 −0.433 −0.496

SMN 0.159 0.2121 0.364

VIS −0.298 −0.117 0.237

CC 0.048 0.004 0.087

SC 0.252 0.137 −0.093

AUD 0.111 0.049 0.163

method is the most unstable one. It obtains a mean accuracy of

0.855 using fractions while it has a 0.560 when using the transition

probability as input. For the two ensemble-fusion-strategy-based

methods, the votingmethod did not performwell for individual age

prediction, though its best result is still for the fraction feature. In

contrast, the AdaBoost method has achieved the best performance

three times, the most frequent optimal method.

Second, similar to the dynamic state features, the dynamic

graph features were also input into different machine learning

algorithms. However, the results were not impressive using the

single graph features (see Tables 5, 6). All of the features do

not achieve accuracy over 70%, the best accuracy was just 0.693

obtained by the SVM with the number of modularity.

4. Discussion

Given the known dynamic nature of brain activity, it is

reasonable to use the DFNC method to investigate the differences

in dynamics between age groups. In the study presented here, four

transient brain states that frequently reoccur at rest were identified.

These 4 states exhibit two types of connectivity patterns: the densely

inter-and intra-domain connectivity pattern and the weakly sparse

one. The elderly tend to transfer to and stay in the weakly connected

state, which cannot be shown with static analysis. Notably, the

fraction of these DFNC states and the dwell time were correlated

with age (r = 0.6392/0.6507 for time fraction of state 2 and 3,

respectively; r = 0.5022/0.5553 for the dwell time of state 2 and

3, respectively). Besides, these dynamic measures gain advantage

in brain age classification compare to static ones. The fraction

time of DFNC state can achieve highest accuracy of 0.8857 using

a decision tree.

There is a significant difference in the dynamic graph topology

found between the young group and the elderly group. Older people

have higher global but lower local information transformation

efficiency, stronger synchronization ability, increased betweenness,

more rich modularity and hierarchy structure, shorter shortest path

length, and a declining clustering coefficient than younger people.

At the nodal level, elderly adults differed from younger people in

terms of local efficiency, vulnerable coefficient, and betweenness.

The most notable of these differences is that the information

transfer efficiency, the vulnerability, and the nodal betweenness of

older people’s DMN are all less than those of the younger group

during the rest period. Thus, we here substantiated the lower role

of DMN in elderly people, indicating dynamic analysis’s benefit.

4.1. The correlation between dynamic
features and mnemonic discrimination
ability

Mnemonic discrimination ability (MDA) is the perception

ability of humans to distinguish existing memories from current

inputs by retrieving and encoding past events or experiences.

Studies have shown that the decrease in MDA is a sign of

neurodegenerative diseases relative to aging. Many pieces of

evidence show that as age increases, the MDA will significantly

decline (Stark et al., 2013, 2019; Wahlheim et al., 2022). However,

whether the relationship is linear or not is not clear.

MDA is usually measured by the lure discrimination index

(LDI), calculated as the difference in similar responses to lures

and foils in the mnemonic discrimination task (Stark et al., 2019).

Previous studies have demonstrated the DMN network has an

age-inducted abnormal connectivity (Raichle, 2015; Nash et al.,

2021), and this connectivity abnormality can develop a positive

prediction model for LDI (Wahlheim et al., 2022). Nevertheless,

this prediction is based on the static connectivity strength, the

dynamic characteristics of DMN, or broadly, the function sub-

networks, have not been thoroughly investigated. Hence, with the

LDI provided by the original data source, this section additionally

investigates the correlation between age, the dynamic feature, and

MDA.

