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Introduction: Cinema is an important part of modern culture, influencing millions 
of viewers. Research suggested many models for the prediction of film success, 
one of them being the use of neuroscientific tools. The aim of our study was to 
find physiological markers of viewer perception and correlate them to short film 
ratings given by our subjects. Short films are used as a test case for directors and 
screenwriters and can be created to raise funding for future projects; however, 
they have not been studied properly with physiological methods.

Methods:  We recorded electroencephalography (18 sensors), facial electromyography 
(corrugator supercilii and zygomaticus major), photoplethysmography, and skin 
conductance in 21 participants while watching and evaluating 8 short films (4 
dramas and 4 comedies). Also, we used machine learning (CatBoost, SVR) to predict 
the exact rating of each film (from 1 to 10), based on all physiological indicators. In 
addition, we classified each film as low or high rated by our subjects (with Logistic 
Regression, KNN, decision tree, CatBoost, and SVC).

Results: The results showed that ratings did not differ between genres. Corrugator 
supercilii activity (“frowning” muscle) was larger when watching dramas; whereas 
zygomaticus major (“smiling” muscle) activity was larger during the watching of 
comedies. Of all somatic and vegetative markers, only zygomaticus major activity, 
PNN50, SD1/SD2 (heart rate variability parameters) positively correlated to the film 
ratings. The EEG engagement indices, beta/(alpha+theta) and beta/alpha correlated 
positively with the film ratings in the majority of sensors. Arousal (betaF3 + betaF4)/
(alphaF3  + alphaF4), and valence (alphaF4/betaF4)  - (alphaF3/betaF3) indices also 
correlated positively to film ratings. When we attempted to predict exact ratings, 
MAPE was 0.55. As for the binary classification, logistic regression yielded the best 
values (area under the ROC curve = 0.62) than other methods (0.51–0.60).

Discussion: Overall, we revealed EEG and peripheral markers, which reflect viewer 
ratings and can predict them to a certain extent. In general, high film ratings can 
reflect a fusion of high arousal and different valence, positive valence being more 
important. These findings broaden our knowledge about the physiological basis 
of viewer perception and can be potentially used at the stage of film production.
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Introduction

Cinema is an important part of modern popular culture, influencing millions of viewers. In 
2021, according to the Theatrical and Home/Mobile Entertainment Market Environment report, 
403 films were released in Canada and the US alone, and the combined global theatrical and 
home/mobile entertainment market reached $99.7 billion (Motion Picture Association, 2022). 
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However, in addition to great budgets, the film industry is 
characterised by competition and risk. Due to high production costs 
and marketing budgets, even well-known films may not break even at 
the box office (income from ticket sales). For example, in 2021, famous 
films with big marketing budgets like The Suicide Squad and The Last 
Duel failed to make enough money at the box office to recoup their 
budget. Some authors point out that more than 75% of new film 
releases face a net loss during their run in theatres (Boksem and 
Smidts, 2015). Because of the risk of losing money, companies in the 
film industry are turning to various methods of film promotion and 
prediction of success.

To mitigate such risks, directors, screenwriters, and film studios 
need to know how audiences would react to films beforehand. 
Therefore, research suggested many models for the prediction of film 
success, which is commonly understood as high box office revenue. 
Typically, such models include information about the actors, locations, 
budget, release time, polls, etc. (for more detailed information, see 
Lash and Zhao, 2016; Ahmad et al., 2017). Besides box office receipts, 
another measure of a film’s success is its rating on websites like 
RottenTamatoes, Metacritic, Kinopoisk, and Internet Movie Database 
(IMDb).Scores on websites received from all users and critics are 
related to viewing revenue and viewing satisfaction (Moon et  al., 
2010). It was shown that viewer ratings are the most effective 
predictors of financial income (Dellarocas et  al., 2005). Recently, 
researchers also began to to apply machine-learning algorithms to 
predict film scores, since this have a very promising significance to the 
film industry. Thus, Dhir and Raj (2018) found the importance of the 
number of Facebook likes, film genres, the number of critics in reviews 
in the film score prediction. Latif and Afzal (2016) derived ratings 
from the number of votes on Oscar awards. In addition, film ratings 
can be  predicted from the facial expression of viewers (Shetty 
et al., 2021).

