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Efficacy of extracellular vesicles
of different cell origins in
traumatic brain injury: A
systematic review and network
meta-analysis
Zhe-Lun Yang†, Ze-Yan Liang†, Yi-Ke Lin, Fa-Bin Lin, Jian Rao,
Xiong-Jie Xu, Chun-Hua Wang* and Chun-Mei Chen*

Department of Neurosurgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China

Background: There was still no effective treatment for traumatic brain injury (TBI).

Recently, many preclinical studies had shown promising efficacy of extracellular

vesicles (EVs) from various cell sources. Our aim was to compare which cell-

derived EVs were most effective in treating TBI through a network meta-analysis.

Methods: We searched four databases and screened various cell-derived EVs for

use in preclinical studies of TBI treatment. A systematic review and network meta-

analysis were conducted for two outcome indicators, modified Neurological

Severity Score (mNSS) and Morris Water Maze (MWM), and they were ranked by

the surface under the cumulative ranking curves (SUCRA). Bias risk assessment

was performed with SYRCLE. R software (version 4.1.3, Boston, MA, USA) was used

for data analysis.

Results: A total of 20 studies were included in this study, involving 383 animals.

Astrocyte-derived extracellular vesicles (AEVs) ranked first in response to mNSS at

day 1 (SUCRA: 0.26%), day 3 (SUCRA: 16.32%), and day 7 (SUCRA: 9.64%) post-TBI.

Extracellular vesicles derived from mesenchymal stem cells (MSCEVs) were most

effective in mNSS assessment on day 14 (SUCRA: 21.94%) and day 28 (SUCRA:

6.26%), as well as MWM’s escape latency (SUCRA: 6.16%) and time spent in the

target quadrant (SUCRA: 86.52%). The result of mNSS analysis on day 21 showed

that neural stem cell-derived extracellular vesicles (NSCEVs) had the best curative

effect (SUCRA: 6.76%).

Conclusion: AEVs may be the best choice to improve early mNSS recovery after

TBI. The efficacy of MSCEVs may be the best in the late mNSS and MWM after TBI.

Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier

CRD42023377350.
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1. Introduction

Traumatic brain injury (TBI) is a kind of neurological or
even motor dysfunction caused by brain trauma, which can be
life-threatening in severe cases (Menon et al., 2010). In the
epidemiological report of 2016, more than 8 million TBI patients
will lead to Years Lived with Disability (YLDs), which brings a huge
burden to society (Badhiwala et al., 2019). Therefore, the treatment
of TBI has great significance for individuals, societies and countries.

To date, the recommended treatment for TBI includes
hypertonic therapy, neurotrophic drug therapy, surgical
decompression, and nutritional support (Maas et al., 2017,
2022). However, these methods do not work well. Therefore, new
therapies are urgently needed to enhance the efficacy and improve
the prognosis. As early as 20 years ago, there were studies showing
that cell therapy has good promise (Mahmood et al., 2001; Chopp
and Li, 2002). Therefore, a large number of studies have promoted
the progress of cell therapy (Harvey and Chopp, 2003; Mahmood
et al., 2004; Osanai et al., 2012). However, tumorigenicity and
immune rejection are still troubling researchers when cell therapy
is used in clinical studies (Liu et al., 2021).

Cell free therapy, an emerging therapy that is expected to
replace cell therapy, has attracted a large number of researchers’
attention (Dutta et al., 2021; Pischiutta et al., 2022). The so-
called cell-free therapy is the treatment of various diseases with
products secreted by cells (also known as extracellular vesicles)
(Han et al., 2022). Extracellular vesicle (EV) is a vesicle with
membrane structure and rich contents produced by cells through
endocytosis or exocytosis (van Niel et al., 2018). It has multiple
subtypes and plays an irreplaceable role in the physiological and
pathological processes of various diseases (Kalra et al., 2016).
Specific information can be referred to the relevant review
(Colombo et al., 2014; Thery et al., 2018).

In recent years, a large number of studies have shown that EVs
can effectively treat various neurodegenerative diseases, including
TBI (Guedes et al., 2020; Mot et al., 2022). There have also
been conventional meta-analysis showing that EVs can improve
neurological dysfunction after TBI (Muhammad et al., 2022).
However, in the study of cell therapy, it has been found that the
efficacy of different cells varies (Xu et al., 2022). This makes it all
the more important to select a particular cell to treat a particular
disease. To date, no studies have shown which cell-derived EVs
work better. Therefore, the purpose of this study is to provide a
cell source with the best curative effect by conducting a network
meta-analysis of the efficacy of EVs from different cell sources in
TBI, so as to provide ideas for preclinical research and promote the
progress of cell-free therapies into clinical research.

2. Methods

2.1. Search strategy

The literature search was conducted in strict accordance
with the expanded statement of the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses statement (PRISMA)
(Hutton et al., 2015). The PROSPERO database registration
number was CRD42023377350. A comprehensive search was

conducted on PubMed, Ovid-Embase, The Cochrane Library, and
Web of Science databases until November 10, 2022. The search
strategy was based on English keywords and free words. Details
could be found in Supplementary Table 1.

2.2. Study selection

Two researchers independently screened the study based on
the inclusion and exclusion criteria established in strict accordance
with the PICOS principle. Controversial studies were evaluated by
a third investigator for resolution. Preclinical studies of EVs for the
treatment of TBI were included regardless of the cellular origin
of EVs. The outcome measures included modified Neurological
Severity Score (mNSS) and Morris Water Maze (MWM) (Gold
et al., 2013). The mNSS had been used to assess neural function after
TBI, and MWM had been used to test learning and memory ability
in animals. Exclusion criteria included: (1) in vitro and clinical
studies; (2) Reviews, letters and comments; (3) There was no mNSS
or MWM outcome indicator.