Firstly, age was observed to be negatively correlated with LDI

(r = −0.3890, p = 0.001), which is consistent with the previous

findings (Reagh et al., 2016). In terms of dynamic state features, the

fraction time of state 2 is positively correlated with LDI (r = 0.3270,

p = 0.0094), and the fraction time of state 3 is negatively correlated

with LDI(r = −0.3882, p = 0.0018). Similar to fraction time, the

MDT of states 2 and 3 has a significant correlation with LDI, where

the correlation is r = 0.3145 (p = 0.0127) and r = −0.3591 (p =

0.0041), respectively. There is no significant correlation between the

number of transitions and LDI or between transition probability

and LDI. Recall that the connectivity pattern of state 3 is both

weakly connected. This finding implies that the transient weakly

connected state impacts the ability of everyday people to distinguish

objects. We speculate the aging brain regulates the fraction of

the weak state and its dwell time to determine the perceptive

ability. In the weak state, the ability of different brain regions to

communicate and coordinate with one another is reduced. As age

increases, the brain cannot afford the active connectivity state and

prefer a “standby” or “sleep” mode, thus lowering the perceptive

function. In addition, cognitive and perceptual changes may be

interrelated since they are both susceptible to age-related factors,

meaning that a reduction in the functioning of the perceptual

system may have an impact on cognitive abilities. Hence, it is

possible to speculate that the common finding of cognitive decline

in the aging brain could be closely related to the weak state of

the brain. However, further experiments are necessary to confirm

these speculations and explore the relationship between DFNC
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TABLE 4 The prediction accuracy of multiple machine learning algorithms with dynamic state features.

Dynamic state feature

Algorithm Baseline Fraction MDT Num of trans. Transition probability Concatenated

Nearest neighbors 0.551(0.124) 0.852 (0.117) 0.636 (0.251) 0.690 (0.160) 0.648 (0.135) 0.795 (0.200)

Linear SVM 0.531 (0.112) 0.852 (0.117) 0.612 (0.152) 0.640 (0.107 ) 0.648 (0.112) 0.840 (0.124)

RBF SVM 0.531 (0.112) 0.852 (0.117) 0.617 (0.207) 0.607 (0.119 ) 0.631 (0.141) 0.740 (0.186)

Gaussian process 0.483 (0.106) 0.838 (0.124) 0.536 (0.170) 0.690 (0.141) 0.683 (0.1770) 0.729 (0.158)

Decision tree 0.585 (0.132) 0.886 (0.129) 0.583 (0.165) 0.729 (0.175) 0.648 (0.211) 0.840 (0.144)

Random forest 0.585 (0.153) 0.855 (0.116) 0.650 (0.225) 0.755(0.157) 0.695 (0.175) 0.852 (0.157)

FNN 0.552 (0.173) 0.838 (0.124) 0.579 (0.155) 0.560 (0.118) 0.564 (0.104) 0.807 (0.161)

AdaBoost 0.577 (0.111) 0.807 (0.142) 0.617 (0.193) 0.771 (0.150) 0.731 (0.195) 0.855 (0.138)

Voting 0.511 (0.131) 0.852 (0.117) 0.617 (0.193) 0.624 (0.156) 0.679 (0.143) 0.840 (0.163)

The bold values represent the algorithm that achieves the best performance using the feature indicated in the column. The italic values denote the highest accuracy that the machine learning

algorithm could obtain across all the input dynamic features.

TABLE 5 The prediction accuracy of multiple machine learning algorithms with dynamic graph features (I).

Dynamic graph feature

Algorithm Baseline Global e�ciency Local e�ciency Synchronization Hierarchy Modularity Q

Nearest neighbors 0.551 (0.124) 0.5262 (0.208) 0.505 (0.165) 0.481 (0.209) 0.571 (0.183) 0.533 (0.129)

Linear SVM 0.531 (0.112) 0.555 (0.195) 0.517 (0.142) 0.502 (0.166) 0.506 (0.231) 0.564 (0.220)

RBF SVM 0.531 (0.112) 0.548 (0.066) 0.548 (0.656) 0.548 (0.066) 0.548 (0.066) 0.548 (0.066)