This area of knowledge is actively developing and looking for new 
approaches, one of them being the use of neuroscientific tools and 
data. This area of research offers a wide range of techniques such as 
functional magnetic resonance imaging (fMRI; Hasson et al., 2008) 
and electroencephalography (EEG; Heimann et al., 2014). The most 
common tool for such studies is the EEG. This is due to the fact that 
EEG studies are easier to reproduce, EEG is relatively cheap, which is 
why it can be more applicable to marketing research (Nilashi et al., 
2020). Peripheral physiological measures, such as automated facial 
emotion recognition, heart rate, respiration rate and electrodermal 
activity (EDA) have been used less often (Aznar et al., 2019). But 
recent studies show the presence of inter-subject correlation in 
physiological data during watching movies, such as heart rate (Madsen 
and Parra, 2022) and galvanic skin response (Palumbo et al., 2017). 
Research also shows that physiological data such as corrugator and 
zygomaticus EMG correlate with valence of films (Sato et al., 2020). 
Overall, these studies show that physiological measures can potentially 
contribute to predict a film rating and commercial success.

The use of neuroscientific methods has become popular 
following research showing that they can improve self-reported data 
(Boksem and Smidts, 2015). Thus, Boksem and Smidts (2015) 
measured the EEG activity while watching 18 film trailers, and 
collected behavioural information about liking movies and 
willingness to pay for tickets. They showed that an important 
predictor of box office performance was EEG activity around the 
fronto-central regions in the gamma-band, while the results of the 

willingness-to-pay poll were not a significant predictor of box office 
success. This conclusion was confirmed in a following study (Barnett 
and Cerf, 2017). They measured brain activity of fifty-eight 
participants with EEG and peripheral data in a commercial theatre 
while watching film trailers. Then, they calculated the relative levels 
of neural similarity, which they called cross-brain correlation (CBC). 
The level of CBC could predict film recall and box office revenue, at 
the same time the autonomic nervous system data, like EDA, cardiac 
or respiratory rate, were not associated with recall or box office 
success (Barnett and Cerf, 2017). However, box office receipts 
depend on many factors, including distribution related factors (e.g., 
budget or franchise), brand and star effects (e.g., top actors or 
directors), and evaluation sources (e.g., critics and audience rating) 
and region-specific variables (Gaenssle et al., 2018). We focused on 
the neural correlates of audience rating and user rating prediction, 
which had rarely been considered in film neuroscience before. 
However, a recent study has shown that EEG recordings while 
watching movie trailers can also be successfully used to predict ranks 
of subjects’ preferences using machine learning methods (Shetty 
et al., 2021).

The found physiological markers, capable of predicting ratings 
or commercial success, are usually linked with cognitive states of 
focused attention, the brain reward network, emotional response, 
engagement levels, and enjoyment. For example, Christoforou et al. 
(2017) have found that the gamma-band of EEG while watching 
trailers significantly predicted box office success on the first 
weekend and in the following few weeks. They associated gamma-
activity while watching, with the trailer or film’s ability to capture 
the viewer’s attention. Other EEG components related to 
engagement and enjoyment can be used to predict other aspects of 
film success such as rating. For example, activity in the beta-band 
of EEG is usually associated with an individual preference for 
short-term rewards (Cohen et al., 2007). In this vein, Boksem and 
Smidts (2015) showed that beta-activity was related to a high 
viewer preference for films.

We hypothesised that such well-spread EEG markers as 
engagement indices, beta/(alpha+theta) and beta/alpha (Pope et al., 
1995) and valence and arousal indices (Giraldo and Ramirez, 2013) 
may be other accurate markers for predicting film ratings. Although 
these indices have been widely used for engagement and workload 
measurement (Berka et al., 2007; Lelis-Torres et al., 2017; Apicella 
et al., 2022), to our knowledge, they have not been applied to study 
film perception and film ratings. The frequency of the beta-band may 
be related to the activation of the visual system and also to the state of 
attention (Molteni et  al., 2007). An increase in alpha- and theta-
activity is usually associated with a decrease of attention and vigilance 
(Coelli et al., 2015), so a complex index can give a more accurate 
result. In other words, engagement indices, widely used in different 
psychophysiological studies, could enrich the field of neurocinematics, 
since they take into account different EEG bands, related to both 
activation and deactivation. Supposedly, complex or composite indices 
could capture differences or relationships, invisible when the EEG 
rhythms are studied independently (Shestyuk et al., 2019).