2.3. Data extraction and quality
assessment

The data were extracted independently by two specialized
researchers and examined by another trained researcher. A third
researcher was also involved in discussing and resolving their
conflicting data. Information extracted included authors, year,
country, groups, sample size, animal species, sex, age, weight,
type of model, EVs source, immunocompatibility, EVs separation
method, time, dose, frequency and method of administration,
and outcome indicators. The raw data for outcome metrics was
extracted using GetData Graph Digitizer (version 2.24). Two
evaluators independently assessed the quality of each included
study using the Systematic Review Center for Laboratory Animal
Experimentation (SYRCLE) bias risk assessment tool1 (Hooijmans
et al., 2014). Review Manager 5.4.1 was used to draw bias risk maps
and summaries.

2.4. Statistical analysis

The network meta-analysis based on the Bayesian approach was
performed using R software (version 4.1.3, Boston, MA, USA) for
statistical analysis (Jansen et al., 2008). The nodes in the network
diagram represent the intervention and the control group, and
the sample size is represented by the node size. The line between
nodes represents a direct comparison between two nodes, and the
number of studies of direct comparison can be seen in the width
of the line. When Markov Chain Monte Carlo (MCMC) method
was used, the annealing times were 20,000, and the iteration times
were 50,000 (Gressani et al., 2022). The continuous variables were
evaluated using mean difference (MD) and 95% confidence interval
(95% CI), and the corresponding results were presented in the

1 http://www.biomedcentral.com/1471-2288/14/43
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form of forest map. League tables were used to show the results of
direct and indirect comparisons. The surface under the cumulative
ranking curves (SUCRA) was used to evaluate the ranking of
different interventions (Salanti et al., 2011). The tightly controlled
inclusion and exclusion criteria make this network meta-analysis
maintain good similarity (Salanti, 2012). The consistency of data
can be judged by comparing the deviance information criterion
(DIC) values of different models (Zhu et al., 2014). The smaller
the difference value is, the higher the consistency is. By definition,
there are no local inconsistencies in a closed-loop study (White
et al., 2012). Heterogeneity between studies could be assessed by the
I2 value. Non-statistically significant heterogeneity results showed
an I2 value <50%. The publication bias was checked by using
funnel plot and Egger’s regression test. Testing for publication bias
was not required for meta-analyses with fewer than 10 studies
(Stang, 2010).

3. Results

3.1. Study characteristics

A total of 1,479 studies were obtained through a comprehensive
search of relevant databases. 128 duplicates were excluded. After
preliminary screening of 1313 studies by title and abstract, 38
studies remained after excluding 1313 studies. After reading the full

text, 18 studies without relevant outcome indicators were excluded.
Finally, a total of 20 eligible studies were included in the network
meta-analysis (Figure 1).

The included studies were published between 2015 and 2022,
with three from the United States (15%), one from Iran (5%),
and the rest all from China (80%). The study included a sample
size of 383 animals. Seven of the studies involved mice (35%) and
13 involved rats (65%). All used male animals (90%), except for
one study (5%) in which the animals were not gender-specific and
one (5%) in which female rats were used. The ages ranged from
6 to 14 weeks, with mice weighing 20–25 g and rats weighing
200–352.8 g. The majority of the studies (80%) chose the CCI
model, while a small percentage (10%) chose the WD model.
Only one study chose the FPI model (5%). There’s even one study
(5%) that didn’t exactly describe how it’s made. Cell sources for
EVs were mesenchymal stem cell (MSC, 65%), astrocyte (20%),
microglia (10%) and neural stem cell (NSC, 5%). Allogeneic (50%)
and xenogeneic (50%) were used for EVs cell origin studies.
The majority of studies (65%) used traditional ultracentrifugation
methods to isolate EVs. Some (25%) used EVs isolation kits. EVs
had also been obtained using ultrafiltration (5%) and density-
gradient ultracentrifugation (5%) methods. Most studies (80%)
gave the EVs within 1 day of injury. One study (5%) administered
drugs 35 days after injury. Another study (5%) compared 1, 4, and
7 days of administration. However, there were also two studies
(10%) that did not specify the timing of dosing. The majority

FIGURE 1

Flow chart of screening study.
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TABLE 1 Characteristics of included studies.

References Country Groups
(sample size)

Animal
species

Sex Age Weight Type of
model

EVs
source

Immuno-
compatibility

EVs separation
method

Time, dose,
frequency, and
method of
administration

Outcome
indicators

Zhang et al., 2015 United States 1. TBI + EVs (n= 8)
2. TBI + PBS (n= 8)
3. Sham (n= 8)

Wistar rats Male 2−3 months 325± 11 g CCI MSC Allogeneic Kit 1 day after TBI, 100 µg,
1 dose, and Intravenous
injection

mNSS and
MWM

Kim et al., 2016 United States 1. TBI + EVs (n= 10)
2. TBI + PBS (n= 15)
3. Sham (n= 10)

C57BL/6J
mice

Male 7−8 weeks Unclear CCI MSC Xenogeneic Ultracentrifugation 1 h after TBI, 30 µg, 1
dose, and Intravenous
injection

