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Multi-cue temporal modeling for
skeleton-based sign language
recognition

Oğulcan Özdemir*, İnci M. Baytaş and Lale Akarun

Perceptual Intelligence Laboratory, Computer Engineering Department, Boğaziçi University, Istanbul,
Türkiye

Sign languages are visual languages used as the primary communication medium
for the Deaf community. The signs comprise manual and non-manual articulators
such as hand shapes, upper body movement, and facial expressions. Sign
Language Recognition (SLR) aims to learn spatial and temporal representations
from the videos of the signs. Most SLR studies focus on manual features
often extracted from the shape of the dominant hand or the entire frame.
However, facial expressions combined with hand and body gestures may
also play a significant role in discriminating the context represented in
the sign videos. In this study, we propose an isolated SLR framework
based on Spatial-Temporal Graph Convolutional Networks (ST-GCNs) and
Multi-Cue Long Short-Term Memorys (MC-LSTMs) to exploit multi-articulatory
(e.g., body, hands, and face) information for recognizing sign glosses. We
train an ST-GCN model for learning representations from the upper body and
hands. Meanwhile, spatial embeddings of hand shape and facial expression
cues are extracted from Convolutional Neural Networks (CNNs) pre-trained on
large-scale hand and facial expression datasets. Thus, the proposed framework
coupling ST-GCNs with MC-LSTMs for multi-articulatory temporal modeling
can provide insights into the contribution of each visual Sign Language (SL)
cue to recognition performance. To evaluate the proposed framework, we
conducted extensive analyzes on two Turkish SL benchmark datasets with
di�erent linguistic properties, BosphorusSign22k and AUTSL. While we obtained
comparable recognition performance with the skeleton-based state-of-the-art,
we observe that incorporating multiple visual SL cues improves the recognition
performance, especially in certain sign classeswheremulti-cue information is vital.
The code is available at: https://github.com/ogulcanozdemir/multicue-slr.
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1. Introduction

Sign Languages (SLs) are multi-cue visual languages that have naturally emerged as

the primary communication medium among the Deaf. The multi-cue nature stems from

manual (e.g., hand gestures, hand shapes) and non-manual features (e.g., facial expressions,

mouthing, mouth gestures, upper body movements). This visual communication is a proper,

full-fledged language possessing all linguistic components (Stokoe, 2005; Sandler and Lillo-

Martin, 2006). The linguistics of this language, as well as its production and comprehension

in the human brain, has attracted intense research interest (Campbell et al., 2008; Emmorey,

2021). It has been shown that the human brain processes SLs using similar brain organization
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patterns as it does for spoken languages (Campbell et al., 2008).

Nevertheless, differences in the perception of certain aspects, such

as non-manual components and iconic signs, as well as in the use of

brain areas between the Deaf and hearing native signers, continue

to be active research areas (Emmorey, 2021).

Although SLs enable the Deaf to communicate, there is a

prevalent disconnection between deaf signers and people who

cannot sign. It is crucial to improve the accessibility to SL

communication and education resources to facilitate inclusiveness

for the Deaf. On the other hand, the number of SL interpreters

and tutors is insufficient. To that end, Automatic Sign Language

Recognition (ASLR) systems have been designed to mitigate such

challenges in SL education and communication. The ASLR by

computers has been the subject of research efforts for almost 30

years (Loeding et al., 2004).

The ASLR is an integral component of sign language translation

and animation frameworks. Thus, it also facilitates the creation of

digital content for deaf communities (Ferreira et al., 2021). These

systems often focus on recognizing and translating the multiple

visual cues of a signer performing in front of a camera. For

this reason, the ASLR task can be posed as a spatio-temporal

representation learning problem. Over the last 30 years, researchers

have worked on different sub-tasks of ASLR. Recognizing isolated

SL glosses, where a single word is associated with the sign, has been

a matter of interest since the earlier studies in the SLR field (Liwicki

and Everingham, 2009; Kındıroğlu et al., 2019). Additionally,

employing models that recognize and translate continuous SL

videos, where more than one sign gloss is present, and producing

SL gloss sentences from spoken language sentences have become

popular in recent studies (Camgoz et al., 2017, 2018, 2020b; Pu

et al., 2019; Saunders et al., 2021).

In this study, we focus on the isolated SLR task where a single

sign gloss, i.e., a word associated with the sign, is performed in the

input video. Despite its similarity to the human action recognition

problem, SLR focuses more on local cues of hand gestures

and shapes, facial expressions, mouth gestures, and mouthing.

Therefore, exploiting the multiple cues in spatio-temproral

architectures may improve the ASLR performance. To thoroughly

leverage their contributions, we need distinctive representations

of the cues. While earlier studies utilized handcrafted feature

extraction techniques for training and inference (Peng et al., 2015),

the availability of isolated SL datasets has enabled researchers

to develop deep learning-based ASLR approaches (Zhang et al.,

2016; Joze and Koller, 2018; Albanie et al., 2020; Özdemir et al.,

2020; Sincan and Keles, 2020). Inspired by the architectures

on the human action recognition domain, researchers have also

investigated employing spatio-temporal approaches that use 2D

and 3D CNNs and Long Short-Term Memorys (LSTMs) for the

ASLR task (Huang et al., 2015; Koller et al., 2016; Liu et al., 2016;

Joze and Koller, 2018; Boháček and Hrúz, 2022; Hrúz et al., 2022).

These architectures often operate in an end-to-end manner,

where the model can learn all steps jointly, to recognize sign

glosses by utilizing manual features such as the shape of the

dominant hand or the entire frame (Joze and Koller, 2018;

Özdemir et al., 2020). However, SLs are considered multi-cue

languages, where each channel contains a manual or non-manual

characteristic. For this reason, utilizing a single visual cue, such

FIGURE 1

Multi-cue isolated sign language recognition (SLR).

as only manual features, may not be sufficient to fully express the

context of the SL videos. In addition to the improved recognition

performance when facial expressions, mouthing, and upper

body movements are incorporated with a multi-cue recognition

architecture, considering multiple cues also facilitates identifying

the individual contributions of manual and non-manual features to

the recognition task (Figure 1).

More recently, the success of pose estimation techniques and

Graph Convolutional Network (GCN) architectures has shifted

researchers’ attention to skeleton-based approaches in both action

recognition and SLR domains (Kipf and Welling, 2016; Yan et al.,

2018; Cao et al., 2019; Jiang et al., 2021). In these methods,

graphs are often formed by connecting skeleton joint information

(obtained via pose estimation techniques) according to the natural

human body connections and processed through a GCN network.

As an improvement over earlier GCN architectures, ST-GCN has

been proposed for skeleton-based action recognition to model

spatial and temporal dimensions simultaneously and later was

adapted to the SLR problem (Yan et al., 2018; Jiang et al., 2021).

In this paper, we propose a multi-cue SLR architecture

utilizing multi-articulatory spatio-temporal information contained

in manual and non-manual features of SL, as illustrated in Figure 1.

The proposed architecture comprises a spatio-temporal feature

extraction module, which aims to extract visual representations

of the multiple cues using ST-GCNs and pre-trained CNNs and

an LSTM-based temporal modeling module that jointly learns

temporal interactions between the multiple cues.