We also applied machine-learning methods to predict the 
rating of films based on EEG data and peripheral indicators, 
expecting that the engagement indices would be  among the 
significant predictors of film ratings. By now, researchers predicted 
film scores from Facebook likes and number of critics (Dhir and 
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Raj, 2018), Oscar votes (Latif and Afzal, 2016), or even facial 
expression (Shetty et al., 2021). Previously, machine learning was 
also shown to be very fruitful to recognize, via EEG signals, such 
mental states as, for example, engagement, workload (Berka et al., 
2007; Walter et al., 2017) and emotions (Soleymani et al., 2015; 
Rayatdoost and Soleymani, 2018; Rayatdoost et al., 2020). This 
motivated us to apply machine-learning techniques to predict film 
rationg from EEG and peripheral signals.

In addition, previous studies have mostly used film trailers as 
stimuli (Boksem and Smidts, 2015; Liu et al., 2016; Christoforou et al., 
2017; Wu et  al., 2017, 2018; Dushantha et  al., 2020). Trailers are 
convenient stimuli for studying as they are actively used in marketing 
research. However, they display a number of drawbacks, as they 
consist of disparate scenes of the film and rarely present a coherent 
narrative. In the current study, we focused on short films. According 
to the Academy of Motion Picture Arts and Sciences, short films are 
“original films that are less than 40 min long…” Short films are usually 
used as a test case for directors and screenwriters and can be created 
to raise funding for future projects because short films are much 
cheaper to produce. We suppose that due to their shorter duration and 
at the same time the integrity of the narrative, short films could be a 
suitable object for a psychophysiological study.

Hence, the aim of our study was to find physiological markers of 
viewer perception and correlate them to short film ratings. For this 
purpose, we recorded electroencephalography, facial electromyography 
(corrugator supercilii and zygomaticus major), photoplethysmography, 
and skin conductance that were supposed to reflect viewer engagement 
(Palumbo et al., 2017) and emotions (Lundqvist, 1995; Li et al., 2018; 
Sato et al., 2020; Madsen and Parra, 2022). As for the cardiac activity, 
along with heart rate, we also extracted different features of heart rate 
variability (HRV), which are frequently considered to reflect emotional 
states (Kuoppa et al., 2016; Shi et al., 2017; for a review see Zhu et al., 
2019). Finally, we used machine learning to predict both the exact 
rating of each film and classify them as low or high rated.

Materials and methods

Sample

Twenty-one healthy volunteers (76.19% females) participated in 
the experiment in exchange for a monetary reward (an equivalent of 
20 USD at purchasing parity power in 2021). Their mean age was 22.5, 
SD = 4.0. The study was carried out in accordance with the Declaration 
of Helsinki and was approved by the local research ethics committee 
(#52, 14.01.2019). Each participant provided written consent for his 
or her participation in the study.

Stimuli

We selected eight short films with different levels of scores on the 
Kinopoisk, a film rating database. The mean score was 7.5 (SD = 0.5, 
min = 6.8, max = 8.1) on a scale of 1 to 10. The number of ratings for 
each video was over 800, with an average of 5,400 ratings. We removed 
the titles, so the subjects could watch only the films. The mean 
duration was 6 min 4 s; the range was from 4 min 21 s to 7 min 25 s 
(Table 1).

Procedure

Participants were informed that they would have to watch and 
evaluate a number of short films. Each participant watched short films 
on a 31.5-inch computer screen in a random order. After watching 
each film, participants were asked “to rate the film” on a scale of 1 to 
10 (where 10 meant the best grade, following Kinopoisk or IMDb 
scales). There was a rest period for 60 s between the evaluation offset 
and a new film onset. Participants were asked not to move and blink 
much, because the rest periods were used in the analyses as well (see 
below). The procedure was programmed in PsychoPy (Peirce, 2008).

Data collection

To record and amplify physiological signals, we used ActiChamp 
equipment (Brain Products, Germany). The signal recording 
frequency was 1,000 Hz. EEG signals were recorded from 18 active 
electrodes (F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P8, P4, Pz, P3, P7, 
O1, Oz, O2), according to the 10–20 system (Jasper, 1958). The 
impedance of each electrode was kept below 15 kΩ. Tp9 and Tp10 
electrodes were used as an online reference. Vertical eye movements 
were recorded with one electrode, which was placed on the 
orbicularis oculi muscle under the right eye. A photoplethysmograph 
was put on the middle finger of the left hand. Electromyographic 
activity of zygomaticus major (the “smiling” muscle) and corrugator 
supercilii (the “frowning” muscle) was recorded by placing 4-mm 
Ag/AgCl surface electrodes (Fridlund and Cacioppo, 1986). 
Although it was shown that the left side of the face is more sensitive 
to corresponding emotions (Dimberg and Petterson, 2000), due to 
technical problems we  recorded EMG from the right side. Skin 
conductance was measured by placing two Ag/AgCl surface 
electrodes on the index and ring fingers of the left hand 
(non-dominant for all participants).