MWM

Zhang et al., 2017 United States 1. TBI + EVs from MSCs in
3D culture (n= 8)
2. TBI + EVs from MSCs in
2D culture (n= 8)
3. TBI + liposomes (n= 8)
4. Sham (n= 8)

Wistar rats Male 2−3 months 317± 10 g CCI MSC Xenogeneic Kit 1 day after TBI, 100 µg,
1 dose, and Intravenous
injection

mNSS and
MWM

Li et al., 2019 China 1. TBI + miR-124−3p-
downregulated EVs (n= 8)
2. TBI + miR-124−3p-
upregulated EVs (n= 8)
3. TBI + EVs (n= 8)
4. TBI + PBS (n= 8)
5. Sham (n= 8)

C57BL/6J
mice

Male 10−12 weeks 20−25 g CCI Microglia Allogeneic Ultracentrifugation 1 h after TBI, 30 µg, 1
dose, and Intravenous
injection

mNSS and
MWM

Ni et al., 2019 China 1. TBI + EVs (n= 7)
2. TBI + PBS (n= 7)
3. Sham (n= 7)

C57BL/6J
mice

Male 12−14 weeks Unclear CCI MSC Allogeneic Ultracentrifugation 15 min after TBI, 30 µg,
1 dose, and
Retro-orbital injection

mNSS

Wang and Han,
2019

China 1. TBI + EVs carrying
pIRES2-EGFP-Bcl-2 plasmid
and EGFP-C1-Bax shRNA
plasmid (n= 15)
2. TBI + EVs (n= 15)
3. Sham (n= 15)

C57BL/6J
mice

Unclear Unclear Unclear CCI Astrocyte Allogeneic Ultracentrifugation 1 h after TBI, 10 µg, 1
dose, and
Intraventricular
injection

MWM

Yang et al., 2019 China 1. TBI + miR-124 Enriched
EVs (n= 6)
2. TBI (n= 6)
3. Sham + miR-124 Enriched
EVs (n= 6)
4. Sham (n= 6)

SD rats Male 8−10 weeks 250−300 g CCI MSC Allogeneic Kit 1 day after TBI, 100 µg,
1 dose, and Intravenous
injection

NSS and MWM

Chen et al., 2020 China 1. TBI + MSC (n= 8)
2. TBI + EVs (n= 8)
3. TBI + PBS (n= 8)
4. Sham (n= 8)

SD rats Male 6−8 weeks 300± 11 g WD MSC Xenogeneic Ultracentrifugation 1 day after TBI, 20 µg, 1
dose, and
Intraventricular
injection

mNSS
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TABLE 1 (Continued)

References Country Groups
(sample size)

Animal
species

Sex Age Weight Type of
model

EVs
source

Immuno-
compatibility

EVs separation
method

Time, dose,
frequency, and
method of
administration

Outcome
indicators

Ge et al., 2020 China 1. TBI + miR-124 enriched
EVs (n= 10)
2. TBI + EVs (n= 10)
3. TBI (n= 10)
4. Sham (n= 10)

C57BL/6J
mice

Male 12 weeks 20−25 g CCI Microglia Allogeneic Ultracentrifugation 35 days after TBI,
3× 10∧10 particles, 1
dose, and Intravenous
injection

MWM

Liu et al., 2020 China 1. TBI + EVs by injury brain
extract (n= 12)
2. TBI + EVs (n= 12)
3. TBI (n= 12)
4. Sham (n= 12)

SD rats Male 8 weeks 250−300 g FPI MSC Xenogeneic Ultrafiltration Immediately after TBI,
EVs releasing from
1.5× 10∧6 cells, 1 dose,
and Intraventricular
injection

MWM

Long et al., 2020 China 1. TBI + miR-873a-5p
enriched EVs (n= 5)
2. TBI (n= 5)
3. Sham + miR-873a-5p
enriched EVs (n= 5)
4. Sham (n= 5)

C57BL/10ScNJ
mice

Male 10−12 weeks 20−22 g CCI Astrocyte Allogeneic Ultracentrifugation 20 min after TBI,
Unclear, and
Intraventricular
injection

mNSS

Xu et al., 2020 China 1. TBI + BDNF-induced EVs
(n= 6)
2. TBI + EVs (n= 6)
3. TBI + PBS (n= 6)
4. Sham (n= 6)

SD rats Male Unclear 220−250 g CCI MSC Allogeneic Ultracentrifugation 1 day after TBI, 100 µg,
1 dose, and Intravenous
injection

mNSS and
MWM

Zhang et al., 2020 China 1. TBI + 200 µg EVs (n= 8)
2. TBI + 100 µg EVs (n= 8)
3. TBI + 50 µg EVs (n= 8)
4. TBI + PBS (n= 8)
5. Sham (n= 8)

Wistar rats Male 3 months 339.2± 13.6 g CCI MSC Xenogeneic Ultracentrifugation 1, 4, or 7 days after TBI,
50, 100, or 200 µg, 1
dose, and Intravenous
injection

mNSS and
MWM

He et al., 2021 China 1. TBI + EVs NKILA (n= 15)
2. TBI + EVs (n= 15)
3. TBI (n= 15)
4. Sham (n= 15)

C57BL/10ScNJ
mice

Male 10−12 weeks 20−22 g CCI Astrocyte Xenogeneic Ultracentrifugation Unclear, 3± 0.75 µg, 1
dose, and
Intraventricular
injection

mNSS

Zhang W. et al.,
2021

China 1. TBI + EVs (n= 8)
2. TBI (n= 8)
3. Sham + EVs (n= 8)
4. Sham (n= 8)

