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Continuous speech is organized into a hierarchy of rhythms. Accurate processing

of this rhythmic hierarchy through the interactions of auditory and motor systems

is fundamental to speech perception and production. In this mini-review, we aim

to evaluate the implementation of behavioral auditory-motor synchronization

paradigms when studying rhythm processing in speech. First, we present an

overview of the classic finger-tapping paradigm and its application in revealing

differences in auditory-motor synchronization between the typical and clinical

populations. Next, we highlight key findings on rhythm hierarchy processing in

speech and non-speech stimuli from finger-tapping studies. Following this, we

discuss the potential caveats of the finger-tapping paradigm and propose the

speech-speech synchronization (SSS) task as a promising tool for future studies.

Overall, we seek to raise interest in developing new methods to shed light on the

neural mechanisms of speech processing.

KEYWORDS

auditory-motor synchronization, rhythm, speech, finger-tapping task, speech-to-speech
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1. Introduction

Rhythm is a fundamental feature of human speech (Poeppel and Assaneo, 2020). As
speech unfolds in time, it is organized into a hierarchy of quasi-rhythmic components
along multiple timescales, such as phonemes, syllables, and prosody (Gross et al., 2013).
Accurate processing of these hierarchical rhythmic structures lays the foundation of verbal
communication.

Researchers have been tackling how the brain processes rhythms in speech for decades.
The classic motor theory of speech perception put forward the interaction between auditory
and motor systems as a promising solution (Liberman et al., 1967; Liberman and Mattingly,
1985; Galantucci et al., 2006). Accumulating empirical evidence has supported and extended
this idea by showing bidirectional auditory-motor interactions in speech rhythm processing.
Specifically, motor cortices track speech rhythms during passive listening (e.g., Wilson et al.,
2004; Keitel et al., 2018). Meanwhile, speech production also recruits and shapes hearing
(e.g., Houde and Jordan, 1998; Assaneo et al., 2021).

However, a critical question remains: How does the auditory-motor interaction work
at different rhythmic structure levels? The few studies that addressed this issue revealed
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inconsistent findings. For example, some showed that motor
areas could only track faster and lower-level speech rhythms,
i.e., at the syllable level around 4 Hz (Ding et al., 2016; Sheng
et al., 2019). Another study reported motor tracking of slower,
higher-level rhythm, i.e., at the phrasal level (0.6–1.3 Hz) (Keitel
et al., 2018). Moreover, all these studies focused on how auditory
rhythms entrain the motor system. Evidence is lacking in the
other direction: whether producing different speech rhythms affects
hearing differently remains unknown. Therefore, it is time to seek
new approaches to solving this question, especially those with
behavioral tasks that require rhythm production.

Beyond the realm of speech processing, recent years have
witnessed significant progress regarding the role of auditory-
motor interaction in general rhythm processing. Many studies
exploited a behavioral phenomenon known as auditory-motor
synchronization, where participants synchronize their movements
to external rhythms. Auditory-motor synchronization can come
in many forms of movements, such as cycling limb movements
and whole-body dancing (e.g., Chen H.-Y. et al., 2006; Toiviainen
et al., 2010; Witek et al., 2017). The most commonly used paradigm
is finger tapping, which has a long history (e.g., Fraisse, 1966;
Michon, 1967; Keele et al., 1985) and remains popular to this
date (for thorough reviews, see Repp, 2005; Repp and Su, 2013).
The synchrony performance is assessed by the timing difference
between the taps and sound onsets or the variability of inter-
tapping time intervals (Repp and Su, 2013). By explicitly translating
the rhythm processing results in the brain to behavioral outputs,
finger-tapping tasks provide a critical window to the underlying
mechanisms.