Data reduction

The EEG preprocessing was conducted in MNE Python 
(Gramfort, 2013). The raw EEG was downsampled from 1,000 Hz 
to 125 Hz to reduce computational complexity and filtered with 
lower-pass edge of 0.05 and upper-pass of 30 Hz. We decided to 
exclude the gamma-activity, since recent studies show that it is not 
possible to completely clear the signal from muscle activity in the 
gamma-band. And also that data contamination from muscle 
activity in the gamma band >30 Hz over the entire scalp is higher 
than in the beta band. Moreover, the analysis of independent 
components provides effective clipping of EMG in EEG beta 
activity in almost all leads, but not in gamma (Pope et al., 2022). 
After that, we interpolated bad channels by fitting PyPrep Pipeline 
with RANSAC method (Bigdely-Shamlo et al., 2015). To correct 
EEG for eye blinks, we ran ICA decomposition from MNE.ICA 
module. To reject muscle artefacts, we deleted intervals (about 2% 
of the data) where the z-score was greater than 10. We estimated 
power spectral density using Welch’s method in Yasa SciPy welch 
(Vallat and Walker, 2021). We computed the median power of the 
EEG in theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) bands 
in the one-second window (125 samples) with a 50% overlap. 
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We also got ratios of theta, alpha, and beta bands within each trial 
(one film, one subject). In addition, we calculated the engagement 
index as beta/(alpha+theta) and beta/alpha (Pope et  al., 1995; 
Freeman et  al., 1999), arousal index, (betaF3 + betaF4)/
(alphaF3 + alphaF4), and valence index, (alphaF4/betaF4) - (alphaF3/
betaF3), where positive values mean positive emotions (Giraldo and 
Ramirez, 2013). For each variable, we subtracted the baseline (the 
mean value of 60-s rest period before each film) from the value of 
each trial. For machine-learning purposes, following an increasing 
trend towards the use of complexity analysis in quantifying neural 
activity, we additionally calculated brain entropy and complexity 
measures (Lau et  al., 2022). Using neurokit2 (Makowski et  al., 
2021), we extracted Petrosian fractal dimension (PFD), differential 
entropy (DE), Katz’s fractal dimension (KFD), Sevcik fractal 
dimension (SFD), permutation entropy (PEn), Shannon entropy 
(ShanEn), spectral entropy, singular value decomposition entropy 
(SVDEn), Fisher information (FI), Hjorth’s complexity (Hjorth), 
relative roughness (RR) for each EEG channel and each film 
(Rahman et al., 2021).

Photoplethysmograms were processed with HeartPy, Python 
heart rate analysis toolkit (Van Gent et al., 2019). They were filtered 
using a Hampel filter with filter size parameter set on 6, that means 
that three data points on each side were taken to detect outliers and 
correct the signal. For each film, we extracted variables thought to 
reflect emotional states (Kuoppa et al., 2016; Shi et al., 2017; Zhu et al., 
2019): mean heart rate (HR) and different characteristics of heart rate 
variability (HRV): the standard deviation of NN intervals (SDNN), the 
root mean square of the successive differences (RMSSD), the standard 
deviation between successive differences (SDSD), the proportion of 
NN20 and NN50 (pNN20 and pNN50), the median absolute deviation 
of RR intervals (MAD), and SD1, SD2, SD1/SD2 of Poincaré plot. For 
each variable, we subtracted the baseline (the mean value of 60-s rest 
period before each film) from the value of each trial.

Zygomaticus and corrugator EMG activity was processed in 
MNE-Python. We applied the FIR filter with a lower–pass of 10 Hz 
and upper-pass of 350 Hz, took absolute values of the signal and 
averaged it within each trial. Then we subtracted the baseline (the 
mean value of 60-s rest period before each film) from the EMG value 
of each trial.

Skin conductance was processed with Neurokit2 (Makowski et al., 
2021). We excluded the tonic component, detected skin conductance 
responses, and extracted amplitudes of all peaks. For each trial, 
we summed all the peak amplitudes and divided by time in order to 
correct for different epoch length.