SD rats Male Unclear 210−260 g CCI Astrocyte Allogeneic Ultracentrifugation 30 min after TBI,
100 µg, 1 dose, and
Intravenous injection

mNSS and
MWM
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TABLE 1 (Continued)

References Country Groups
(sample size)

Animal
species

Sex Age Weight Type of
model

EVs
source

Immuno-
compatibility

EVs separation
method

Time, dose,
frequency, and
method of
administration

Outcome
indicators

Zhang Y. et al.,
2021

China 1. TBI + miR-17−92 enriched
EVs (n= 8)
2. TBI + EVs (n= 8)
3. TBI + PBS (n= 8)
4. Sham (n= 8)

Wistar rats Male 2−3 months Unclear CCI MSC Xenogeneic Ultracentrifugation 1 day after TBI, 100 µg,
1 dose, and Intravenous
injection

mNSS and
MWM

Abedi et al., 2022 Iran 1. TBI + NSC (n= 10)
2. TBI + EVs (n= 10)
3. TBI (n= 10)

Wistar rats Male Unclear 220−250 g Unclear NSC Xenogeneic Kit Unclear, 63 µg, 1 dose,
and Intraventricular
injection

mNSS

Cui et al., 2022 China 1. TBI + EVs (n= 15)
2. TBI + PBS (n= 15)
3. Sham (n= 15)

SD rats Female Unclear 200−220 g WD MSC Xenogeneic Ultracentrifugation 1 day after TBI, 200 µg,
1 dose, and Intravenous
injection

mNSS

Zhang et al., 2022 China 1. TBI + EVs (n= 15)
2. TBI + PBS (n= 15)
3. Sham (n= 15)

SD rats Male Unclear 250−300 g CCI MSC Xenogeneic Density-gradient
ultracentrifugation

1 day after TBI, 100 µg,
1 dose, and Intravenous
injection

mNSS and
MWM

Zhuang et al.,
2022

China 1. TBI + SB203580 (n= 7)
2. TBI + EVs (n= 7)
3. TBI + PBS (n= 7)
4. Sham (n= 7)

SD rats Male 6−8 weeks 250± 50 g CCI MSC Allogeneic Kit 1 h after TBI, 100 µg, 1
dose, and Intravenous
injection

MWM

TBI, traumatic brain injury; EVs, extracellular vesicles; CCI, controlled cortical impact; FPI, fluid percussion injury; WD, weight-drop; MSC, mesenchymal stem cell; NSC, neural stem cell; SD, Sprague-Dawley; MWM, Morris Water Maze; mNSS, modified Neurological
Severity Score; PBS, phosphate buffer saline; EGFP, enhanced green fluorescent protein; BDNF, brain-derived neurotrophic factor; NKILA, nuclear factor-κB interacting lncRNA p38 MAPK inhibitor SB203580.
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FIGURE 2

Comparison of the efficacy of extracellular vesicles (EVs) from different cell sources in modified Neurological Severity Score (mNSS) at day 1
post-traumatic brain injury (TBI). (A) Network plot; (B) Forest plot; (C) Surface under the cumulative ranking curves (SUCRA); (D) Funnel plot. The
dotted lines represent 95% confidence interval (95% CI). AEVs, astrocyte-derived extracellular vesicles; MEVs, microglia-derived extracellular
vesicles; MSCEVs, mesenchymal stem cell-derived extracellular vesicles; NSCEVs, neural stem cell-derived extracellular vesicles.

of studies (85%) were dosed in a single dose of 3−200 µg. One
study (5%) quantified EVs dose using particle count. Another
study (5%) quantified the number of EVs-derived cells. Of course,
one study (5%) did not specify dose or frequency. EVs was
administered intravenously (65%), intraventricular (30%), and
retroorbital (5%). Table 1 summarized the research characteristics.
By comparing the DIC values of different models (Supplementary
Table 2), it was found that the consistency of all outcome indexes
was high.

3.2. Comparison of the efficacy of EVs
from different cell sources in mNSS at
day 1 post-TBI

The mNSS neurological function assessment at day 1 after TBI,
a total of 12 studies were eligible (Zhang et al., 2015, 2017, 2020;

Li et al., 2019; Ni et al., 2019; Chen et al., 2020; Long et al., 2020;
Xu et al., 2020; He et al., 2021; Zhang W. et al., 2021; Zhang Y.
et al., 2021; Cui et al., 2022). The network diagram (Figure 2A)
showed three interventions and control comparisons, including
astrocyte-derived extracellular vesicles (AEVs), microglia-derived
extracellular vesicles (MEVs) and mesenchymal stem cell-derived
extracellular vesicles (MSCEVs). The results of forest map
(Figure 2B) showed that, compared with control [MD: −2.7,
95%CI: (−3.6, −1.6)], MEVs [MD: −2.6, 95%CI: (−4.2, −0.71)]
and MSCEVs [MD: −2.4, 95%CI: (−3.5, −1.2)], AEVs were more
effective. The result of SUCRA (Figure 2C) showed that AEVs
(0.26%) had the best curative effect, followed by MSCEVs (52.32%),
MEVs (65.98%) and Control (81.44%). For mNSS, the lower the
score, the better the recovery of neural function. Therefore, the
closer the SUCRA value is to 0%, the better the efficacy is. The
funnel plot (Figure 2D) and Egger’s test (Table 2, p-value= 0.0986)
showed that publication bias did not exist.