Converging evidence has demonstrated that auditory-motor
synchronization not only reflects basic beat-level perception
and action timing (Cannon and Patel, 2021) but also drives
more complex forms of rhythm perception, including those
involving hierarchical rhythms (Iversen and Balasubramaniam,
2016). Recently, interest has grown in using speech stimuli (Lidji
et al., 2011; Falk and Dalla Bella, 2016; Falk et al., 2017; Rathcke
et al., 2021; Kliger Amrani and Zion Golumbic, 2022; Wei
et al., 2022). Similar to the findings with non-speech stimuli,
participants can accurately translate perceived rhythms in the
speech into finger-tapping movements. Nevertheless, auditory-
motor synchronization paradigms have so far inspired relatively
fewer studies on speech rhythms.

This mini-review aims to evaluate the potential implementation
of auditory-motor synchronization paradigms in understanding
the processing of hierarchical rhythms in speech. First, we
summarize key findings relating finger-tapping performance to
general speech/language skills. Second, we establish the feasibility
of using finger-tapping performance to study the processing
of hierarchical rhythms by reviewing studies using non-speech
stimuli. Third, we describe current finger-tapping research
exploring speech processing. Finally, we address the limitations
of the commonly used behavioral paradigms and present a
promising new tool.

2. Relating finger-tapping
performance to speech processing

While fewer studies used finger-tapping tasks to address
rhythm processing in speech, deficits in these tasks have repeatedly
been demonstrated in clinical populations (for a thorough review,
see Ladányi et al., 2020).

For example, poor finger-tapping performance is found in
children with atypical speech/language development, including
specific language impairment (Corriveau and Goswami, 2009;
Zelaznik and Goffman, 2010; Cumming et al., 2015), speech
production disorders (i.e., stuttering) (Falk et al., 2015; Redle
et al., 2015), and reading disorders (i.e., dyslexia) (Wolff, 2002;
Thomson and Goswami, 2008). Meanwhile, in typically developed
children, finger-tapping performance could also predict their
speech/language skills, with better synchronizers scoring higher in
(pre-)literacy tests and presenting more precise neural encoding
of acoustic temporal information (Woodruff Carr et al., 2014;
Bonacina et al., 2021; Kertész and Honbolygó, 2021). Finger-
tapping deficits have also been found in children and adults who
stutter (Smits-Bandstra et al., 2006; Falk et al., 2015).

These results add to the growing literature on the importance
of rhythm processing in speech (Hickok et al., 2011; Ladányi
et al., 2020). Moreover, the linkage between finger-tapping
performance and speech-related deficits indicates a common
underlying mechanism, laying the foundation for finger-tapping
tasks in speech studies.

3. Studying processing of
hierarchical rhythms with
finger-tapping to non-speech
stimuli

Most finger-tapping studies have featured auditory-motor
synchronization at the basic rhythmic (or “beat”) level. Specifically,
the most common stimuli were isochronous rhythms (e.g.,
Aschersleben, 2002; Krause et al., 2010), and participants tapped
their fingers to each pulse of the auditory rhythm. Fewer studies
addressed rhythms with hierarchical structures, even less with
speech rhythms. In this section, we focused on studies using non-
speech stimuli and addressed their implications for speech studies.

3.1. Modulating tapping performance by
rhythmic structure

One approach to demonstrate auditory-motor interaction in
processing higher levels of rhythms is to assess whether varying
the rhythmic structure impacts the synchronization performance.
When using non-speech stimuli, hierarchical rhythms could
be easily introduced by manipulating the acoustic features of
the sound elements. Combining with brain imaging techniques,
researchers have examined the neural basis of auditory-motor
interactions and gained insights into related cognitions (Chen J. L.
et al., 2006; Zatorre et al., 2007; Chen J. L. et al., 2008; Kung et al.,
2013).
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For example, Chen J. L. et al. (2006) introduced hierarchical
rhythms to an isochronous tone sequence by placing an intensity
accent on every third tone. The attenuation between the unaccented
and accented tones was varied, creating different levels of
rhythmic saliency. The participants were instructed to synchronize
their tapping to each tone, that is, at the basic rhythmic
level. Auditory and dorsal premotor cortices showed BOLD
responses and functional connectivity covaried with the saliency
change. Interestingly, as the saliency increased, accented tones
evoked significantly longer taps compared to unaccented tones.
Meanwhile, no such difference was found in control trials where
the rhythmic structure was compromised.