Data analysis

We compared film ratings and somatic and vegetative variables 
between genres (comedies/dramas), using t-tests for paired samples 
with Cohen’s d as an effect size measure. Then we correlated film 
ratings with all physiological variables. In the analysis of EEG, 
Benjamini-Hochberg correction was applied for multiple correlations 
for each individual channel.

To predict film ratings, based on physiological data, we used all 
above-mentioned features. After this, we removed outliers defined as 
>3 SD or < −3 SD by column in our matrix. After this, we imputed 
missed values with a multivariate imputation by chained equations 
in which the specification occurs on at the variable level, excluding 
artificial correlations between them (mice; Van Buuren and 
Groothuis-Oudshoorn, 2011). The final matrix consisted of 168 cases 
(8 films × 21 subjects) and 522 columns (519 physiological features 
(see Supplementary materials), film, subject and rating). For each 
prediction, we extracted 15 most important physiological features, 
which then were used for training and prediction. The importance 
of a feature was computed as the reduction of the criterion brought 
by that feature. It is also known as the Gini importance (Nembrini 
et  al., 2018). Thus, the final matrices were always 168 × 18 (15 
physiological features, film, subject and rating). To predict 
continuous ratings (from 1 to 10), we applied CatBoost (CatBoost 
Python package; Prokhorenkova et al., 2018) and support vector 
regression (with Scikit-learn Python package). Additionally, 
we ranked all the ratings within each subject as low or high rated to 
apply binary classification with logistic regression, KNN, decision 
tree, CatBoost, support vector classification (with Scikit-learn 
Python package). To compute metrics on regression and 
classification, we used k-fold cross-validation. We applied the leave-
one-film-out strategy; hence, for each of the eight films, the data 
collected from all participants who watched seven of them were 
utilized for training. Meanwhile, the other film was designated for 
testing purposes, and to forecast the ratings of all subjects for the 
eighth film. This process was carried out independently for each film, 
resulting in eight separate predictions (Kramer, 2016). In other 
words, we expected to predict the film ratings (from 1 to 10) or ranks 
(low/high) of a film, based on the EEG and peripheral signals data of 
this film and EEG and peripheral signals and ratings or ranks of 
seven other films. This might have an applied significance in future 
attempts to predict ratings at the film production stage. In simple 
words, a studio could collect physiological databases during film 
perception and after having shown some films and asked for ratings 

TABLE 1 The description of short films used in the study.

Title Year Duration, s Genre Director Rating page (consulted 1/3/2021)

One-Minute Time Machine 2014 318 Comedy D. Avery https://www.kinopoisk.ru/film/864243/

Star 2001 395 Comedy G. Ritchie https://www.kinopoisk.ru/film/12201/

The Flying Car 2002 364 Comedy K. Smith https://www.kinopoisk.ru/film/328034/

The Expert 2014 445 Comedy L. Beinerts https://www.kinopoisk.ru/film/838922/

One Hundredth of a Second 2006 261 Drama S. Jacobson https://www.kinopoisk.ru/film/272683/

The Gift 2010 391 Drama I. Petukhov https://www.kinopoisk.ru/film/841213/

Aningaaq 2013 346 Drama J. Cuarón https://www.kinopoisk.ru/film/788239/

Cargo 2013 394 Drama B. Howling, Y. Ramke https://www.kinopoisk.ru/film/756665/
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to a sample of subjects in a neuroscientific laboratory, they could 
predict subjects’ ratings of new films.

Results

First, we analysed whether genres provoked different reactions. 
Film ratings did not differ depending on genres, t (20) = 0.67, p = 0.50, 
M ± SDdramas = 6.12 ± 2.43, M ± SDcomedies = 6.37 ± 2.40. Corrugator 
supercilii activity was larger while watching dramas, t (20) = 3.25, 
p = 0.004, d = 0.71. Zygomaticus major activity was larger while 
watching comedies, t (20) = 2.12, p = 0.047, d = 0.46. All other somatic 
and vegetative variables did not show differences between comedies 
and dramas, ts < 1.6, ps > 0.08.