• A new multi-cue sequential architecture, MC-LSTM, is

designed as an extension of Multi-View Long Short-Term

Memorys (MV-LSTMs). MC-LSTM introduces an adaptive

fusion mechanism to learn how to fuse the information

transferred via the representations of the multiple SL

cues. In particular, multiple cues are integrated within the
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temporal representation module to model the asynchronous

interactions between each cue during training.

• An ST-GCN architecture is trained jointly with MC-LSTM

to learn spatio-temporal information from full-body

skeleton joints, and features obtained from facial and hand

representations using pre-trained CNNs.

• To the best of our knowledge, this is the first attempt to model

manual and non-manual cues in SLs with hybrid architectures

containing ST-GCN and LSTMs. Furthermore, the adaptive

fusion mechanism introduced in MC-LSTM learns how much

information should be included from each cue at each time

step.

• An extensive ablation study is presented for different modules

of the proposed SL recognition framework, where the

contributions of different visual SL cues to recognition

performance are investigated.

• An analysis is performed on different sign language-specific

linguistic attributes to examine the benefits of utilizing the

proposed multi-cue sequential architecture for the SLR task.

We evaluate our methods on two Turkish SL benchmark

datasets, BosphorusSign22k (Özdemir et al., 2020) and

AUTSL (Sincan and Keles, 2020), that present different

characteristics and challenges. Our ablation study demonstrates

that incorporating multiple visual SL cues improves

recognition performance.

The rest of this paper is organized as follows; we briefly

review the SLR, skeleton-based representation learning, and multi-

channel sequence modeling literature in Section 2. In section 3,

we introduce our multi-cue spatio-temporal architecture for

recognizing SLs. We then describe our implementation and share

quantitative and qualitative results on both BosphorusSign22k and

AUTSL, isolated SLR benchmark datasets, in Section 4. Finally, we

discuss our results and conclude the paper in Section 5.

2. Related work

In this section, we present the prominent studies in isolated

SLR. Then, we continue with a detailed review of skeleton-based

representation learning and temporal modeling studies.

2.1. Sign language recognition

Sign Language Recognition (SLR) has been studied in the

pattern recognition domain for over 30 years since it is imperative

to alleviate the communication barrier between deaf and hearing

communities (Loeding et al., 2004). In earlier studies, researchers

often focused on recognizing hand gestures using the information

obtained through hand sensors (Kadous, 1996; Vogler andMetaxas,

1997; Hienz et al., 1999; Hernandez-Rebollar et al., 2002). Following

the increased availability of vision-based and depth cameras,

researchers started to design more sophisticated approaches that

facilitate learning information from videos. These approaches

aimed to learn representations related to SLs, such as hand shapes,

motion, and upper body information (Liu and Fujimura, 2004;

Wong and Cipolla, 2005; Liwicki and Everingham, 2009; Shotton

et al., 2011; Nandakumar et al., 2013; Camgöz et al., 2016a; Koller

et al., 2016; Özdemir et al., 2016, 2018).

Earlier research on SLR has mostly concentrated on approaches

in the isolated SLR domain, where sign videos of signers

typically facing the camera and performing a sign gloss are

recognized. Researchers have first employed handcrafted methods

to extract representations describing localized regions of manual

features (hand shapes) or the information from the entire

frame (Nandakumar et al., 2013; Peng et al., 2015; Camgöz et al.,

2016a; Özdemir et al., 2018). Since it is a video classification

task, earlier work on SLR has adapted well-known human action

recognition techniques to the domain. Özdemir et al. (2016)

and Peng et al. (2015) used Improved Dense Trajectory (IDT)

handcrafted features to recognize isolated sign videos. Due to

the high computational complexity of IDT for the SLR task,

Özdemir et al. (2018) later proposed an efficient approach by

obtaining similar sign language descriptors from localized regions

of hand shapes.

More recently, SLR researchers have shifted their attention to

the successful spatio-temporal deep learning approaches in which

they employ 2D and 3D CNNs (Huang et al., 2015; Camgöz

et al., 2016b; Koller et al., 2016; Joze and Koller, 2018; Mittal

et al., 2019; Gökçe et al., 2020; Rastgoo et al., 2020; Abdullahi and

Chamnongthai, 2022; Samaan et al., 2022). Moreover, Kındıroğlu

et al. (2019), Kındıroglu et al. (2023) have proposed a temporal

representation approach for modeling the movement-hold pattern

of SLs (Liddell and Johnson, 1989), in which authors adapted the

pose-based motion representation, PoTion (Choutas et al., 2018),

to the SLR task.

2.2. Skeleton-based representation learning

Although the architectures based on CNNs and Recurrent

Neural Networks (RNNs) were successful in earlier studies of video

classification tasks such as SLR and human action recognition,

utilizing skeleton data obtained from pose estimation techniques

has become more popular recently (Chéron et al., 2015; Du et al.,

2015; Lev et al., 2016; Li et al., 2017; Liu et al., 2017; Wang

and Wang, 2017; Liang et al., 2018; Zhu et al., 2019). Compared

to frame-based inputs, the skeleton information has more

representational power to express the localized motion centered

around the sign performed. Since the skeleton data information

can be more robust to changes in the environment and can be

represented more compactly than frame-based representations,

researchers have moved their interest into developing skeleton-

based approaches (Song et al., 2022).

The earlier work has often focused on learning skeleton-

based information from their meaningful visual representations.

However, the proposed architectures can not be generalized to the

spatio-temporal skeleton joint information without excessive pre-

preprocessing (Kındıroğlu et al., 2019). As several approaches have

been proposed to model spatio-temporal graph-structured data

for the traffic flow prediction problem in the literature (Li et al.,

2019; Hou et al., 2021; Wu et al., 2021), proposed methods employ

mixed GCN and LSTM architectures which are computationally

inefficient for skeleton-based recognition tasks since approaches
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require modeling different topologies at each time step. To model

the skeleton joint information, Yan et al. (2018) proposed ST-GCNs

for learning both spatial and temporal dynamics of the human

skeleton for the skeleton-based human action recognition task. In

their work, authors adapted GCNs to operate and learn on graph-

structured information for the spatio-temporal representation

domain. After the success of ST-GCNs on the temporal modeling

tasks, improvements have also been proposed to solve several

drawbacks of ST-GCNs, such as occlusions and modeling the

distant joint relationships (Wang et al., 2018; Si et al., 2019; Song

et al., 2019, 2020; Zhang et al., 2019; Liu et al., 2020; Plizzari et al.,

2021; Lee et al., 2022).

ST-GCN architecture has also been adapted into the SLR

domain (de Amorim et al., 2019; Jiang et al., 2021; Tunga

et al., 2021; Vazquez-Enriquez et al., 2021). de Amorim et al.

(2019) have proposed adapting baseline ST-GCNs architecture

into the SLR domain on a small subset of the ASLLVD-Skeleton

dataset (Neidle et al., 2012). Jiang et al. (2021) followed a multi-

modal ensemble approach in which they coupled the skeleton

information with RGB frame, optical flow, and depth information.