The rhythm complexity of the stimuli was manipulated in
another series of studies (Chen J. L. et al., 2008; Kung et al.,
2013). Results showed that accurate timing of tapping (i.e., inter-
tap intervals and time asynchrony between tap and sound onsets)
depended on the successful resolution of the rhythmic structure
and was subjected to musical training experience (Chen J. L. et al.,
2008; Kung et al., 2013). The fact that tapping at the basic rhythmic
level is affected by changes in the perceived higher-level rhythms
indicates a flexible top-down mechanism in coordinating motor
outputs with external sounds.

3.2. Interfering rhythm processing by
active finger tapping

Since the auditory-motor interaction is bidirectional, another
approach is to demonstrate how actively synchronizing movement
to external rhythms (as opposed to passive listening) modifies
perception. A growing body of evidence has illustrated that tracking
auditory rhythms with finger tapping promotes accurate and
robust rhythm perception (Morillon et al., 2014; Dalla Bella et al.,
2017; Morillon and Baillet, 2017). However, the evidence is sparse
concerning higher rhythmic levels.

A recent study on time perception reported direct comparisons
between auditory-motor interaction at different rhythmic levels
(Hammerschmidt and Wöllner, 2020). In this study, participants
were presented with hierarchically structured musical rhythm
patterns. They were instructed to tap their fingers to three different
hierarchical levels and subsequently estimated the duration of the
stimulus. The results showed that tapping to the highest level
led to the shortest time estimation. Moreover, participants who
tapped more consistently and accurately reported shorter time
estimation. Extending these findings to other aspects of temporal
processing will shed light on the auditory-motor interaction as
the brain interprets speeches unfolding over time (Iversen and
Balasubramaniam, 2016).

3.3. Imagining higher-level rhythms:
Finger tapping in the absence of external
sounds

The finger-tapping task externalizes internal rhythms, with or
without an external pacemaker. Constructing imagined rhythm
requires the engagement of higher-order brain function in which
auditory mental imagery is formed and accurately organized

(Lu et al., 2019, 2021). Thus, studying finger-tapping to imagined
rhythms could shed light on the top-down mechanisms in encoding
and maintaining the hierarchical rhythms.

Motor synchronization to imagined rhythms has been studied
using the synchronization-continuation task (e.g., Peters, 1989;
Semjen et al., 2000). In this variation of the finger-tapping
task, participants first tapped to an external rhythm in the
synchronization phase, then reproduced the rhythm without
sounds in the continuation phase.

A recent study by Cheng et al. (2022) examined auditory-motor
interaction during the imagination of hierarchical rhythms. In
each trial, participants first listened to a rhythm containing strong
and weak beats (i.e., physical meter condition), then mentally
imposed the rhythmic structure onto unaccented sounds (i.e.,
imagery meter condition). Finally, they reproduced the imagined
meter with strong and weak finger taps when the sound stopped.
With simultaneous EEG recording, the researchers showed that
both auditory and motor neural components tracked the imagined
rhythm at the beat and meter rates, with strong bidirectional
information flows between auditory and motor systems. In this
study, the finger-tapping task mainly served as a verification
of correct imagination, thus lacking analyses of neural activities
during finger-tapping.

So far, empirical evidence has demonstrated that humans can
tap into different levels of rhythm that have differential impacts on
perception. These findings indicate finger-tapping tasks as a feasible
approach to probing auditory-motor interactions in processing
hierarchical rhythms. However, whether this conclusion could be
generalized to speech processing requires careful examination,
which we addressed in the next section.

4. Studying processing of
hierarchical rhythms with
finger-tapping to speech stimuli

Direct evidence on whether humans can tap into rhythms in
speech has been lacking until recently. In their study, Rathcke
et al. (2021) showed that finger-tapping is entrained by natural
speech. Moreover, participants were more likely to tap into
metrically strong syllables, suggesting that tapping is sensitive to
the hierarchical rhythm structure (Rathcke et al., 2021).