Second, we subjected all physiological variables to correlation 
analysis with the film ratings. Of all somatic and vegetative markers, 
only three were related to film ratings. Zygomaticus major activity 
positively correlated to film ratings, r = 0.26, p = 0.001. Also, PNN50 
and SD1/SD2 (indices of HRV) as well positively correlated to film 
ratings, r = 0.18, p = 0.019 and r = 0.16, p = 0.043. Correlation analysis 
between EEG rhythms and film ratings yielded some significant 
results. Thus, the engagement index, beta/(alpha+theta), correlated 
positively with film ratings in the majority of sensors (Figure 1A). The 
higher the index was, the larger self-reported value was. We received 
a similar pattern when we calculated the engagement index as beta/
alpha. It also correlated positively with film ratings in the majority of 
sensors (Figure  1B). Valence and arousal indices also positively 
correlated to film ratings (r = 0.21, p = 0.010 and r = 0.24, p = 0.003, 
respectively). Of note, the engagement index beta/(alpha+theta) 
positively correlated to the arousal index in all sensors (0.31 < rs < 0.80, 
all ps < 0.001), besides O1, Oz and O2, but to the valence index only 
in Cz, negatively (r = − 0.28, p = 0.007). The engagement index beta/
alpha positively correlated to the arousal index in all sensors 
(0.29 < rs < 0.88, all ps < 0.001), and negatively to the valence index only 
in Cz (r = − 0.23, p = 0.004).

We also separately correlated the power of each band to film 
ratings and did not find any correlation (all ps > 0.05). Finally, within 
each subject we  split films into low and high rated halves. Mean 
ratings were 4.55 and 8.02, t = 13.34, p < 0.001; but the interaction 
genre × half (low/high) was not significant, p = 0.57. However, 
we  found no significant difference in any physiological measure 
between halves (ts < 1.79, ps > 0.08).

Third, we  attempted to predict (using cross-validation) film 
ratings based on physiological data. We predicted the rating of each 
film based on the physiological data of all subjects recorded while 
watching the other films. As an example, the 15 variables with their 
importance in CatBoost regression for Film 1 can be found in Figure 2. 
For both models applied, the mean absolute prediction error (MAPE) 
was 0.53. The statistics of predictions for each film can be found in 
Table 2.

We then tried the binary classification of ratings. That is, within 
each subject we split films into low and high rated halves. After this, 
for each film we predicted whether it would receive a low or high 
rating by each subject, based on the binary ratings of all other films 
(Table 3). As an example, the 15 variables with their importance in 
CatBoost classification for Film 6 can be found in Figure 2. Logistic 
regression turned out to be the best predictive model. The mean area 
under the curve was 0.62 (with 0.50 being the random value). The best 

area under the curve (0.71) was found for Film 6. Other models 
yielded lower values of the area under the curve (0.51–0.59).

Discussion

The aim of our study was to explore physiological markers of short 
film perception and correlate them to film ratings. For this purpose, 
we  measured electroencephalography, facial electromyography, 
photoplethysmography and skin conductance in 21 participants, while 
watching 8 short films (4 dramas and 4 comedies). We  also used 
machine learning to predict the exact rating of each film and to 
classify each film as low or high rated.

First, we simply compared ratings and all physiological variables 
between two genres. Corrugator supercilii (the “frowning” muscle) 
activity was larger in response to dramas, while comedies provoked 
an increase in zygomaticus major (the “smiling” muscle) EMG. These 
findings are in accordance with the previous studies, which showed 
that unpleasant stimuli evoke an increase in corrugator supercilii 
activity, whereas zygomaticus major is activated by pleasant stimuli 
(Dimberg and Karlsson, 1997; Bullack et al., 2018). At the same time, 
heart rate and skin conductance did not differ. This may mean that 
both comedies and dramas evoked the same level of arousal, but with 
the opposite valence (Bradley et al., 2001). In other words, comedies 
were perceived positively, while dramas evoked negative emotions, but 
the same level of physiological arousal.

Curiously, ratings between genres did not differ, which may mean 
that they might reflect arousal rather than valence. We then split films 
into low and high rated halves (within each subject), but found no 
significant difference in any physiological measure between the halves. 
Also, the interaction between halves and genres did not have a 
significant effect on the ratings, which would mean that comedies and 
dramas were distributed equally between halves. In other words, both 
comedies and dramas were in low and high rated halves. This may 
explain that many films and genres are not perceived as pleasant (like 
horror), but attract the attention of viewers, presumably, due to the 
level of arousal. This is consistent with the suggestion that for many 
viewers, arousal itself may be an important reason for watching, like 
in the case of horrors or tragedies (Martin, 2019). Thus, in a study by 
Vecchiato et al. (2009), skin conductance (a marker of arousal) was 
not sensitive to differentiate TV commercials, seemingly because of 
the equally high level of arousal.