Moreover, Vazquez-Enriquez et al. (2021) employed a multi-scale

variant of ST-GCNs on the AUTSL dataset. They investigated

the effects of transfer learning on the isolated SLR task by

focusing on training their architecture on AUTSL, WLASL, and

LSE_UVIGO datasets (Docío-Fernández et al., 2020; Li et al.,

2020; Sincan and Keles, 2020). More recently, Tunga et al. (2021)

proposed a mixed GCN and Bidirectional Encoder Representations

from Transformers (BERT) (Devlin et al., 2018) architecture to

capture pose-based skeleton information and model temporal

dependencies between each time step.

2.3. Temporal modeling

Due to its sequential nature, the SLR task requires temporal

modeling to learn the structures of sign glosses varying over time.

While the prior SL literature focuses more on techniques such

as Hidden Markov Models (HMMs) for sequence modeling after

extracting handcrafted features, recent studies follow the idea of

employing 2D-3D CNN and RNN-based architectures in which

frames or skeleton joint information are directly used (Aran, 2008;

Camgöz et al., 2016a; Koller et al., 2016, 2019; Zhang et al., 2016;

Mittal et al., 2019; Abdullahi and Chamnongthai, 2022; Samaan

et al., 2022). More recently, Transformer based architectures have

become popular on SLR and Sign Language Translation (SLT)

tasks due to their success in domains such as Natural Language

Processing (NLP) and Speech Processing (SP) (Vaswani et al., 2017;

Camgoz et al., 2020b; Rastgoo et al., 2020; Boháček and Hrúz, 2022;

Cao et al., 2022; Chen et al., 2022; Hrúz et al., 2022; Hu et al., 2022;

Xie et al., 2023).

Although LSTM and 3D-CNN-based sequential architectures

can learn strong spatio-temporal representations from sign videos,

they do not fully exploit the multi-articulatory nature of SLs using

only manual features such as hand shape or gestures. While the

LSTM is often used as a sequential modeling method (Hochreiter

and Schmidhuber, 1997), it cannot inherently process multiple

channels of information without performing early or late fusion.

Rajagopalan et al. (2016) have proposed MV-LSTMs as an

extension for LSTMs for multi-view sequences. In their work, they

modified LSTM cells to learn the interactions between multiple

channels by partitioning the memory cell using predetermined

view interaction terms. Similarly, Camgoz et al. (2020a) employed

multi-channel transformers for the SLT task, where the architecture

learns from multiple channels using a modified Transformer

architecture (Chang et al., 2021). Recently, Li and Meng (2022)

proposed a Transformer-based multi-channel architecture using

the information from the entire frame and skeleton input data for

the SLT task.

In this paper, we aim to employ a hybrid ST-GCN and

MC-LSTM architecture which introduces an adaptive fusion of

multiple cues in SLs learned from data during training. Since

MC-LSTMs are adopted as an extension to MV-LSTM, a direct

contribution of each visual SL cue to the sequence modeling

is facilitated. Our analysis compares our hybrid architecture

with ST-GCN and LSTM baselines on isolated SLR datasets,

BosphorusSign22k and AUTSL.

3. Method

The proposed architecture in Figure 2 comprises spatial

and temporal representation learning modules. In particular, an

ST-GCN module is designed to extract spatio-temporal features

from the full-frame cue using pose estimation information, pre-

trained CNN modules are used to extract spatial representations

from the hand and the face cue, and an MC-LSTM temporal

modeling module is proposed to learn how to fuse multiple

temporal visual cues for the isolated SLR task. Finally, the learned

spatio-temporal representation is mapped to a sign gloss. In the

following section, each module is presented in detail.

3.1. Spatio-temporal feature extraction

To obtain powerful representations, we utilize ST-GCN for

skeleton joint features obtained from an open-source pose

estimation toolbox and extract features from pre-trained CNN

architectures suitable for the corresponding visual SL cues.

Let a given visual cue sequence of length T be expressed as

X
cue
T = {xcue1 , xcue2 , xcue3 , . . . , xcueT }. The pose cue is the upper body

pose information X
pose
T ∈ R

T×j×3, where j is the number of unique

joints, and the hand and face cues are the hand and face crop images

obtained from SL frames, X
hand,face
T ∈ R

T×h×w×3, where h × w is

the crop resolution of RGB images. We pass all inputs through a

feature extraction module:

x̂cuet = Fcue(xcuet ) t = 1, 2, 3, . . . ,T∗ (1)

X̂cue
T∗ = [x̂cue1 , x̂cue2 , . . . , x̂cueT∗ ] (2)

Where Fcue is the architecture selected for the visual cue, and x̂cuet

is the output feature of the visual cue at time t. When the upper

body pose is concerned, Fcue denotes the ST-GCN, which is trained

from scratch simultaneously with the temporal module. On the

other hand, for hand shape and facial expression features, Fcue
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FIGURE 2

Overview of our proposed multi-cue SLR architecture. ST-GCN and temporal convolutional layers are trained jointly with MC-LSTM, where
cue-specific and cross-cue parameters are learned.

denotes the pre-trained architectures. Since ST-GCNs temporally

pool information on its intermediate layers, we also perform

temporal pooling over all features obtained from other visual cues

(e.g., hand and face cues) to adjust the length of the features from

T to T∗ (T∗ < T), where T∗ indicates the length of the visual

cue features after the temporal pooling. Once we obtain all the

features for multiple visual cues, we form a feature sequence X̂cue

for each cue with the dimensions of X̂
pose
T∗ ∈ R

T×p where p = 256

is the output size of the ST-GCN, and X̂
hand,face
T∗ ∈ R

T×d where

d ∈ {512, 1024} is the output size of hand and face representation

architectures, respectively. Then, the feature sequences will be fed

into the proposed sequential MC-LSTMmodule.

Spatial-temporal graph convolutional networks
(ST-GCNs)

ST-GCN architecture (Yan et al., 2018), an extension of

GCNs (Kipf and Welling, 2016) to both spatial and temporal

dimensions, comprises stacked spatio-temporal blocks that process

skeleton graphs using spatial graph convolutions (GCN) and

temporal convolutions (TCN).

Skeleton joints contain vital information regarding the spatial

and temporal dynamics of the body movement constituting the

sign. ST-GCNs are shown to capture such dynamics better than

an RGB-based architecture (Yan et al., 2018; Song et al., 2022). For

this reason, we integrate an ST-GCN module to model the upper

bodymovements. Following Yan et al. (2018), we construct a spatio-

temporal skeleton graph G = (V ,E) using upper body and hand

skeleton joints with 35 unique joints for the skeleton sequence of

lengthT.WhileV is the set of nodes including the (x, y) coordinates

and confidence values of all selected joints at each time step t, E is

the edge set consisting of two subsets; the natural human body part

connections and temporal trajectories connecting respective joints

over time.

We propose several improvements to the baseline ST-GCN

architecture, making it more versatile such that the temporal

pooling of the ST-GCN module does not completely collapse

the temporal dimension at the end. Thus, the spatio-temporal

representation from the full frame learned with the proposed

ST-GCN can be fed to the MC-LSTMs. In particular, we first adjust

the temporal kernel size tk of all blocks and the temporal stride ts of

the convolutional blocks where the number of channels in feature

maps is increased (the ablation study for adjusting the parameters is

provided in the Supplementary material). Secondly, as the baseline

ST-GCN architecture collapses all temporal information before

classification, we use the output representation X̂
pose
T∗ of the last

ST-GCN block before temporal average pooling, and feed this into

our sequential module. With the ST-GCN architecture, we aim

to capture spatio-temporal patterns composing the signing action

invariant to the signer and the background.