Frontiers in Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2023.1147194
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1147194 March 23, 2023 Time: 17:12 # 8

Yang et al. 10.3389/fnins.2023.1147194

3.3. Comparison of the efficacy of EVs
from different cell sources in mNSS at
day 3 post-TBI

Six studies qualified for the mNSS neurological function
assessment at day 3 after TBI (Li et al., 2019; Ni et al., 2019; Chen
et al., 2020; Long et al., 2020; He et al., 2021; Cui et al., 2022).
The network diagram (Figure 3A) showed three interventions and
control comparisons, including AEVs, MEVs, and MSCEVs. No
statistically significant comparison was found between the results
of forest map (Figure 3B). The result of SUCRA (Figure 3C)
showed that AEVs (16.32%) had the best curative effect, followed
by MSCEVs (27.67%), MEVs (73.47%), and Control (82.54%).

3.4. Comparison of the efficacy of EVs
from different cell sources in mNSS at
day 7 post-TBI

The mNSS neurological function assessment at day 7 after TBI,
a total of 15 studies were eligible (Zhang et al., 2015, 2017, 2020;
Li et al., 2019; Ni et al., 2019; Yang et al., 2019; Chen et al., 2020;
Long et al., 2020; Xu et al., 2020; He et al., 2021; Zhang W. et al.,
2021; Zhang Y. et al., 2021; Abedi et al., 2022; Cui et al., 2022;
Zhang et al., 2022). The network diagram (Figure 4A) showed
four interventions and control comparisons, including AEVs,
MEVs, neural stem cell-derived extracellular vesicles (NSCEVs)
and MSCEVs. The results of forest map (Figure 4B) showed that
compared with the control, AEVs [MD: −3.1, 95% CI: (−4.2,
−2.0)], MSCEVs [MD: −2.8, 95% CI: (−3.4, −2.1)] and NSCEVs
[MD: −2.0, 95% CI: (−3.9, −0.14)] could effectively improve

the neurological function after TBI. Compared with MEVs, AEVs
[MD: −3.9, 95% CI: (−6.2, −1.5)] and MSCEVs [MD: −3.5, 95%
CI: (−5.7, −1.3)] were more beneficial to neurological recovery
after TBI. The result of SUCRA (Figure 4C) showed that AEVs
(9.64%) had the best curative effect, followed by MSCEVs (23.87%),
NSCEVs (42.76%), Control (80.2%), and MEVs (93.53%). The
funnel plot (Figure 4D) and Egger’s test (Table 2, p-value= 0.0926)
showed that publication bias did not exist.

3.5. Comparison of the efficacy of EVs
from different cell sources in mNSS at
day 14 post-TBI

The mNSS neurological function assessment at day 14 after
TBI, a total of 14 studies were eligible (Zhang et al., 2015, 2017,
2020; Li et al., 2019; Ni et al., 2019; Yang et al., 2019; Chen
et al., 2020; Long et al., 2020; Xu et al., 2020; He et al., 2021;
Zhang Y. et al., 2021; Abedi et al., 2022; Cui et al., 2022; Zhang
et al., 2022). The network diagram (Figure 5A) showed four
interventions and control comparisons, including AEVs, MEVs,
NSCEVs, and MSCEVs. The results of forest map (Figure 5B)
showed that, compared with the control, AEVs [MD: −2.7, 95%
CI: (−4.1, −1.2)], MSCEVs [MD: −2.7, 95% CI: (−3.4, −2.1)]
and NSCEVs [MD: −2.5, 95% CI: (−4.5, −0.45)] could effectively
improve the neurological function after TBI. Compared with
MEVs, AEVs [MD: −2.7, 95% CI: (−5.3, −0.017)] and MSCEVs
[MD: −2.7, 95% CI: (−5.0, −0.46)] significantly improved mNSS
neural function scores. The results of SUCRA (Figure 5C) showed
that MSCEVs (21.94%) had the best curative effect, followed by
AEVs (25.11%), NSCEVs (30.32%), MEVs (85.5%), and Control

TABLE 2 Egger’s test of relevant outcome indicators.

Linear regression test of funnel plot asymmetry

mNSS-D1 Test result: t = 1.82, df= 10, p-value= 0.0986

bias se.bias intercept se.intercept

3.978 2.1844 −0.529 0.5582

mNSS-D7 Test result: t =−1.82, df= 13, p-value= 0.0926

bias se.bias intercept se.intercept

−3.7083 2.043 4.1243 0.7703

mNSS-D14 Test result: t =−2.48, df= 12, p-value= 0.0289

bias se.bias intercept se.intercept

−4.8067 1.9369 4.1811 0.58

mNSS-D21 Test result: t =−1.03, df= 8, p-value= 0.3315

bias se.bias intercept se.intercept

−3.7254 3.6037 4.2349 1.0319

MWM-escape latency Test result: t = 1.09, df= 11, p-value= 0.2978

bias se.bias intercept se.intercept

3.7029 3.3883 5.1648 5.6664

MWM-time spent in the goal quadrant Test result: t =−1.90, df= 12, p-value= 0.0820

bias se.bias intercept se.intercept

−6.5814 3.4669 −0.1414 3.4923
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FIGURE 3

Comparison of the efficacy of extracellular vesicles (EVs) from different cell sources in modified Neurological Severity Score (mNSS) at day 3
post-traumatic brain injury (TBI). (A) Network plot; (B) Forest plot; (C) Surface under the cumulative ranking curves (SUCRA). AEVs, astrocyte-derived
extracellular vesicles; MEVs, microglia-derived extracellular vesicles; MSCEVs, mesenchymal stem cell-derived extracellular vesicles; NSCEVs, neural
stem cell-derived extracellular vesicles.