Second, correlation analysis between EEG rhythms and film 
ratings showed that the engagement index (calculated as beta/
(alpha+theta) or beta/alpha), correlated positively with the ratings in 
the majority of sensors. The higher the index was, the larger self-
reported value (film rating) was. We admit that the correlations were 
weak, however consistent throughout the scalp. At the same time, EEG 
indices of valence and arousal also correlated to film ratings. In other 
words, positive and arousing films (based on EEG) were evaluated 
with a higher rating. Also, engagement indices correlated to the 
arousal index. These findings confirm previous studies that revealed 
that engagement index reflects arousal rather than valence. Thus, 
Chaouachi et al. (2010) found that engagement index correlated with 
arousal, but not with valence in an educational process. McMahan 
et al. (2015) showed that the engagement index differentiated low and 
high intensity video games. It was positively related to arousal, and, at 
the same time, negatively to valence. In other words, the engagement 
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index increased in response to a more arousing and unpleasant video 
game event. Maran et al. (2017) also concluded that engaging and 
effective educational material should induce arousal states of different 
valence, both aversive and appetitive.

However, besides arousal, the EEG index of valence and 
zygomaticus major activity positively correlated to film ratings, as well 
as PNN50 and SD1/SD2 (HRV variables). This is in accordance with 
the previous findings on the frontal EEG asymmetry (Davidson, 
2004), indicating the role of the left hemisphere in positive emotions. 
As for HRV, although being a controversial marker of affective states, 
it was found to reflect valence as well. Thus, Shi et al. (2017) revealed 
its increase during happy states in comparison to sad ones. On the 
contrary, Kuoppa et al. (2016) found a lower HRV in response to 
positive food, compared to negative food, but no difference for 
non-edible stimuli. Nevertheless, our results coincide with the data of 
Vecchiato et  al. (2011) who showed that spectral EEG frontal 
asymmetries correlate with the experienced pleasantness of TV 

commercial advertisements. In this vein, Shestyuk et al. (2019), found 
a correlation between frontal asymmetry (pleasantness) and TV 
viewership (number of viewers). In addition, our data partly replicated 
the findings of Sato et al. (2020) who showed correlations between 
corrugator and zygomaticus EMG and the valence of films. Thus, at the 
same time, film ratings reflect valence and arousal experienced during 
perception. It is worth noting, that we deliberately avoided the typical 
affective self-report scales of valence and arousal. We  wanted to 
replicate the scales used in the film industry of mere “rating,” which, 
as we understand, does not equal valence, because even for films in 
the same genres and equal user ratings, the emotions of the audience 
can be radically different (Topal and Ozsoyoglu, 2016). We had a 
concern that the usage of all three scales (film rating, valence, arousal) 
could impact the perception of the “film rating” scale, that is, this 
could have suggested subjects to consider the nature of “film rating.”

Third, we  tested several machine learning models in order to 
predict ratings, based on the physiological data. We predicted the 

FIGURE 1

Correlation coefficients between film ratings and the engagement index, (A) beta/(alpha+theta), and (B) beta/alpha. The sensors where the correlation 
is significant (ps < 0.05) are indicated with their titles.

FIGURE 2

Importance of features for prediction in (A) CatBoost regression for Film 1 and (B) CatBoost classification for Film 6. Shapley Additive Explanation 
(SHAP) values attribute to each feature the change in the expected model prediction when conditioning on that feature (Lundberg and Lee, 2017). blc, 
baseline-corrected.
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exact rating of each film and classified each film as low or high rated. 
As for prediction of exact ratings, the MAPE was 0.55 both for 
CatBoost and SVR. When we classified films as low or high rated, the 
best area under the curve equalled 0.62  in the case of logistic 
regression. Interestingly, in a study by Dhir and Raj (2018), where they 
predicted film ratings, based on Facebook likes and number of critics, 
the prediction quality was low (F1 = 0.59), although their sample 
consisted of 5,043 films. Much better results on 2000 films were 
obtained by Latif and Afzal (2016), who used budget, genre, critics, 
Oscar votes to predict film ratings (ROC area = 0.93). This discrepancy 
can lie in the difference of films used in the study. Due to the 
restrictions of psychophysiological laboratory and our experimental 
plan, we could present only eight films, in comparison to the studies 
relied only on open data from large samples.