CNN-based hand and facial expression
representations

As discussed earlier, SLs have a multi-cue nature. The

representation learned for the action in the entire frame may

overlook the characteristic details retained in the manual and non-

manual articulators, namely, hand shapes and facial expressions.

To address this issue, we propose incorporating features extracted

from localized regions of hand shapes and facial expressions

into the recognition framework. On the other hand, learning to

extract hand and face features simultaneously with learning spatio-

temporal representations may not serve our purpose due to the

limited data in the SLR domain. For this reason, we propose
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to extract hand and facial features from CNN architectures pre-

trained exclusively for facial expression (Wen et al., 2021) and hand

shape (Koller et al., 2016) recognition.

After extracting the features X̂cue
T from task specific pre-

trained architectures, we learn two temporal convolutional layers

of kernel sizes tk and strides ts (same as in ST-GCN) for

reducing the length of sequences to T∗ for hand and facial

expressions, identically to the output sequence length of the

ST-GCN architecture. Then, we feed temporally pooled feature

representations (e.g., X̂hand
T∗ , X̂

face
T∗ ) into our sequential model. For

facial expression representation, we employDistract your Attention

Network (DAN) (Wen et al., 2021) architecture, pre-trained on

the widely used AffectNet (Mollahosseini et al., 2017) dataset.

For hand shape representations, we extract features from the

DeepHand (Koller et al., 2016) architecture which is trained over

one million hand images.

3.2. Multi-cue temporal modeling

In the SLR task, temporal dependencies carry essential

linguistic information about the sign gloss. Although RNNs

can learn complex temporal dynamics, in theory, they cannot

capture long-term dependencies due to the vanishing gradients

problem (Pascanu et al., 2013). For modeling the long-term

dependencies, Hochreiter and Schmidhuber (1997) proposed

LSTMs capable of learning long sequences by regulating the long-

term and short-term memory with several gates.

Given an input feature sequence X̂ = {x̂1, x̂2, . . . , x̂T} of length

T, LSTM cell updates at time t are calculated using the previous

hidden state ht−1 and cell state ct−1 as shown below:

it = σ (Wixx̂t +Wihht−1 + bi) (3)

ft = σ (Wfxx̂t +Wfhht−1 + bf ) (4)

ot = σ (Woxx̂t +Wohht−1 + bo) (5)

c̃t = tanh(Wcix̂t +Wchht−1 + bc) (6)

ct = ft ⊙ ct−1 + it ⊙ c̃t (7)

ht = ot ⊙ tanh(ct) (8)

Where it , ft and ot are input, forget and output gates, respectively,

c̃t denotes the cell state update, and ht and ct are the current time

step’s hidden and cell states. LSTMs are inherently incompatible

with inputs containing multiple channels (or modalities).

To introduce multi-view property, Rajagopalan et al. (2016)

proposed MV-LSTMs, a modified LSTM model that partitions

the memory into view-specific Vs and cross-view Vc components.

In their work, authors aimed to partition cell states and form

flexible interaction between multiple channels of information

to overcome the adverse effects of dominating modalities.

In order to achieve this, they considered using pre-defined

view-specific (Vs) and cross-view (Vc) interaction terms split

accordingly to preset α and β scalar matrices (Rajagopalan et al.,

2016).

In this study, we introduce MC-LSTMs by extending

MV-LSTMs into our isolated SLR framework to model the

information conveyed through multiple visual cues explicitly;

upper body skeleton, hand shape, and facial expressions.

Considering the nature of SLs, it is not possible to know which

visual cue will carry the essential information for the corresponding

time step. Hand shape might be the most informative cue for a

particular time window, while facial expression or body gesture

might carry more distinctive information for another time window.

For this reason, pre-determinedVs andVc are not suitable for SLR.

To address this challenge, we adjust MV-LSTMs (Rajagopalan et al.,

2016) cell structure with trainable Vs (cue-specific) and Vc (cross-

cue) parameters to learn the interaction mapping between the

different visual cues during training.

For a given input SL feature sequence

X̂ = {x̂1, x̂2, . . . , x̂T∗}Ncue=1 of length T∗ (see Equation 2)

with N visual cues, a single-cue cell update at time t for a visual cue

is defined as the following:

icuet = σ (Wcue
ix x̂cuet +Wcue

ih Vsh
cue
t−1 +

N∑

j=1,j6=cue

W
j

ih
Vch

j
t−1) (9)

f cuet = σ (Wcue
fx x̂cuet +Wcue

fh Vsh
cue
t−1 +

N∑

j=1,j6=cue

W
j

fh
Vch

j
t−1) (10)

ocuet = σ (Wcue
ox x̂cuet +Wcue

oh Vsh
cue
t−1 +

N∑

j=1,j6=cue

W
j

oh
Vch

j
t−1) (11)

c̃cuet = tanh(Wcue
cx x̂cuet +Wcue

ch Vsh
cue
t−1 +

N∑

j=1,j6=cue

W
j

ch
Vch

j
t−1)

(12)

ccuet = f cuet ⊙ ccuet−1 + icuet ⊙ c̃cuet (13)

hcuet = ocuet ⊙ tanh(ccuet ) where cue ∈ {pose, hand, face}

(14)

Where icuet , f cuet and ocuet are input, forget and output gates of the cell

belonging to a visual SL cue, and hcuet−1 and ccuet−1 are the hidden and

cell states of the previous time step t − 1 for the visual cue. Once

MC-LSTM cell updates are performed for all the views, hidden

states are then concatenated for all time steps:

Ht = [h1t ; h
2
t ; h

3
t ; . . . ; h

N
t ] (15)

Ht ∈ R
T∗×N×k×2 (16)

Where k × 2 is the output size of the bidirectional MC-LSTM

architecture, N enumerates the different cues. As a final step, we

average all output hidden states Ht over the entire output sequence

with the length of T∗, and perform multi-cue SL classification,

where we optimize cross-entropy loss:

Lce = −

C∑

c=1

yc log ŷc (17)

Where C is the number of sign classes, yc and ŷc are

the one-hot encoded ground truth vector and the prediction

probabilities, respectively.
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4. Experimental results

This section describes the datasets used to evaluate our

architecture and experimental design, and presents our quantitative

and qualitative results.

4.1. Datasets

To evaluate our architecture, we used

BosphorusSign22k (Özdemir et al., 2020) and AUTSL (Sincan and

Keles, 2020) datasets in our experiments (examples are shown in

Figure 3).

BosphorusSign22k
The dataset was recently published for isolated SLR and is

publicly available upon request. It contains 22,542 trimmed videos

of 744 SL gloss classes performed by six native signers repetitively

in front of a camera and Chroma-Key background. SL videos in

this dataset were captured at a high resolution of 1,920 × 1,080

at 30 frames per second. To make our analysis comparable to

other studies on this dataset, we followed the training protocol

in Özdemir et al. (2020) in which a single signer is selected for

testing purposes while the rest of the signers are used for training

and report Top-1 and Top-5 classification accuracies.