(87.12%). The results of funnel plot (Figure 5D) and Egger’s test
(Table 2, p-value = 0.0289) indicated that publication bias might
exist. Therefore, we found four “missing” studies on the right side
of the funnel plot by the trim and fill analysis method (Figure 5E).

3.6. Comparison of the efficacy of EVs
from different cell sources in mNSS at
day 21 post-TBI

The mNSS neurological function assessment at day 21 after
TBI, a total of 10 studies were eligible (Zhang et al., 2015, 2017,
2020; Li et al., 2019; Yang et al., 2019; Chen et al., 2020; Zhang Y.
et al., 2021; Abedi et al., 2022; Cui et al., 2022; Zhang et al., 2022).
The network diagram (Figure 6A) showed three interventions and
control comparisons, including MEVs, NSCEVs, and MSCEVs.
The results of forest map (Figure 6B) showed that MSCEVs [MD:

−3.1, 95% CI: (−4.2, −2.0)] and NSCEVs [MD: −4.5, 95% CI:
(−7.6, −1.4)] could effectively improve the neurological function
after TBI compared with the control. The results of SUCRA
(Figure 6C) showed that NSCEVs (6.76%) had the best curative
effect, followed by MSCEVs (28.82%), MEVs (80.07%), and Control
(84.35%). The funnel plot (Figure 6D) and Egger’s test (Table 2,
p-value= 0.3315) showed that publication bias did not exist.

3.7. Comparison of the efficacy of EVs
from different cell sources in mNSS at
day 28 post-TBI

A total of 8 studies were eligible for mNSS neurological function
assessment at day 28 after TBI (Zhang et al., 2015, 2017, 2020; Yang
et al., 2019; Chen et al., 2020; Zhang Y. et al., 2021; Abedi et al.,
2022; Zhang et al., 2022). The network diagram (Figure 7A) showed
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FIGURE 4

Comparison of the efficacy of extracellular vesicles (EVs) from different cell sources in mNSS at day 7 post-traumatic brain injury (TBI). (A) Network
plot; (B) Forest plot; (C) Surface under the cumulative ranking curves (SUCRA); (D) Funnel plot. The dotted lines represent 95% confidence interval
(95% CI). AEVs, astrocyte-derived extracellular vesicles; MEVs, microglia-derived extracellular vesicles; MSCEVs, mesenchymal stem cell-derived
extracellular vesicles; NSCEVs, neural stem cell-derived extracellular vesicles.

two interventions and control comparisons, including NSCEVs
and MSCEVs. The results of forest map (Figure 7B) showed
that MSCEVs [MD: −3.0, 95% CI: (−4.0, −1.9)] had significant
curative effect compared with the control. The results of SUCRA
(Figure 7C) showed that MSCEVs (6.26%) had the best curative
effect, followed by NSCEVs (50.5%) and Control (93.24%).

3.8. Comparison of the efficacy of EVs
from different cell sources in escape
latency of MWM

We extracted data from the last day of escape latency in MWM
for evaluation. A total of 13 studies were included in the network

meta-analysis (Kim et al., 2016; Zhang et al., 2017, 2020; Li et al.,
2019; Wang and Han, 2019; Yang et al., 2019; Ge et al., 2020; Liu
et al., 2020; Xu et al., 2020; Zhang W. et al., 2021; Zhang Y. et al.,
2021; Zhang et al., 2022; Zhuang et al., 2022). The network diagram
(Figure 8A) showed three interventions and control comparisons,
including AEVs, MEVs, and MSCEVs. The results of forest map
(Figure 8B) showed that AEVs [MD:−10.0, 95% CI: (−19.0,−1.5)]
and MSCEVs [MD: −15.0, 95% CI: (−19.0, −11.0)] reduced the
escape latency time more than the control group, indicating that
they could effectively improve the spatial memory ability after TBI.
Compared with MEVs, MSCEVs [MD: −12.0, 95% CI: (−22.0,
−2.4)] showed better efficacy. The shorter the escape latency time
is, the better the spatial memory ability is. Therefore, the closer
the SUCRA value is to 0%, the better the efficacy is. The results of
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FIGURE 5

Comparison of the efficacy of extracellular vesicles (EVs) from different cell sources in modified Neurological Severity Score (mNSS) at day 14
post-traumatic brain injury (TBI). (A) Network plot; (B) Forest plot; (C) Surface under the cumulative ranking curves (SUCRA); (D) Funnel plot; (E)
Funnel plot by the trim and fill analysis method. The dotted lines represent 95% confidence interval (95% CI). AEVs, astrocyte-derived extracellular
vesicles; MEVs, microglia-derived extracellular vesicles; MSCEVs, mesenchymal stem cell-derived extracellular vesicles; NSCEVs, neural stem
cell-derived extracellular vesicles.
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FIGURE 6

Comparison of the efficacy of extracellular vesicles (EVs) from different cell sources in modified Neurological Severity Score (mNSS) at day 21
post-traumatic brain injury (TBI). (A) Network plot; (B) Forest plot; (C) Surface under the cumulative ranking curves (SUCRA); (D) Funnel plot. The
dotted lines represent 95% confidence interval (95% CI). AEVs, astrocyte-derived extracellular vesicles; MEVs, microglia-derived extracellular
vesicles; MSCEVs, mesenchymal stem cell-derived extracellular vesicles; NSCEVs, neural stem cell-derived extracellular vesicles.