A future study could involve much more films and evaluated 
models with and without physiological data. To resolve this and 
present more films, future studies could be organised so that different 
subjects could watch some overlapping subsamples of films. Another 
possibility to expand this line of research would be to ask subjects to 
indicate a “dynamic valence/arousal rating” during the whole viewing 
(Nummenmaa et al., 2012). These time-series could then be correlated 
to physiological markers within each trial or on average. This would 
allow finding crucial scenes in films. We had a concern that the usage 
of different self-report scales (film rating, valence, arousal) could have 

impacted viewer perception. Therefore, future large-scale studies could 
go deeper into the question of the relationship between these scales in 
order to understand what psychological phenomena lie behind “film 
rating.” Our physiological exploration implies that it can be a fusion of 
high arousal and different valence, positive valence being more 
important on average. Nevertheless, this would depend on genre, since 
some films inducing negative emotions, like horror (Zillmann, 1996) 
or sadness (Oliver, 1993), also obtain very high ratings.

Another limitation of our study lies in the recording of EMG from 
the right side the face. Previously, it was shown that the left side of the 
face is more sensitive to basic emotions. Thus, Dimberg and Petterson 
(2000) showed that corrugator supercilii and zygomaticus major were 
more activated on the left side of face, while expressing anger and 
happiness, respectively. This pattern was then confirmed by Zhou and 
Hu (2004). This difference could reflect the right hemisphere 
dominance in emotional expression. Supposedly, future studies in the 
field of neurocinematics could apply EMG sensors to both hemifaces 
for a more detailed analysis.

To conclude, we  revealed that the engagement, valence and 
arousal indices of EEG, as well as the zygomaticus activity and some 
HRV variables, positively correlated to short film ratings given by our 
subjects. Central and peripheral markers, thus, reflect viewer ratings 
and can predict them to a certain extent, as we  showed using 
machine learning.

TABLE 2 Statistics of rating predictions for each of 8 films, based on seven other films.

Film Observed 
rating

CatBoost SVR

MAPE MAE Predicted MAPE MAE Predicted

1 7.52 0.26 1.96 6.13 0.30 2.04 6.45

2 6.50 0.37 1.85 6.30 0.34 1.82 6.29

3 4.86 0.62 2.05 6.41 0.72 2.25 6.76

4 6.62 0.49 2.52 6.10 0.61 2.44 6.60

5 6.52 0.86 2.39 6.21 0.73 2.06 6.28

6 6.10 0.39 1.84 6.15 0.33 1.37 6.25

7 6.52 0.38 2.17 6.19 0.36 1.98 6.01

8 5.33 0.84 2.36 6.64 0.85 2.17 6.70

Mean of 8 films 0.53 2.14 0.53 2.02

TABLE 3 Statistics of binary predictions for each of 8 films, based on seven other films, and the mean values for different models.

Logistic regression CatBoost KNN Decision trees SVC

Film Acc. F1 AUC Acc. F1 AUC Acc. F1 AUC Acc. F1 AUC Acc. F1 AUC

1 0.52 0.55 0.62 0.52 0.58 0.57 0.57 0.67 0.55 0.38 0.48 0.37 0.29 0.35 0.30

2 0.60 0.60 0.61 0.70 0.67 0.70 0.40 0.33 0.39 0.65 0.59 0.64 0.60 0.56 0.60

3 0.62 0.43 0.67 0.52 0.38 0.61 0.57 0.31 0.54 0.52 0.38 0.61 0.62 0.33 0.57

4 0.52 0.55 0.53 0.52 0.62 0.50 0.52 0.50 0.54 0.52 0.50 0.54 0.48 0.56 0.46

5 0.71 0.80 0.67 0.57 0.73 0.50 0.52 0.69 0.46 0.57 0.64 0.56 0.52 0.50 0.54

6 0.70 0.67 0.71 0.70 0.57 0.67 0.55 0.53 0.56 0.55 0.53 0.56 0.55 0.61 0.60

7 0.48 0.52 0.48 0.57 0.61 0.58 0.38 0.38 0.40 0.33 0.36 0.34 0.43 0.40 0.47

8 0.62 0.64 0.67 0.62 0.56 0.62 0.62 0.56 0.62 0.52 0.58 0.59 0.62 0.50 0.60

Mean 0.60 0.60 0.62 0.59 0.59 0.59 0.52 0.50 0.51 0.51 0.51 0.53 0.51 0.47 0.51

acc. – accuracy, AUC – area under the curve.
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