However, compared with non-speech stimuli, manipulating
rhythmic structure in speech is complicated since speech rhythm
is shaped by interacting acoustic and linguistic factors (e.g., Fiveash
et al., 2021). Therefore, more elaborate designs are needed.

For example, The English language typically placed the stress
at the right edge of each syntactic phrase (e.g., “the BOY that
HELPED the GIRL got an “A” on the TEST,” stressed syllables
were capitalized). In this way, the acoustic rhythms (also known
as meter) aligned with the linguistic/syntactical structure (Hilton
and Goldwater, 2021). Hilton and Goldwater (2021) took advantage
of this feature and examined the effect of meter-syntax alignment
on finger-tapping performance. In each trial, participants were
presented with a series of auditory tones followed by an auditory
sentence. The sentence stimuli contained monosyllable words, with
acoustic features (e.g., duration, intensity, and pitch) normalized
among syllables. Thus, there were no acoustic cues to meter in
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these sentences. Meanwhile, the preceding tones were amplitude
modulated so that the strong and weak tones set a metrical context
that either aligned or misaligned with the syntactical structure of
the sentence. Participants tapped their fingers in time with the
strong beat of the tones, then continued the pattern on their
own during the sentence presentation. At the end of the trial,
participants completed a comprehension task. Misaligning meter
and syntax caused more comprehension mistakes and, intriguingly,
disrupted auditory-motor synchronization: participants showed
larger tapping variability during the sentence presentation. This
study adds new evidence to the growing literature on the
auditory modulation of motor output. More importantly, it
provides behavioral evidence for the hypothesis that auditory-
motor interaction optimizes speech comprehension, which may
explain our natural tendency to gesture while speaking (Hilton and
Goldwater, 2021).

Meanwhile, studies in the linguistic field have demonstrated the
facilitating role of auditory-motor interaction in speech perception
(Falk and Dalla Bella, 2016; Falk et al., 2017). Researchers composed
speech stimuli alternating stressed (i.e., accent) and unstressed
syllables, thus forming an acoustic hierarchical structure or meter.
Participants were instructed to align (“congruent” condition) or
misalign (“incongruent” condition) their finger tapping to the
stressed syllables while performing a word change detection task.
The results showed that congruent alignment of motor rhythm
with the stressed syllables resulted in better detection performance
than the incongruent condition and perceptual control conditions
without finger tapping (Falk and Dalla Bella, 2016). Further, in
the congruent condition, detection performance was predicted by
participants’ tapping accuracy to non-verbal cueing stimuli (Falk
et al., 2017). These findings were consistent with the notion that
motor synchronization contributes to auditory temporal attention
(Morillon et al., 2014). Notably, in the studies above, the absolute
tapping rates were constant among trials. Whether auditory-motor
interaction to different rhythmic levels differs in effects remained
unanswered.

5. Studying auditory-motor
synchronization in rhythm
processing with the
speech-to-speech synchronization
task

Aside from the fruitful findings, controversy remains: is finger-
tapping, a non-verbal behavior, effective in revealing auditory-
motor synchronization specific to speech? The auditory-motor
synchronization phenomenon has been found in other effectors,
such as foot, head, and torso movements (Bouwer et al., 2021),
with evidence that different effectors synchronized to different
levels of rhythmic hierarchy (Burger et al., 2014; Pflug et al.,
2019). For example, a recent study demonstrated a discrepancy
between the dominant hand and the non-dominant hand: for right-
handed participants, faster tapping at a beat level was better with
the right hand, and slower tapping at a higher level was better
with the left hand (Pflug et al., 2019). Moreover, finger tapping
and speech production involve different optimal time scales: while

the auditory-motor interaction in speech processing is restricted
to around 4.5 Hz (Assaneo and Poeppel, 2018), finger tapping
could adapt to a wider range of tempi, with an optimal frequency
around 1.5 Hz (Zalta et al., 2020). Therefore, conclusions should
be made with caution, considering the possible discrepancies
between fingers and speech effectors when studying speech-specific
auditory-motor interaction.