SUCRA (Figure 8C) showed that MSCEVs (6.16%) had the best
curative effect, followed by AEVs (31.06%), MEVs (71.97%), and
Control (90.82%). The funnel plot (Figure 8D) and Egger’s test
(Table 2, p-value = 0.2978) showed that publication bias did not
exist.

3.9. Comparison of the efficacy of EVs
from different cell sources in time spent
in the goal quadrant in MWM

We extracted data from the last day of time spent in the goal
quadrant in MWM for evaluation. A total of 14 studies were
included in the network meta-analysis (Zhang et al., 2015, 2017,

2020; Kim et al., 2016; Li et al., 2019; Wang and Han, 2019; Yang
et al., 2019; Ge et al., 2020; Liu et al., 2020; Xu et al., 2020; Zhang W.
et al., 2021, Zhang Y. et al., 2021, Zhang et al., 2022; Zhuang et al.,
2022). The network diagram (Figure 9A) shows three interventions
and control comparisons, including AEVs, MEVs and MSCEVs.
The results of forest map (Figure 9B) showed that AEVs [MD: 8.3,
95% CI: (1.2, 16.0)] and MSCEVs [MD: 9.3, 95% CI: (6.1, 13.0)]
spent more time in the target quadrant than the control group,
indicating that they could effectively improve the spatial memory
ability after TBI. Compared with MEVs, MSCEVs [MD: 8.7, 95%
CI: (0.91, 16.0)] showed better efficacy. The longer the time spent
in the target quadrant, the better the spatial memory. Therefore,
the closer the SUCRA value is to 100%, the better the efficacy is. The
results of SUCRA (Figure 9C) showed that MSCEVs (86.52%) had
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FIGURE 7

Comparison of the efficacy of extracellular vesicles (EVs) from different cell sources in modified Neurological Severity Score (mNSS) at day 28 post-
traumatic brain injury (TBI). (A) Network plot; (B) Forest plot; (C) Surface under the cumulative ranking curves (SUCRA). AEVs, astrocyte-derived
extracellular vesicles; MEVs, microglia-derived extracellular vesicles; MSCEVs, mesenchymal stem cell-derived extracellular vesicles; NSCEVs, neural
stem cell-derived extracellular vesicles.

the best curative effect, followed by AEVs (77.2%), MEVs (21.63%),
and Control (14.65%). The funnel plot (Figure 9D) and Egger’s test
(Table 2, p-value = 0.0820) showed that publication bias did not
exist.

3.10. Risk of bias assessment

The results of the risk of bias assessment in this study were
shown in Supplementary Figures 1A, B. Only two studies (10%)
did not account for random sequence generation. About 50% of
the studies were low risk for selection bias, performance bias, and
detection bias. However, for all the included studies, it was not clear
whether they processed incomplete outcome data. Therefore, all
studies had the unclear risk of attrition bias. Moreover, only one

study (5%) reported low risk, and the rest (95%) were unclear. For
other bias, nine studies (45%) showed low risk of bias and five
studies (25%) showed unclear risk of bias. However, there was a
high risk of bias in six studies (30%). All in all, the included studies
were of average quality.

4. Discussion

A total of 20 studies and 383 animals were included in this
network meta-analysis. Our results suggested that AEVs, MEVs,
NSCEVs, and MSCEVs were all effective in mNSS at day 1, 3,
and 7 after TBI. Among them, the efficacy of AEVs was the
most significant. Astrocytes are the most abundant glial cells in
the central nervous system, and they play a crucial role in many
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FIGURE 8

Comparison of the efficacy of extracellular vesicles (EVs) from different cell sources in escape latency of Morris Water Maze (MWM). (A) Network
plot; (B) Forest plot; (C) Surface under the cumulative ranking curves (SUCRA); (D) Funnel plot. The dotted lines represent 95% confidence interval
(95% CI). AEVs, astrocyte-derived extracellular vesicles; MEVs, microglia-derived extracellular vesicles; MSCEVs, mesenchymal stem cell-derived
extracellular vesicles; NSCEVs, neural stem cell-derived extracellular vesicles.

neurodegenerative diseases (Hara et al., 2017; Escartin et al., 2021).
After TBI, they play a role in maintaining the homeostasis of the
internal environment and transmitting signals and communication
between cells (Li et al., 2022; Yuan and Wu, 2022). In recent
years, EV has been widely studied as a popular intercellular
communication tool. It contains lipids, proteins, RNA and DNA
and is responsible for its functional diversity (Colombo et al.,
2014; Thery et al., 2018). A large number of studies have also
shown that AEVs can be used to treat TBI, which can not only
reduce the lesion volume, but also reduce cell apoptosis (Wang
and Han, 2019; Long et al., 2020). In the early stages of TBI,
astrocytes play an important role, which explains why AEVs are
the most effective (Perez et al., 2017). However, due to the non-
renewable nature of astrocytes, with the aggravation of secondary
damage, the efficacy of AEVs diminishes with its depletion (Ridet
et al., 1997; Sofroniew and Vinters, 2010). Therefore, it is not
surprising that the efficacy of AEVs did not rank first in the late

stage of TBI. However, NSCEVs ranked first in mNSS at day 21
after TBI. This result should be considered with caution as only
one of the included studies used NSCEVs. Although studies have
shown that NSCEVs can enhance the function of endogenous NSC
after TBI, thus contributing to the recovery of neural function (Sun
et al., 2020). However, the result of network meta-analysis showed
NSCEVs were statistically significant compared with the control
group, and there was no statistical difference between direct and
indirect comparisons with other interventions in mNSS at day 21
after TBI. Therefore, more studies are needed to prove the efficacy
of NSCEVs.