Gaussian process 0.483 (0.106) 0.471 (0.271) 0.531 (0.154) 0.469 (0.217) 0.607 (0.141) 0.617 (0.111)

Decision tree 0.585 (0.132) 0.340 (0.155) 0.567 (0.188) 0.407(0.172) 0.576 (0.172) 0.483 (0.168)

Random forest 0.585 (0.153) 0.483(0.121) 0.502 (0.157) 0.457 (0.150) 0.579 (0.172) 0.500 (0.226)

FNN 0.552 (0.173) 0.436 (0.161) 0.533 (0.129) 0.467 (0.211) 0.648 (0.247) 0.483 (0.259)

AdaBoost 0.577 (0.111) 0.505 (0.188) 0.369 (0.228) 0.390 (0.186) 0.569 (0.302) 0.519 (0.209)

Voting 0.511 (0.131) 0.676 (0.150) 0.533 (0.217) 0.536 (0.139) 0.500 (0.206) 0.357 (0.129)

The bold values represent the algorithm that achieves the best performance using the feature indicated in the column. The italic values denote the highest accuracy that the machine learning

algorithm could obtain across all the input dynamic graph features.

TABLE 6 The prediction accuracy of multiple machine learning algorithms with dynamic state features (II).

Dynamic graph feature

Algorithm NumModularity ClusteringCO� Shortest path Betweenness Concatenated

Nearest neighbors 0.562 (0.200) 0.450 (0.171) 0.531 (0.186) 0.529 (0.194) 0.437 (0.049)

Linear SVM 0.693 (0.133) 0.486 (0.164) 0.564 (0.165) 0.500 (0.032) 0.515 (0.074)

RBF SVM 0.548 (0.066) 0.548 (0.066) 0.548 (0.066) 0.548 (0.066) 0.548 (0.019)

Gaussian process 0.598 (0.123) 0.448 (0.122) 0.500 (0.152) 0.598 (0.105) 0.548 (0.019)

Decision tree 0.579 (0.201) 0.436 (0.143) 0.419 (0.182) 0.567 (0.115) 0.610 (0.153)

Random forest 0.517 (0.168) 0.581 (0.162) 0.467 (0.189) 0.579 (0.155) 0.421 (0.197)

FNN 0.662 (0.082) 0.367 (0.149) 0.514 (0.198) 0.550 (0.143) 0.533 (0.012)

AdaBoost 0.650 (0.121) 0.310 (0.141) 0.507 (0.152) 0.581 (0.207) 0.579 (0.068)

Voting 0.511 (0.222) 0.474 (0.208) 0.529 (0.099) 0.593 (0.188) 0.529 (0.099)

The bold values represent the algorithm that achieves the best performance using the feature indicated in the column. The italic values denote the highest accuracy that the machine learning

algorithm could obtain across all the input dynamic graph features.

differences and health and cognitive function during aging. In

addition, compared with state 3, state 2 has obvious positive

connectivity within the DMN network, especially between the

right angular gyrus and the anterior cingulum, suggesting that
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the transient state with positive connectivity in the DMN domain

may promote the increase of MDA. In fact, previous studies

have reported that connections positively related to mnemonic

discrimination are broadly distributed across prefrontal, temporal,

and parietal regions (Huijbers et al., 2011; Sestieri et al., 2011; Kim,

2016). Thus, we subsequently investigate the correlation between

the nodal-level graphmeasure of DMNand LDI to hopefully extend

our understanding of the DMN network’s role in MDA.

The results show that only the node betweenness of DMN was

observed with a weakly positive correlation (r = 0.2644, p =

0.03780) among the three nodal graph measures. According to the

definition of nodal betweenness, this finding implies that the more

information transfer passes through the DMN functional region,

the more MDA. Besides, recall the highly negative relationship

between DMN nodal betweenness and age. One possible and

reasonable reason for the older adults’ MDA being significantly

lower than younger ones is that the aging process mitigates DMN

participation gradually, thus inducing the decrease in the MDA.