The recently developed spontaneous synchronization of speech
(also referred to as speech-to-speech synchronization, SSS) task
evaluates participants’ ability to synchronize speech production, a
verbal behavior, with external speech sounds (Assaneo et al., 2019;
Lizcano-Cortés et al., 2022). Thus, the SSS task provides a direct
measurement of speech-specific auditory-motor synchronization.
In this task, participants synchronize their vocalization to syllable
sequences presented at a constant rate (typically at 4.5 Hz) or an
accelerating rate (e.g., 4.3 to 4.7 Hz in 0.1 Hz steps). The subject
vocalization is recorded, and the phase locking value (PLV) of the
reconstructed envelope of the recorded and presented signals is
computed to measure the synchronization of speech.

The original (Assaneo et al., 2019) and the follow-up studies
(Assaneo et al., 2021; Kern et al., 2021) showed that the SSS
task stably classified the general population into two groups: high
synchronizers and low synchronizers. Aside from superior speech
synchronization, several advantages in speech-related cognitions
have been demonstrated for high synchronizers, including better
performance when learning pseudo-words (Assaneo et al., 2019;
Orpella et al., 2022) and discriminating rate differences beyond
the typical optimal range (Kern et al., 2021). High synchronizers
also showed stronger motor entrainment of speech perception
(Assaneo et al., 2021). In this study, subjects performed a
syllable discrimination task after rhythmically producing syllable
sequences. In high synchronizers only, the perceptual performance
was modulated by the phase of the target syllable, which was
determined by the production rhythm. Although fewer studies
explore the neural basis underlying the behavioral differences,
distinct brain features have been found between high and
low synchronizers (Assaneo et al., 2019). Specifically, high
synchronizers demonstrated enhanced brain-stimulus synchrony
in the frontal area, better synchrony symmetry in the early auditory
area, and greater left lateralization in the white matter connection
between these two areas.

This drastic dichotomy of low- and high-synchronizers has not
been spotted by the vast body of finger-tapping studies. Therefore,
the SSS task may be more sensitive to speech-specific rhythm
processing. To be noted, by far, the SSS task has only been validated
in native English (Assaneo et al., 2019) and German speakers
(Assaneo et al., 2021). Further studies are needed to assess the
generalization to other language populations.

6. Discussion

Auditory-motor interaction in speech processing has been an
active field for decades (Hickok et al., 2011; Poeppel and Assaneo,
2020). Emerging evidence from finger-tapping studies suggests that
this interaction exists not only at the basic rhythmic level (Rathcke
et al., 2021; Kliger Amrani and Zion Golumbic, 2022) but also at
higher levels, subject to variations in both acoustic and syntactical
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structures (Falk and Dalla Bella, 2016; Falk et al., 2017; Hilton
and Goldwater, 2021). Moreover, the auditory-motor interaction
is bidirectional: the perception of higher-level rhythms affects
motor synchronization to external sounds (Chen J. L. et al., 2006;
Chen J. L. et al., 2008; Kung et al., 2013; Hilton and Goldwater,
2021); meanwhile, active motor synchronization also affects the
perception of the sounds (Falk and Dalla Bella, 2016; Falk et al.,
2017; Assaneo et al., 2021). However, direct evidence is still lacking.
More studies using speech stimuli are needed, as well as direct
comparisons of the auditory-motor interaction mechanisms at the
basic and higher rhythmic levels. Moreover, as mentioned earlier,
the newly developed SSS task measures speech-specific auditory-
motor interaction using vocalization as the targeted movement. To
our knowledge, no studies have yet used SSS tasks in the context
of multiple rhythmic levels. Inspired by finger-tapping studies,
foreseen future directions include manipulating the rhythmic
structures of the syllables sequence and requiring vocalization to
a specific level of the hierarchical structure.
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