AUTSL
Introduced by Sincan and Keles (2020), the AUTSL dataset

consists of 38,336 trimmed RGB and depth sign language videos

from 226 sign glosses of Turkish SL. Sign videos in the dataset

were performed by 43 different signers sitting or standing in front

of the camera during recording each video, which is captured

at a resolution of 512× 512 at 30 frames per second. Since this

dataset was introduced as a part of the ChaLearn Looking at

People challenge (Sincan et al., 2021), it contains sign videos with

different backgrounds from indoor and outdoor environments to

make the recognition problem more challenging. Similar to our

experiments with the BosphorusSign22k dataset, we followed the

training protocol in Sincan et al. (2021), in which the dataset is split

into three subsets: train, development, and test. We report Top-1

and Top-5 classification accuracies from training and test subsets

to evaluate our approach.

Both datasets have been pre-processed by their authors before

distribution so that the dominant hand is always the same.

Although both datasets have similar characteristics related to the

isolated SLR task, they have several differences. Firstly, the AUTSL

dataset has varying backgrounds as opposed to the Chroma-Key

background in BosphorusSign22k dataset. This difference might

cause the features extracted from AUTSL to be variant to the

changing factors in the background. Consequently, we observe the

effects of AUTSL-specific challenges in recognition performance.

Secondly, signers in the BosphorusSign22k dataset are all native

signers; thus, videos in the dataset often have mouthing and

mouth gestures which are imperative to exploit multi-channel

information. However, similar facial gestures and mouthing do not

exist in the AUTSL videos since they are not native. Moreover,

in some of the AUTSL videos, signers sit while performing the

signs. However, the signers in the BosphorusSign22k dataset always

perform the signs while standing in front of the camera. Since

standing and sitting actions change the position and pose of the

upper body, we want the stress that representations learned for the

AUTSL dataset may inevitably carry such variations.

Sign language specific linguistic attributes
In addition to the gloss recognition performance, we investigate

the effects of different cues on the recognition performance of SL-

specific linguistic attributes. For this purpose, we group signs with

similar grammatical attributes, such as one-handed, two-handed,

circular, non-circular, repetitive, non-repetitive, mono-morphemic,

and compound signs. Our analysis for both datasets in Tables 5, 6

unfolds insights into how the architectures incorporating different

cues behave under the specific groups of sign glosses.

4.2. Implementation details

In this section, we provide a detailed explanation of spatio-

temporal feature extraction and training hyperparameters for

the proposed isolated SLR framework, which is implemented on

PyTorch, and trained on an 8GB NVIDIA RTX2080 GPU.

Temporal pruning
SL videos in both datasets contain segments in which signers

raise and lower their hands at the start and end of each sequence.

Since this redundant information dominates the entire frame

sequence, which may prevent the model from learning correctly,

we drop frames from each sequence temporally by tracking the

dominant hand before feeding into our architecture.

Spatio-temporal feature extraction
To obtain skeleton joint information, we utilized the publicly

available MMPose toolbox.1 Skeleton joints are fed into the

ST-GCN, which is jointly trained with the sequential architecture.

Hand and facial expression representations are extracted using

different architectures. To extract hand-shape representations,

we use DeepHand (Koller et al., 2016) architecture, pre-trained

on over 1 million hand images. We extract facial expression

representations using the DAN (Wen et al., 2021) model

proposed for the facial expression recognition task and pre-

trained on the widely used AffectNet (Mollahosseini et al.,

2017) dataset.

Since DeepHand and DAN architecture operate on the

region of hand and face, we utilized tracked skeleton joint

coordinates to crop around the related region before extracting

any features. Then, we extracted T × 1024 dimensional hand

shape features X̂hand
T from DeepHand model, and T × 512

dimensional facial expression features X̂
face
T from DAN model.

1 https://github.com/open-mmlab/mmpose
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FIGURE 3

Example frames from SL videos and pose estimation outputs from the BosphorusSign22k (top) and AUTSL (bottom) datasets.

TABLE 1 Recognition performance on BosphorusSign22k and AUTSL datasets using hybrid ST-GCN and LSTM architecture.

Architecture Residual BosphorusSign22k AUTSL (Test set)

Top-1 Acc (%) Top-5 Acc (%) Top-1 Acc (%) Top-5 Acc (%)

ST-GCN - 85.86 97.83 86.67 98.16

+ 1× LSTM - 84.93 97.83 85.92 97.97

+ 2× LSTM - 84.01 97.28 85.82 98.02

+ 3× LSTM ✓ 88.21 98.43 87.63 98.08

Details of the ablation study for ST-GCN parameters can be found in the Supplementary material (tk = 7 is the temporal kernel size and, ts = {2, 3} is the temporal stride size of the ST-GCN

architecture).

After the hand and facial expression features are extracted,

they are passed through temporal convolutional layers to

adjust their length to the output of the ST-GCN architecture

(T∗), as mentioned in Section 3.1. Additionally, a residual

connection from the output ST-GCN architecture to the temporal

module is added to avoid overfitting during training. The

effects of adding the residual connection can be seen in

Table 1.

Temporal modeling and classification
In order to model multiple visual cues at each

time step, a single layer of bidirectional LSTM for

baseline experiments and MC-LSTM for the proposed

framework are employed with the hidden size of 512

with 0.5 dropout for each direction. After MC-LSTM, the

output states of each cue are concatenated and averaged

over all time steps, which are then used to compute

cross-entropy loss.

Training and inference
We trained our architecture using Adam (Kingma and Ba,

2014) optimizer with a batch size of 16, the base learning rate of

10−4, and weight decay of 10−4 for 60 epochs. We perform five

warm-up epochs and increase the learning rate by a factor of 10

at epochs 25 and 45 during training. In all of our experiments, we

used the same hyperparameters.

The proposed architecture was implemented in

PyTorch (Paszke et al., 2019), and pre-trained features

were extracted using th Tensorflow implementation of

DeepHand (Koller et al., 2016) and PyTorch implementation

of DAN (Wen et al., 2021).

4.3. ST-GCN with LSTM as a baseline

Sign Languages (SLs) comprise hand articulation, facial

expressions and upper body movement. Depending on the

resolution, information loss in some of the cues is inevitable

when full-image inputs are fed into a CNN-based framework. In

Frontiers inNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnins.2023.1148191
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Özdemir et al. 10.3389/fnins.2023.1148191

TABLE 2 Classification results for multi-cue temporal modeling with MC-LSTM using both manual (ST-GCN and Hand-DeepHand) and non-manual

(Face-DAN) representations.