Moreover, AEVs, MEVs, NSCEVs, and MSCEVs were equally
effective in mNSS at day 14 and 28 after TBI. Among them,
MSCEVs ranked first in efficacy. As for the results of the network
meta-analysis of the MWM test, AEVs, MEVs, and MSCEVs all had
some effect. Among them, MSCEVs ranked first in the outcome
analysis of escape latency and spent time in the target quadrant. As
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FIGURE 9

Comparison of the efficacy of extracellular vesicles (EVs) from different cell sources in time spent in the goal quadrant in Morris Water Maze (MWM).
(A) Network plot; (B) Forest plot; (C) Surface under the cumulative ranking curves (SUCRA); (D) Funnel plot. The dotted lines represent 95%
confidence interval (95% CI). AEVs, astrocyte-derived extracellular vesicles; MEVs, microglia-derived extracellular vesicles; MSCEVs, mesenchymal
stem cell-derived extracellular vesicles; NSCEVs, neural stem cell-derived extracellular vesicles.

is well-known, MSC is a pluripotent stem cell with differentiation
ability and therapeutic potential, which has been widely studied
in various fields (Das et al., 2019; Shao et al., 2019). Stem cell
therapies have also been used in clinical trials (Shahror et al.,
2020). The efficacy of MSC in neurodegenerative diseases has
also been widely reported (Peruzzaro et al., 2019; Köhli et al.,
2021). However, although MSC has also been found to improve
neurological function after TBI, inhibit the expression of apoptosis-
related proteins Bax and Caspase−3, and also inhibit the secretion
of pro-inflammatory and anti-inflammatory factors (Zhang et al.,
2013; Shahror et al., 2019). Although MSC is easy to isolate
and has homing function (Hsuan et al., 2016). However, it still
has some unavoidable shortcomings such as tumorigenicity, easy
contamination and immune rejection (Liu et al., 2021). Luckily,
the discovery of MSCEVs is a bright spot. After TBI, the use of
MSCEVs significantly improved the motor function and spatial
memory ability of TBI animals (Patel et al., 2018; Moss et al.,

2021). At the cellular level, MSCEVs can not only reduce apoptosis
and neuroinflammatory response, but also promote the growth
of progenies (Wen et al., 2022). One study has also shown that
MSCEVs play a neuroprotective role by regulating the interaction
between astrocytes and neurons through the PI3K/AKT signaling
pathway (Turovsky et al., 2022). MSC contributes to the functional
recovery of various endogenous cells and plays a more indirect role
through continuous retention in the body (Andrzejewska et al.,
2021). It also has the potential to differentiate into various cells,
helping to replenish the cells consumed after TBI, thus exerting its
curative effect. Therefore, it is natural that its efficacy ranked first
in the late evaluation of mNSS and MWM. For another MEVs with
therapeutic potential, it has been found to be useful in the treatment
of early TBI. And they can also significantly inhibit inflammation.
As resident macrophages of the central nervous system, microglia
play an important role in the early stage of injury (Liddelow et al.,
2017). The early inflammatory cascade reaction will affect axon
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regeneration, and microglia will also produce two polarization
states of M1 and M2, affecting the secretion of inflammatory factors
(Kigerl et al., 2009). One study has shown that EVs derived from
microglia can promote axon regeneration through overexpression
of miRNA, thus improving motor function after TBI (Zhao et al.,
2021). Although MEVs were statistically significant compared to
controls, they were less effective than other cell-derived EVs. It
is possible that the intense early inflammatory response requires
a large number of microglia, which are in short supply. It is also
possible that some MEVs are affected by M1 microglia and turn into
EVs that are not effective, thus playing a harmful role. Therefore,
more studies are needed to further support the conclusion that
MEVs can be used in the treatment of TBI.

Our Bayesian network meta-analysis provided a basis for future
research by comparing EVs from different cell sources for TBI to
select the EVs with the most significant efficacy. Our study not only
assessed neural function, but also analyzed spatial memory ability.
It is helpful for researchers to choose EVs which is more suitable for
their research direction. To explore the mechanism of early efficacy,
the use of MEVs and AEVs as intervention may be a better choice.
MSCEVs and NSCEVs may be the best solution for researchers who
want to further study the mechanism of neural function recovery
after injury, or who want to compare the efficacy of stem cells and
EVs. While providing strong evidence for preclinical research, it
can reduce the detours in the transformation to clinical research.

There were some limitations to our Bayesian network meta-
analysis. First, the number of studies included and the sample size
were too small. The number of studies on some outcome measures
was so small that some interventions had only been studied in
one study, compromising the confidence of the results. Secondly,
the quality of the included studies was uneven, and there were
still studies with a high risk of bias. This might have something
to do with the types of studies included. The unsatisfactory
quality of preclinical research was still common due to the lack
of systematic guidelines and inconsistent laboratory conditions.
Moreover, the outcome indexes were all subjective results. The two
outcome indicators, mNSS and MWM, were not objective enough,
which might increase the risk of bias. Finally, SUCRA results
used to assess efficacy rankings might have their own limitations
affecting the results.

5. Conclusion

The results of our network meta-analysis suggested that AEVs
might be the best option in the treatment of early TBI in mNSS. In

the later stages of TBI, MSCEVs might have the best efficacy, both
in neural function and spatial memory. However, more research is
needed to confirm our findings and provide sufficient basis for its
transformation into clinical research.
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