However, it may involve a complicated process. To substantiate this

implication, more detailed experiments that target the brain DMN

function domain are needed.

4.2. Dynamic balance of functional
integration and segregation in healthy
aging

The brain system keeps normal functions by maintaining

the balance of functional integration (of different functional

regions’ information transmission for function response) and

segregation (specialized information processing within the isolated

functional regions). In many diseases with psychiatric disorders

like schizophrenia, the disrupted balance between segregation

and integration within the brain functional network has been

demonstrated (Wang et al., 2016; Duan et al., 2019). Previous

studies in human aging also revealed the abnormal integration

and segregation within the brain function system: the decreased

segregation occurs in the healthy aging process (Chan et al.,

2014; Wig, 2017). Usually, the balance between integration and

segregation can be quantified with small-worldness, a graph

measure based on the trade-off between high local clustering and

short path length (Humphries and Gurney, 2008). This network-

level metric measures a graph with many local connections and

a few random distance connections. Below, we calculate the

dynamic small-worldness to investigate the time-varying balance of

integration and segregation.

Firstly, the 2-way ANVOA result shows that age has no

significant effects on the small-worldness measure (F = 2.18,

p = 0.14), even though this measure is different between transient

states. It suggests that the small-world network has not functionally

changed as one ages. From the time-varying curve of small-

worldness across the entire rest period, we can see that the small-

worldness of both young people and the elderly has no clear

boundaries. Most of the time, two curves are interwoven together.

No one is always higher or lower than another. Besides, the two

small-worldness curves are not smooth during the entire rest

period. They have large fluctuations, with many spikes. What the

spikes mean for the people’s behaviors or if their characteristics,

like the number of spikes and the energy, cause the age difference

has not been clear. However, the measured value always fluctuates

around 1 as time goes by, which means that both younger and

older people keep a dynamic balance of functional integration and

segregation.

Subsequently, from other graph metrics, we may have some

clues to the changed functional integration and segregation in

elderly people. As a spatially isolated functional specialization,

segregation has multiple ways to be quantified. For example,

previous studies have quantified segregation with the relationship

connectivity strength within and between the modules (Chan et al.,

2014; Wig, 2017; Bonkhoff et al., 2020). Hence, segregation is

often connected with brain modularity. The higher the value of

modularity, the more segregation in functional domains. Recall the

modularity measure curves in Figure 6. The elderly’s modularity

is nearly always lower than the young, which perhaps implies

more functional segregation in senior group people. However,

a prior study in a long-term observation has demonstrated

that the modularity and segregation might follow a U-shaped

curve (Duncan and Small, 2016). Thus, the simple linear

relationship between modularity and segregation in terms of age

may not be true, and more evidence is needed to support that.

5. Conclusion

Aging has a profound influence on brain functional

connectivity. This paper employed the DFNC method to

explore the altered dynamic brain function interaction using

the resting fMRI scans. Compared with static approach, the

DNFC can capture the transient brain state in the elderly as

well as young adults. The statistical analysis shows that the

state-related features are significantly different between senior

adults aged 60–80 and younger adults aged 18–30. In addition,

DFNC exhibits the graph topology change spanning the entire

scan, suggesting that growing age will induce an alteration in

the information transformation efficiency, the robustness of

the brain function network, and the dynamic balance of brain

integration and segregation. Furthermore, this paper demonstrates

that the time fraction of a transient stage could assist in brain

age prediction due to the essential clues it carries (with the

highest accuracy of 0.88). Overall, using a DFNC approach allows

new insights into the systems-level effects that brain aging has

on dynamic neural interaction, highlighting that the human

brain tends to form differential function coupling patterns with

aging. In future work, this function pattern alteration would

be promising to help us interpret the relationship between

aging and elderly-related diseases such as Alzheimer’s disease

or stroke.
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