Multi-cue architecture Sequential
Architecture

Residual BosphorusSign22k AUTSL (Test Set)

Top-1 Acc
(%)

Top-5 Acc
(%)

Top-1 Acc
(%)

Top-5 Acc
(%)

ST-GCN LSTM ✓ 88.21 98.43 87.63 98.08

Hand (L) - 78.89 94.74 60.35 85.18

Hand (L) + Face MC-LSTM - 81.48 96.20 63.85 86.82

Hand (L+R) + Face 86.59 97.31 71.31 90.38

ST-GCN + Hand (L) MC-LSTM ✓ 89.20 96.20 89.68 98.53

ST-GCN + Hand (L+R) 89.81 98.83 87.68 98.13

ST-GCN + Face 90.08 98.56 87.97 98.40

ST-GCN + Hand (L) + Face 92.58 99.07 90.85 98.74

ST-GCN + Hand (L+R) + Face 91.79 99.20 88.92 98.18

ST-GCN + Hand (L) + Face MV-LSTM ✓ 91.62 99.09 89.94 98.56

L: Left hand and R: Right hand, the features extracted from pre-trained DeepHand model). MV-LSTM experiment is performed using α = 1 and β = 1 parameters.

addition, skeleton-based inputs are robust to unwanted details in

the background using only the information from the body pose.

Therefore, we use skeleton-based representations for full body and

CNN-based representations for hand and face regions.

Before fusing multiple cues of information with MC-LSTMs,

we examine the effects of adding LSTM layers to temporally model

ST-GCN representations and train the entire architecture in an

end-to-end manner since the proposed framework comprises end-

to-end training of an ST-GCN with MC-LSTM. This experiment

facilitates the investigation of the multi-cue fusion’s contribution.

Experiments in Table 1 show that adding LSTM layers right

after ST-GCN decreases the recognition performance on both

BosphorusSign22k and AUTSL datasets.

In our analysis, we have seen that the model with LSTM layers

rapidly overfits during training. To avoid overfitting, we add a

residual connection from the ST-GCN output sequence to the

output of the LSTM layer before classification, which has increased

the classification performance of ST-GCNs by nearly 3% (from

85.86% to 88.21%) on the BosphorusSign22k dataset, and 1% (from

86.67% to 87.63%) on the AUTSL dataset.

4.4. Temporally modeling multi-cue
information via MC-LSTMs

To observe the learning capability of our architecture before

multi-cue modeling, we compare the recognition performance

when different sets of features are used. Table 2 shows that using

hand representations (DeepHand) coupled with LSTM achieved

78.89% recognition performance on the BosphorusSign22k dataset

and 60.35% on the AUTSL dataset; adding the residual connection

had a minimal effect. Although DeepHand representations do not

impact the performance much when used individually, they may

still have discriminating information about the hand shape.

Based on this idea, we adaptively fuse hand shape information

obtained from DeepHand and facial expression representations

from DAN using MC-LSTMs. Our experiments have shown that

the fusion of hand shape and face cues has significantly improved

the recognition performance (81.48% and 63.85%) compared

to using only DeepHand representations (78.89% and 60.35%),

empirically showing that there is indeed extra information that can

be modeled by using additional cues.

Moreover, we train the ST-GCN architecture with both

DeepHand and DAN representations on the multi-cue setup with

two or three-channel combinations to investigate the effectiveness

of our proposed architecture on the isolated SLR task. As in Table 2,

our experiments have shown that utilizing MC-LSTMs for multi-

cue fusion has improved our recognition performance (92.58%

and 90.85%, BosphorusSign22k and AUTSL datasets, respectively)

when all visual cues are combined. We should also note that the

ST-GCN module has been jointly trained with MC-LSTM, while

representations from other visual cues were only passed through

temporal convolutions.

In our experiments, we have also included the non-dominant

hand (R: right hand) as a separate cue in addition to the

dominant hand (L: left hand). As seen in Table 2, additional

hand representation has improved the architecture’s performance

significantly (81.48% to 86.59% on BosphorusSign22k and 63.85%

to 71.31% on AUTSL datasets) when only DeepHand features are

used without the ST-GCN model. The decrease in the recognition

performance on both BosphorusSign22k (92.58% to 91.79%) and

AUTSL(90.85% to 88.92%) datasets indicates that architecture with

ST-GCN can learn most of the information from the dominant

hand, already represented by DeepHand features.

4.5. Comparison with the state-of-the-art

We compare our best results with the state-of-the-

art methods in the literature. Results in Table 3 show

that the proposed multi-channel SLR architecture yields

competitive recognition performance (92.58%) compared to
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TABLE 3 Comparison with the state-of-the-art results on the BosphorusSign22k dataset.

References Method Channels Top-1
Acc (%)

Top-5
Acc (%)

Full Hand Face Pose

Özdemir et al. (2020) MC3 ResNets ✓ - - - 78.85 94.76

Kındıroğlu et al. (2019) Temporal accumulative features
(General subset)

- - - ✓ 81.37 97.47

Gökçe et al. (2020) MC3 ResNets + ST Sampling ✓ - - - 86.91 98.17

Özdemir et al. (2020) Improved Dense Trajectories ✓ - - - 88.53 94.76

Sincan and Keles (2022) I3D + RGB-MHI Fusion (pretrained
on AUTSL)

✓ - - - 94.83 -

Gökçe et al. (2020) MC3 ResNets + ST Sampling +
Weighted Score Fusion

✓ ✓ ✓ - 94.94 99.76

Ours ST-GCN +MC-LSTM - ✓ ✓ ✓ 92.58 99.07

TABLE 4 Comparison with the state-of-the-art results on the test set of the AUTSL dataset.

References Method Channels Top-1
Acc (%)

Top-5
Acc (%)

Full Hand Face Pose Depth Of

Sincan and Keles (2020) 2D CNN + BLSTM ✓ - - - - - 49.22 -

Moryossef et al. (2021) OpenPose + Holistic ✓ - - ✓ - - 81.93 -

De Coster et al. (2021) VTN-PF ✓ - - ✓ - - 92.92 -

Sincan and Keles (2022) I3D + RGB-MHI Fusion ✓ - - - - - 93.53 -

Gruber et al. (2021) I3D + VLE-Transformer ✓ ✓ ✓ ✓ - - 95.46 -

Vazquez-Enriquez et al.
(2021)

MS-G3D + S3D ✓ - - ✓ - - 96.15

Jiang et al. (2021) SAM-SLR v2 ✓ - - ✓ ✓ ✓ 98.42 -

Ours ST-GCN +MC-LSTM - ✓ ✓ ✓ - - 90.85 98.74

of: the optical flow modality.

the state-of-the-art on the BosphorusSign22k (Özdemir et al.,

2020) dataset.

Although the single-channel ST-GCN-LSTM-based

architecture (88.21%) achieves similar recognition performance

with IDT (88.53%) (Özdemir et al., 2016), the IDT approach

is highly complex and computationally expensive, making it

harder to extract representations and train them for the SLR

task. However, our single-cue approach only uses skeleton joint

information, which is more accessible and easier to train.

Furthermore, the approach in Gökçe et al. (2020) with the

top result (94.94%) in the Table 3 depends upon preprocessing

and separate training of multiple 3D CNN architectures for

each visual cue, including the entire frame, and fusing their

classification scores after they are fully trained while our

best result (92.58%) has been achieved by utilizing skeleton

joint information and localized representations from pre-trained

CNN architectures. Even if a large-scale dataset is available,

due to high time and computational complexity, it is not

practical to train 3D CNN-based SLR frameworks in an end-

to-end manner, which may take days with limited resources. In

contrast, our method uses pre-trained models and trains ST-GCN

coupled with MC-LSTM, which takes approximately 4 h on a

single GPU.

For the AUTSL dataset, our approach yields a promising

recognition performance (90.85%) compared to the state-of-the-art

methods in the literature. As can be seen in Table 4, researchers

have often used the full RGB frame information along with

skeleton pose information in their approaches. In addition to the

entire frame and skeleton pose, the best performing recognition

(98.42%) architecture (Jiang et al., 2021) uses an ensemble approach

that utilizes depth and optical flow modalities. Although the

architecture in Jiang et al. (2021) has the highest performance, the

availability of the features used in the approach may be limited

for other resources. Furthermore, ensemble approaches make it

difficult to interpret the contributions of different visual SL cues of

a multi-cue architecture.

4.6. Evaluation of the e�ect of di�erent
cues on sign language attributes

We further analyze the recognition performance on

different subsets of sign classes representing linguistic

attributes of SLs (as mentioned in Section 4.1); one-handed,

two-handed, circular, non-circular, repetitive, non-repetitive,
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mono-morphemic, and compound signs. In our analysis

(shown in Tables 5, 6), we first train the models using the

entire dataset, then evaluate only the specific sign class

subset and report its recognition accuracy to investigate the

effects of different cues on the recognition performance of a

sign attribute.

Results in both BosphorusSign22k and AUTSL datasets

show that multi-channel hybrid architecture with ST-GCNs

and MC-LSTMs performs well on all sign attributes subsets,

except on the circular signs of the AUTSL dataset, which is

related to the number of classes in the subset. Furthermore,

our analysis demonstrates that using an architecture

that utilizes skeleton joint information with ST-GCNs

outperforms feature-based sequential architectures in all

cases. Especially for the compound signs, our approach

performs the best among all other attributes. As compound

signs are composed of multiple hand shapes and high

movement compared with the other signs, we believe

ST-GCNs can model such complex characteristics better than

feature-based approaches.

Furthermore, our analysis shows that the recognition

performance of the compound signs is also higher when

the multi-cue ST-GCN-MC-LSTM architecture is used

where skeleton joint and feature-based information are

used together. Since compound signs are often longer

than other signs and have complex spatio-temporal

characteristics, we believe that employing a multi-cue

sequential architecture such as MC-LSTMs has further improved

recognition performance.

5. Conclusion

This study aims to improve the performance of isolated

SLR by exploiting multi-articulatory spatio-temporal information

from both manual (hand shapes and gestures) and non-manual

(facial expression) features. In addition to the performance

improvement, we intend to shed light upon the individual

contribution of different cues on the recognition performance of

the sign glosses. For this purpose, we propose a skeleton-based

SLR architecture employing ST-GCNs and MC-LSTMs, which

learns to fuse the pose information and visual representations

extracted from pre-trained DeepHand and DAN architectures.

While the features learned by ST-GCN and extracted from pre-

trained CNNs provide spatial and spatio-temporal representations,

the MC-LSTM carries out the temporal modeling of multiple

visual cues by adaptively fusing them at each time step.

The proposed temporal pooling approach for the ST-GCN

module makes it suitable to train with a sequential model,

unlike the standard ST-GCN architecture. Furthermore, we

designed MC-LSTMs to learn the cross-cue and cue-specific

interaction matrices from data as opposed to using pre-

determined values.

We evaluate our approach on the publicly available

BosphorusSign22k and AUTSL datasets and obtain

comparable recognition performance with the skeleton-

based state-of-the-art. Moreover, we extensively analyze

different subsets representing linguistic sign attributes, T
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revealing that our multi-cue architecture can exploit complex

characteristics of SLs. Our experiments provide empirical

evidence that the proposed ST-GCN and MC-LSTM-based

framework can model the interactions between multiple

visual SL cues without using the information from the

entire frame.
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Özdemir, O., Kındıroğlu, A., A., Camgöz, N. C., and Akarun, L. (2020).
“Bosphorussign22k sign language recognition dataset,” in Proceedings of the 9th
Workshop on the Representation and Processing of Sign Languages: Sign Language
Resources in the Service of the Language Community, Technological hallenges and
Application Perspectives (Marseille: European Language Resources Association), 181–
188. doi: 10.48550/arXiv.2004.01283

Özdemir, O., Kindiroglu, A. A., and Akarun, L. (2018). “Isolated sign language
recognition with fast hand descriptors,” in 2018 26th Signal Processing and
Communications Applications Conference (SIU) (Izmir: IEEE), 1–4.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). “On the difficulty of training
recurrent neural networks,” in Proceedings of the 30th International Conference on
International Conference on Machine Learning - Volume 28, ICML’13 (Atlanta, GA),
III-1310-III-1318.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“Pytorch: an imperative style, high-performance deep learning library,” in Advances
in Neural Information Processing Systems, Vol. 32, eds H. Wallach, H. Larochelle, A.
Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Vancouver: Curran Associates,
Inc.), 8024–8035.

Peng, X., Wang, L., Cai, Z., and Qiao, Y. (2015). “Action and gesture temporal
spotting with super vector representation,” inComputer Vision - ECCV 2014Workshops
(Zurich: Springer International Publishing), 518–527.

Plizzari, C., Cannici, M., and Matteucci, M. (2021). Skeleton-based action
recognition via spatial and temporal transformer networks. Comput. Vis. Image
Understand. 208, 103219. doi: 10.1016/j.cviu.2021.103219

Pu, J., Zhou,W., and Li, H. (2019). “Iterative alignment network for continuous sign
language recognition,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (Long Beach, CA: IEEE), 4160–4169.

Rajagopalan, S. S., Morency, L.-P., Baltrusaitis, T., and Goecke, R. (2016).
“Extending long short-term memory for multi-view structured learning,” in European
Conference on Computer Vision (Amsterdam: Springer), 338–353.

Rastgoo, R., Kiani, K., and Escalera, S. (2020). Hand sign language
recognition using multi-view hand skeleton. Expert. Syst. Appl. 150, 113336.
doi: 10.1016/j.eswa.2020.113336

Samaan, G. H., Wadie, A. R., Attia, A. K., Asaad, A. M., Kamel, A. E., Slim, S. O.,
et al. (2022). Mediapipe’s landmarks with rnn for dynamic sign language recognition.
Electronics 11, 3228. doi: 10.3390/electronics11193228

Sandler, W., and Lillo-Martin, D. (2006). Sign Language and Linguistic Universals.
Cambridge: Cambridge University Press.

Saunders, B., Camgoz, N. C., and Bowden, R. (2021). Continuous 3d multi-channel
sign language production via progressive transformers and mixture density networks.
Int. J. Comput. Vis. 2021, 1–23. doi: 10.1007/s11263-021-01457-9

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., et al.
(2011). “Real-time human pose recognition in parts from single depth images,” in
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2011 (Colorado Springs, CO: IEEE), 1297–1304.

Si, C., Chen, W., Wang, W., Wang, L., and Tan, T. (2019). “An attention
enhanced graph convolutional lstm network for skeleton-based action recognition,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(Long Beach, CA: IEEE), 1227–1236.

Sincan, O. M., Junior, J., Jacques, C., Escalera, S., and Keles, H. Y. (2021). “Chalearn
lap large scale signer independent isolated sign language recognition challenge: Design,
results and future research,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (IEEE), 3472–3481.

Sincan, O. M., and Keles, H. Y. (2020). Autsl: a large scale multi-modal
turkish sign language dataset and baseline methods. IEEE Access 8, 181340–181355.
doi: 10.1109/ACCESS.2020.3028072

Sincan, O. M., and Keles, H. Y. (2022). Using motion history images with
3d convolutional networks in isolated sign language recognition. IEEE Access 10,
18608–18618. doi: 10.1109/ACCESS.2022.3151362

Song, Y.-F., Zhang, Z., Shan, C., and Wang, L. (2020). Richly activated
graph convolutional network for robust skeleton-based action recognition. IEEE
Trans. Circ. Syst. Video Technol. 31, 1915–1925. doi: 10.1109/TCSVT.2020.
3015051

Frontiers inNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fnins.2023.1148191
https://doi.org/10.1007/s00138-022-01367-x
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1609.02907
https://doi.org/10.1109/TPAMI.2019.2911077
https://doi.org/10.48550/arXiv.2208.10741
https://doi.org/10.1007/s10489-022-03407-5
https://doi.org/10.1093/comjnl/bxy049
https://doi.org/10.1353/sls.1989.0027
https://doi.org/10.1016/j.patcog.2017.02.030
https://doi.org/10.1109/JSEN.2019.2909837
https://doi.org/10.1109/TAFFC.2017.2740923
https://doi.org/10.48550/arXiv.2004.01283
https://doi.org/10.1016/j.cviu.2021.103219
https://doi.org/10.1016/j.eswa.2020.113336
https://doi.org/10.3390/electronics11193228
https://doi.org/10.1007/s11263-021-01457-9
https://doi.org/10.1109/ACCESS.2020.3028072
https://doi.org/10.1109/ACCESS.2022.3151362
https://doi.org/10.1109/TCSVT.2020.3015051
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Özdemir et al. 10.3389/fnins.2023.1148191

Song, Y.-F., Zhang, Z., Shan, C., and Wang, L. (2022). Constructing
stronger and faster baselines for skeleton-based action recognition.
IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.315
7033

Song, Y.-F., Zhang, Z., and Wang, L. (2019). “Richly activated graph
convolutional network for action recognition with incomplete skeletons,” in
2019 IEEE International Conference on Image Processing (ICIP) (Taipei: IEEE),
1–5.

Stokoe Jr, W. C. (2005). Sign language structure: an outline of the visual
communication systems of the american deaf. J. Deaf. Stud. Deaf. Educ. 10, 3–37.
doi: 10.1093/deafed/eni001

Tunga, A., Nuthalapati, S. V., and Wachs, J. P. (2021). “Pose-based
sign language recognition using gcn and bert,” in WACV (Workshops),
31–40.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems, Vol. 30 (Long Beach, CA).

Vazquez-Enriquez, M., Alba-Castro, J. L., Docio-Fernandez, L., and Rodriguez-
Banga, E. (2021). “Isolated sign language recognition with multi-scale spatial-
temporal graph convolutional networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (Nashville, TN: IEEE),
3462–3471.

Vogler, C., and Metaxas, D. (1997). “Adapting hidden markov models
for asl recognition by using three-dimensional computer vision methods,”
in 1997 IEEE International Conference on Systems, Man, and Cybernetics.
Computational Cybernetics and Simulation, volume 1 (Orlando, FL: IEEE),
156–161.

Wang, H., and Wang, L. (2017). “Modeling temporal dynamics and spatial
configurations of actions using two-stream recurrent neural networks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (Honolulu, HI:
IEEE), 499–508.

Wang, X., Girshick, R., Gupta, A., and He, K. (2018). “Non-local neural networks,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Salt
Lake City, UT: IEEE), 7794–7803.

Wen, Z., Lin, W., Wang, T., and Xu, G. (2021). Distract your attention:
multi-head cross attention network for facial expression recognition. arXiv preprint
arXiv:2109.07270. doi: 10.1109/FG52635.2021.9667041

Wong, S.-F., and Cipolla, R. (2005). “Real-time adaptive hand motion recognition
using a sparse bayesian classifier,” in Computer Vision in Human-Computer Interaction
(Berlin; Heidelberg: Springer), 170–179.

Wu, Z., Huang, M., and Zhao, A. (2021). Traffic prediction based on gcn-lstm
model. J. Phys. Conf. Ser. 1972, 012107. doi: 10.1088/1742-6596/1972/1/012107

Xie, P., Cui, Z., Du, Y., Zhao, M., Cui, J., Wang, B., et al. (2023). Multi-scale local-
temporal similarity fusion for continuous sign language recognition. Pattern Recognit.
136, 109233. doi: 10.1016/j.patcog.2022.109233

Yan, S., Xiong, Y., and Lin, D. (2018). “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Thirty-Second AAAI Conference on
Artificial Intelligence (New Orleans, LA).

Zhang, C., James, J., and Liu, Y. (2019). Spatial-temporal graph attention networks:
a deep learning approach for traffic forecasting. IEEE Access 7, 166246–166256.
doi: 10.1109/ACCESS.2019.2953888

Zhang, J., Zhou, W., Xie, C., Pu, J., and Li, H. (2016). “Chinese sign language
recognition with adaptive HMM,” in 2016 IEEE International Conference on
Multimedia and Expo (ICME) (Seattle, WA: IEEE), 1–6.

Zhu, J., Zou, W., Zhu, Z., and Hu, Y. (2019). Convolutional relation
network for skeleton-based action recognition. Neurocomputing 370, 109–117.
doi: 10.1016/j.neucom.2019.08.043

Frontiers inNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnins.2023.1148191
https://doi.org/10.1109/TPAMI.2022.3157033
https://doi.org/10.1093/deafed/eni001
https://doi.org/10.1109/FG52635.2021.9667041
https://doi.org/10.1088/1742-6596/1972/1/012107
https://doi.org/10.1016/j.patcog.2022.109233
https://doi.org/10.1109/ACCESS.2019.2953888
https://doi.org/10.1016/j.neucom.2019.08.043
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org

	Multi-cue temporal modeling for skeleton-based sign language recognition
	1. Introduction
	2. Related work
	2.1. Sign language recognition
	2.2. Skeleton-based representation learning
	2.3. Temporal modeling

	3. Method
	3.1. Spatio-temporal feature extraction
	Spatial-temporal graph convolutional networks (ST-GCNs)
	CNN-based hand and facial expression representations

	3.2. Multi-cue temporal modeling

	4. Experimental results
	4.1. Datasets
	BosphorusSign22k
	AUTSL
	Sign language specific linguistic attributes

	4.2. Implementation details
	Temporal pruning
	Spatio-temporal feature extraction
	Temporal modeling and classification
	Training and inference

	4.3. ST-GCN with LSTM as a baseline
	4.4. Temporally modeling multi-cue information via MC-LSTMs
	4.5. Comparison with the state-of-the-art
	4.6. Evaluation of the effect of different cues on sign language attributes

	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


